| Program | | BS Data Science | | | | | | |---|----------------|---|-----------------|----------------|--|--|--| | Course Code | | CC-112 | | | | | | | Course Title | | Programming Fundamentals | | | | | | | Credit Hours | | Theory | | Lab | | | | | | | 3 | 1 | | | | | | Lecture Duration | | 90 minutes (1.5 Hours), 2 lectures per week, 1 LAB per week | | | | | | | Semester | | 1 | | | | | | | Pre-requisites course / skills | | Courses | Knowledge | | | | | | | | Nil | Nil | | | | | | Follow Up Courses | | Object Oriented Programming | | | | | | | Course Learning Outcomes (CLOs) | | | | | | | | | CLO No | Course | e Learning Outcome | | Bloom Taxonomy | | | | | CLO-1 | Unders | tand basic problem-solving steps and logic con | C2 (Understand) | | | | | | CLO-2 | Apply b | asic programming concepts | | C3 (Apply) | | | | | CLO-3 | Design | and implement algorithms to solve real-v | C3 (Solve) | | | | | | Objectives | | Students should be able to translate their basic pseudocode/flowcharts into some programming language that computer can understand so that they can get real feel of their efforts. Student can translate of their logic into some programming language. Students can learn basic principles of attacking a problem, a bit of performance factor and some basic structured design principles. | | | | | | | 4. Students should be ready to take Object Oriented Programming course. | | | ed Programming | | | | | ## Students can write a program. Students should be able to translate a computation problem into program. **Learning Outcomes** Student can familiar with C++. Student can design and implement algorithms to solve real world problems. Topics: Flowcharts/Pseudo Codes, Basic C++ Language Constructs: Data types, Variable and Constants, Operator and Expressions, Input and Output (I/O), Formatted I/O, Escape Sequences. Structured Programming in C Language: Decision making using if control structure, Repetition using for and do while, multiple selection using switch and logical operators. Procedural Programming in C Language: functions, prototype, parameter and arguments, call by value and call by reference, library and header files, scope and life time of variables (storage classes), recursion. Composite **Syllabus** data types arrays: definition, processing, and passing of array to a function, multidimensional arrays, searching and sorting. Pointers: pointer definition, pointer arithmetic, constant pointers, pointer and arrays. Strings: string and characters, string conversion functions, Dynamic Memory Allocation. User Defined Data Types: structures, definition, initialization, accessing members of structures, typedef, union and bitwise operators, enumerations. C File Processing: files and streams, Sequential Access File, Random Access File, Secondary Storage I/O. Miscellaneous Topics: Command Line Arguments. 1. Flow Charts/Pseudo Code **Contents** 1.1. Sequence, Conditions, Repetition | | 2. C++ Programming Language Introduction | | | | |-------------------|---|--|--|--| | | 3. Hello world in C++, COUT | | | | | | 3.1. Difference between Variables and Literals, Identifiers | | | | | | 4. Data Types5. Cin, extraction operator | | | | | | 6. Formatted Output | | | | | | 7. Selection: | | | | | | 7.1. Relational operators and expression | | | | | | 7.2. If, if-else, switch | | | | | | 8. Repetition: | | | | | | 8.1. Loop, While, For, Do while | | | | | | 8.2. Sentinel-controlled loops, Nested loops | | | | | | 8.3. Increment and decrement operator | | | | | | 9. Function: | | | | | | 9.1. Defining, Calling, function prototype, passing arguments by value | | | | | | 9.2. Local and global variables, Static variables, | | | | | | 9.3. Default arguments 9.4. Overloading functions | | | | | | 10. Arrays: | | | | | | 10.1. Parallel Arrays, 2D Arrays 11. Pointers | | | | | | 12. CString | | | | | | 13. Structs, Union14. Text and Binary File I/O | | | | | | Interactive class session | | | | | Teaching-learning | Hands on practices in class | | | | | Strategies | Brainstorming and Group discussion sessions | | | | | | Coding in LABS | | | | | | | | | | Γ T | Assignments | Coding Assignments 5 | | | | |----------------|----------------------|----------|-----------|---------| | Assessment and | Sr. # | Elements | Weightage | Details | | Examinations | 1 | Formative | 25% | | |---|---|-----------------------|---------------|---| | | | Assessment | | It is continuous assessment. It includes: classroom participation, attendance, assignments and presentations, homework, attitude and behavior, handson-activities, short tests, quizzes etc. | | | 2 | Midterm
Assessment | 35% | It takes place at the mid-point of the semester. | | | 3 | Final
Assessment | 40% | It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc. | | Textbooks | Gaddis, T., & Sengupta, P. (2012). Starting Out with C++: From Control Structures Through Objects. Pearson. | | | | | Reference
Material/Suggested
Readings | R1. Reference from different books enlisted in reference material will be given as required or lecture notes for reading will be provided. R2. Malik, D. S. (2011). JavaTM Programming: From Problem Analysis to Program Design. Cengage Learning. R3. Ritchie, D. M., Kernighan, B. W., & Lesk, M. E. (1988). The C programming language. Englewood Cliffs: Prentice Hall. | | | | | | • | Handout pro | ovided by the | e teacher. |