Programm	Bachelor of Science in Solid State Physics (BS SS Physics)	Course Code	GNS- 201	Credit Hours	3 (2-1)
Course Tit	e Fundamentals of	Physical	Chemistry		
Course Introduction					
Fundamenta in chemical motion, ene analytical dy	Ils of physical chemistr systems in terms of t ergy, force, time, ther ynamics and chemical	ry is the stu he princip modynam equilibria	udy of macro ples, practico ics, quantu	oscopic and es, and con m chemistr	l microscopic phenomena acepts of physics such as ry, statistical mechanics,
		Learnin	g Outcome	s	
 Expland Derimect Stud bioc equi Stud these 	ain and apply the conspectroscopy to chemic ve essential mathematics, and spectroscopients will apply essent hemical problems, indibina. ents will evaluate physe systems.	acepts of t cal, physic tical relati py. ial mather cluding cl vsical and	hermodyna cal, and biod onships in matical relat hemical and chemical s	mics, kinet chemical sy thermodyn tionships to d biochemi ystems to c	ics, quantum mechanics, vstems. amics, kinetics, quantum o chemical, physical, and ical reactions and phase letermine how to control
	Course C	ontent			Assignments/keadings
Unit-I1.1 IntroductionWeek 11.1.1 Ideal and real gases, equ state, critical phenomenon and constants, molecules in motion diameter and mean free path		ases, equatinenon and cr in motion, cree path	ons of ritical collision	Difference between ideal and real gas	
Week 2	Unit-II 2.1 Physical properties of liquids 2.1.1 Surface tension, viscosity, refractive index etc. and their applications, brief account of interactions among the molecules in liquids		Examples of viscous materials		
Week 3	Unit-III 3.1 Packing of 3.1.1 Unit of	atoms cells and c	crystal syste	ms,	What is a unit cell

methods of crystal structure analysis, brief account of polymers and composite

	materials with special emphasis on		
	superconductors, semi-conductors etc.		
Weels 4	∐nit-IV	What is also as	
vveek 4	4.1 Introduction to plasma	what is plasma	
	Unit-V		
Week 5	5.1 Chemical Thermodynamics	Evenies	
week 5	5.1.1 Laws of thermodynamics and their	Exercise	
	applications thermodynamic functions		
	Unit VI		
	6 1 Internal energy	Define enthalpy and	
Week 6	6.1.1 enthalpy entropy and free energy	entrony	
	relations between thermodynamic	entropy	
	functions		
	Unit-VII		
Week 7	7.1 Heat capacity	Practice	
	7.1.1 Concept of entropy &		
	probabilities		
Week 8	Miltree Errore		
WEEKO	Mid Term Exams		
	Unit-VIII		
	8.1 Chemical Kinetics	Examples first and	
Week 9	8.1.1 Rate of reaction, rate law, order and	second order reactions	
	molecularity of the reactions, zero, first		
	and second order reactions		
	Unit-IX		
	9.1 Reaction Order		
Week 10	9.1.1 determination of reaction order and	What is law of mass	
	its rate constant, effect of temperature on the reaction rate concents of chemical	action	
	equilibrium law of mass action	rium law of mass action	
	equilibrium constant		
	Unit-X		
	10.1 Le-Chatellier's principle and its		
Wook 11	applications	Collision theory	
WEEK II	10.1.1 elementary concepts underlying	Comsion meory	
	complex and fast reactions, theories of		
	elementary reactions, collision theory,		
	Unit-XI		
	11.1 Solution Chemistry		
	11.1 1 I I I I I I I I I I I I I I I I I		
week 12	Poult's law and its applications		
	molecular interactions in solutions		
	aolligative properties		
	comgative properties		

	Unit-XII			
Week 13	12.1 Azeotropic mixture			
	12.1.1 Distillation and concept of	Exercise		
	azeotropic mixture, phase rule and its			
	applications.			
	Unit-XIII			
Week 14	13.1 Electrochemistry	Discussion		
	13.1.1 Electrolytes, electrolyses,			
	Faradays laws of electrolyses			
	Unit-XIV			
	14.1 Conductance			
Wook 15	14.1.1 Molar conductance and equivalent	Presentations		
WEEK 15	conductance of solution of electrolytes,	1 resentations		
	construction and working of			
	electrochemical cells, cell potential,			
	electrode potential.			
Week 16	Final Term Exams			
Textbooks and Reading Material				
1. Atkins P.W. Physical Chemistry, 6th edition, W. H. Freeman and co. NY. (1998)				
2. Adamson A. W. Understanding Physical Chemistry, 3rd Ed., Benjamin Cummings				
Publishing Company Inc.				
	Teaching Learning Strategies			
1.	Course Teaching			
2.	Presentations			
3.	Quiz			
Assignments: Types and Number with Calendar				
1.				
2.				
3.				
4.				
Aggoggmont				
Assessment				

Sr. No.	Elements	Weightage	Details
1.	Midterm	35%	Written Assessment at the mid-point of the semester.
	Assessment		

2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.