Program		ADP Data Science			
Course Code		GE-167			
Course Title		Discrete Structures			
		Theory	Lab		
Credit Hours		3	0		
Lecture Dura	tion	90 minutes (1.5 Hours), 2 lectures per week			
Semester		1			
Pre-requisite	c	Courses		Knowledge	
Fie-requisite:	3	Nil	Python	lab Setup	
Follow Up Co	urses	Nil			
Course Learn	ing Out	tcomes (CLOs)			
CLO No	Course	e Learning Outcome		Bloom Taxonomy	
CLO-1	Struc	rstand the key concepts of Discre tures such as Sets, Permutation ions, Graphs and Trees etc.		C2 (Understand)	
CLO-2	rigoro such	y formal logic proofs and/or informal, but ous, logical reasoning to real problems, as predicting the behavior of software or ng problems such as puzzles.		C3 (Apply)	
speci		y discrete structures into other puting problems such as formal ification, verification, databases, artificial ligence, and cryptography.		C3 (Apply)	
CLO-4 their scien		rentiate various discrete structures and relevance within the context of computer ce, in the areas of data structures and ithms, in particular		C4 (Differentiate)	
Aims and Objectives		This course aims to equip the students with an understanding and appreciation of the discrete mathematical structures that			

	appear in most computer science problems as well as in oth			
	related disciplines			
	2. In particular, this course seeks to develop critical thinking skills			
	and the skills for comprehending mathematical arguments as			
	well for writing rigorous proofs.			
	It seeks to polish basic problem solving skills through study of			
Learning Outcomes	combinatorial problems, predicate calculus and logical reasoning,			
	abstract algebra, and graph structures.			
Syllabus	Logics and Proofs, Sets, Functions, Sequences, Algorithms, Recursion,			
Syllabus	Probability, Graphs and Trees			
	Chapter 01: The Foundations: Logic and Proofs			
	1.1 Introduction to Discrete Structures			
	1.2 Application of Propositional Logic			
	1.3 Propositional Equivalences			
	1.4 Predicates and Quantifiers			
	1.5 Nested Quantifiers			
	1.6 Rules of Inference			
	Chapter 02: Basic Structures: Sets, Functions, Sequences, Sums, and			
Contents	Matrices			
	2.1 Sequences and Summations			
	2.2 Cardinality of Sets			
	2.3 Sets, Functions Chapter			
	03: Algorithms			
	3.1 Algorithms			
	3.2 The Growth of Functions			
	3.3 Complexity of Algorithms			
	Chapter 05: Induction and Recursion			

	5.1 Mathematical Induction				
	5.2 Recursive Algorithms				
	Chapter 06: Counting				
	6.1 The Basic of Counting				
	6.2 The Pigeonhole Principle				
	6.3 Permutations and Combinations				
	6.4 Binomial Coefficients and Identities				
	Chapter 07: Discrete Probability				
	7.1 An Introduction to Discrete Probability				
	7.2 Probability Theory Chapter 09:				
	Relations				
	9.1 Relations and their properties				
	9.2 Closure of Relations				
	9.3 Equivalence Relation				
	9.4 Partial Ordering Chapter 10 :				
	Graphs				
	10.1 Graphs and Graph Models				
	10.2 Graph Isomorphism, Graph Connectivity				
	10.3 Eulerian, Hamiltonian paths and circuits				
	10.4 Shortest path problems (dijkstra algorithm)				
	Chapter 11: Trees				
	11.1 Introduction to Trees, properties of trees				
	11.2 Applications of Trees				
	11.3 Tree Traversals				
	Late submissions will not be accepted.				
Assignments	 Assignments should be turned in at the start of the class. 				
	 Zero credit for turning in questions other than the assigned questions. 				
Assessment and	Sr. # Elements Weightage Details				
	Veigntage Details				

Examinations	1	Quizzes +	25%	There will be a graded quiz and	
		Assignment		assignments. The term project will be	
		+ Term		framed so as to test the concepts	
		Project		involved in the lectures.	
	2		35%		
	2	Midterm	35%	It takes place at the mid-point of the	
		Assessment		semester.	
	3	Final	40%	Hard an along at the conduction	
		Final		It takes place at the end of the	
		Assessment		semester.	
Textbooks	Discrete Mathematics & its Applications with Combinatory and				
TEXTDOORS	Graph Theory, 7th edition, Kenneth H. Rosen				
Reference					
Reference	•	N/A			
Material/Suggested					
Readings					

Detailed Lecture wise plan

Week	Lectur e	Topic	Sourc eBook (Ch#)	Recommendat ion for Learning Activities
1	1	Introduction to discrete mathematics	Ch#(0 1)	
	2	Introduction to propositional logic	Ch#(0 1)	Assign-1
2	3	Application of propositional logic	Ch#(0 1)	Quiz#1
	4	Consistent System Specifications Propositional Equivalences	Ch#(0 1)	
3	5	Propositional Equivalences	Ch#(0 1)	Quiz#2
	6	Propositional Equivalences	Ch#(0 1)	

4	7	Predicates and Quantifiers	Ch#(0 1)	Assign-2
	8	Nested quantifiers Rules of inference	Ch#(0 1)	
5	9	Sets, Functions	Ch#(0 2)	Quiz#3
	10	Cardinality of Sets	Ch#(0 2)	
6	11	Sequences and Summations	Ch#(0 2)	
	12	Algorithms	Ch#(0 3)	

Week	Lectur e	Topic	Sourc eBook (Ch#)	Recommendat ion for Learning Activities
7	13	The Growth of Functions	Ch#(0 3)	Quiz#4
	14	Complexity of Algorithms	Ch#(0 3)	
8	15	Mathematical induction	Ch#(0 5)	Assign-3
	16	Recursion and Recursive algorithms	Ch#(0 5)	
		MID TERM		
9	17	The Basic of Counting	Ch#(0 6)	
	18	The Pigeonhole principle.	Ch#(0 6)	
10	19	Permutations and combinations	Ch#(0 6)	Assign-4

			Ch#(0 6)	
11	21	An Introduction to Discrete Probability	Ch#(0 7)	
	22	Probability Theory	Ch#(0 7)	Quiz#5
12	23	Relations, Closure of relations	Ch#(0 9)	Assign-5
	24	Equivalence Relation	Ch#(0 9)	
Week	Lectur e	Topic	Sourc eBook (Ch#)	Recommendat ion for Learning Activities
13	25	Partial Ordering	Ch#(0 9)	
	26	Graphs and Graph representation	Ch#(1 0)	Quiz#7
14	27	Graph Isomorphism, Graph Connectivity	Ch#(1 0)	
	28	Eulerian, Hamiltonian paths and circuits	Ch#(1 0)	
15	29	Shortest path problems (dijkstra algorithm)	Ch#(1 0)	Quiz#8
	30	Shortest path problems (dijkstra algorithm)	Ch#(1 0)	
16	31	Introduction to trees, properties of trees	Ch#(1 1)	Assign-6
	32	Applications of Trees, Tree traversals	Ch#(1 1)	
		FINAL TERM	1	