Programm	ne	BS Solid State	Course	SSP-403	Credit	3 (3-0)	
_		Physics	Code		Hours		
Course Ti	tle	Introduction to S	Solid State	e Devices			
			Course I	ntroduction	n		
This course	e pro	vides an introduct	ion to the f	fundamental	principles	and applications of solid	
state device	es. I	t covers the physic	ical conce	pts underlyi	ng the ope	eration of semiconductor	
devices, inc	devices, including diodes, transistors, and other key components in modern electronics. The					modern electronics. The	
course con	nbine	es theoretical con	cepts with	practical a	pplication	s, preparing students for	
further stuc	lies i	n electronics, mate	erials scier	nce, and eng	ineering.		
			Learnin	g Outcomes	5		
By the end of this course, students will be able to:							
1. Underst	tand	the Basics of Solid	d-State Phy	ysics			
2. Compre	eheno	d Semiconductor F	Properties				
3. Underst	tand tor F	diodes and Their A	Application	ns			
5. Device	Fabr	ication Technique	S				
6. Analyze	e De	vice Performance					
7. Explore	e Adv	vanced Devices					
8. Gain la	borat	tory Skills redge in Circuits of	and System	26			
10. Problen	n-So	lving and Critical	Thinking	15			
11. Stay Inf	form	ed About Current	Trends				
These outc	ome	s collectively ensu	are that stu	udents comp	pleting the	course will have a solid	
grounding	in th	ne theory and pra	ctical aspe	ects of solic	l-state dev	ices, preparing them for	
further stuc	ly or	careers in electron	nics and re	lated fields.			
Course Content Assignments/Read				Assignments/Readings			
		Unit-I					
		1.1 Introduction to Solid State Devices					
		1.1.1 Overview of solid state devices and			vices and		
		their importance in modern technology					
Week 1	1.1.2 Review of basic concepts: charge				What are		
	carriers, electric fields, and current				semiconductors?		
	flow 1.1.2 Introduction to comisconductors:						
	intrinsic and extrinsic materials						
		1.1.4 Energ	gy bands in	n solids: cor	duction		
	band, valence band, and bandgap						

	Unit-II	
	2.1 Semiconductor Physics	Discussion about comian
Week 2	2.1.1 Carrier concentration and the role	Discussion about carrier
	of doping	transport mechanism
	2.1.2 Carrier transport mechanisms:	
	drift, diffusion, and recombination	
	Unit-III	
	3.1 The concept of Fermi level and its	
Week 3	significance in semiconductors	What is fermi level?
	3.1.1 Generation-recombination processes	
	and minority carrier dynamics	
	3.1.2 Temperature dependence of carrier	
	Unit IV	
	4.1 The p. p. Junction	
	4.1 The p-in junction $4.1.1$ Formation of the p n junction and	
Week 4	4.1.1 Formation of the p-in junction and	
	4.1.2 Decite in metantial and electric field	
	4.1.2 Built-in potential and electric field	
	in a p-n junction	
	Unit-V	
	5.1 Current-voltage (I-V) characteristics of p-	
	n junction diodes	
Week 5	5.1.1 Capacitance and transient behavior	Practice
	of p-n junctions	
	5.1.2 Applications of p-n junctions:	
	rectifiers, Zener diodes, photodiodes, and	
	LEDs	
	Unit-VI	
	6.1 Bipolar Junction Transistors (BJTs)	What is the significance
Week 6	6.1.1 Structure and operation of BJTs	of BJTs?
	(NPN and PNP transistors)	
	6.1.2 Current flow in BJ1s: injection and	
	Unit-VII	
	7.1 BIT operating regions: active, cutoff, and	
	saturation	
Week 7	7.1.1 The Ebers-Moll model and transistor	Quiz
	characteristics	
	7.1.2 Applications of BITs in amplification	
	and switching circuits	
	and switching circuits	
Week 8	Mid Term Exams	
	Unit-VIII	What is the physical
Week 9	8.1 Field-Effect Transistors (FETs)	significance of FETs?
	8.1.1 Introduction to FETs: JFETs and	

	MOSFETs				
	8.1.2 Structure and operation of				
	MOSFETs: enhancement and depletion				
	modes				
	Unit-IX				
	9.1 Threshold voltage and channel formation				
	in MOSFETs				
Week 10	9.1.1 Current-voltage (I-V) characteristics	What are MOSFETs?			
	OI MOSFEIS				
	9.1.2 Scaling of WOSFETS and Short-				
	9.1.3 Applications of MOSFETs in digital				
	and analog circuits				
	Unit-X				
	10.1 Advanced Solid State Devices				
Week 11	10.1.1 Metal-Semiconductor Junctions:	Define Schottky and			
	Schottky diodes and Ohmic contacts	Ohmic contacts			
	10.1.2 Heterojunction devices and their				
	advantages				
	Unit-XI				
	11.1 High-electron-mobility transistors				
W 1 10	(HEMTs)	D ·			
Week 12	11.1.1 Optoelectronic devices: solar	Review			
	cells, photodetectors, and lasers				
	11.1.2 Power devices: thyristors, IGBTs,				
	and power MOSFETs				
	Unit-XII				
	12.1 Fabrication and Characterization of				
	Solid State Devices	What are doning			
Week 13	12.1.1 Introduction to semiconductor	nrocesses?			
	fabrication processes: doping,	processes:			
	lithography, etching				
	12.1.2 Thin-film deposition and epitaxy				
	Unit-XIII				
	13.1 Device characterization techniques: I-V				
XX7.1.14	C-V measurements and impedance				
Week 14	spectroscopy	Practice			
	12.1.1 Poliobility and failure				
	machanisms in solid state devices				
Week 15	Unit-AIV	What is the future of			
	14.1 Applications and Future Trends				
	14.1.1 Solid state devices in integrated	ICs?			
	circuits (ICs) and microelectronics	1.0.			
	14.1.2 Emerging technologies: organic				
	semiconductors, flexible electronics, and				

	nanoelectronics	
	14.1.3 Introduction to quantum devices	
	and the future of solid state electronics	
Week 16	Final Term Exams	

Textbooks and Reading Material

1. "Semiconductor Physics and Devices: Basic Principles" by Donald A. Neamen

- 2. "Solid State Electronic Devices" by Ben G. Streetman and Sanjay Banerjee
- 3. "Fundamentals of Semiconductor Devices" by Anderson R. Jacob and Richard C. Jaeger
- 4. "Physics of Semiconductor Devices" by Simon M. Sze and Kwok K. Ng
- 5. "Microelectronic Circuits" by Adel S. Sedra and Kenneth C. Smith
- 6. "Introduction to Microelectronics" by Jacob Millman
- 7. "Electronic Devices and Circuit Theory" by Robert L. Boylestad and Louis Nashelsky

Teaching Learning Strategies

- 1. Course Teaching
- 2. Presentations
- 3. Quiz

Assignments: Types and Number with Calendar

- 1.
- 2.
- 3.
- 4.

Assessment

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.