Program		BS Solid State	Course Code	SSP-405	Credit Hours	3 (3-0)		
S		Physics						
Course T	itle	Statistical Mechani	cs					
	Course Introduction							
The course	intro	duces Thermal and St	atistical Physics at	undergradua	te level			
			earning Outcome	es				
	-	on of the course, the s nciples of equilibrium						
	-	nciples of equilibrium	•					
3. Stu	dy of	partition function and	different statistica	al systems.				
	ı		Course Content					
Week 1	Equilibrium Thermodynamics							
WCCK 1	Thermodynamical quantities							
Week 2	The laws of thermodynamics							
WCCK 2	Equations of state of an ideal gas							
Wools 2	Specific heats							
Week 3	Maxwell relations and their applications							
Wools 4	(Continuing)							
Week 4	Elements of Probability Theory: Probabilities and its laws							
Wools 5	Probability distributions; binomial distribution; Gaussian distribution.							
Week 5	Formulation of Statistical Mechanics							
Wools 6	Micro and macro states of system							
Week 6	counting the states of a system (harmonic oscillators, ideal gas)							
XX1.7	micro canonical system							
Week 7	Thermal and mechanical interactions in statistical physics							
TT 1.0	absolute temperature and equations of state							
Week 8	Derivation of laws of thermodynamics							
Week 9	System in contact with heat reservoir and canonical ensemble							
	Partition Function							
Week 10	Partition function and its relationship with thermodynamical variables							
	Examples ideal gas							
Week 11	Collection of simple harmonic oscillators							
	Con	cotton of simple narm	one oscillators					

	Pauli and Van Vleckparamagnetization		
Week 12	Theorem of equipartition of energy		
	Classical Statistics: Maxwell-Boltzmann distribution		
Week 13	Quantum Statistics:		
	Bose-Einstein distribution		
Week 14	Fermi- Dirac and Planck's distributions		
	Back body radiations		
Week 15	Bose-Einstein condensation		
	Gas of electrons in solids		
Week 16	Description of phase transitions in statistical physics and its types		
	Ising model		

Textbooks and Reading Material

- 1. Fundamental of Statistical and Thermal Physics, R. Reif, McGraw-Hill (1988).
- 2. Elementary Statistical Physics, C. Kittle, *Dover Publications* (1958).
- **3.** Statistical and Thermal Physics, H. Gould and I. Tobochnik, *Princeton University Press* (2010).
- 4. Statistical Physics, Gregory H. Wannier, Dover Publications, Inc., New York (1987).

Teaching Learning Strategies

The instructor is required to make use of Mathematica/Maple/Python to teach the concepts through visualization/antimutation and symbolic/numerical calculations. The students are required to solve a large portion of related exercises/questions/problems of the main textbooks.

Assignments: Types and Number with Calendar

At least two assignments and two quizzes. A course project may also be assigned.

Assessment

Sr. No.	Elements	Weightage	Details
1.	Midterm	35%	Written Assessment at the mid-point of the semester.
	Assessment		
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Assessment mostly in the form of the course the based on term p		Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.