Paper Code	NHPY-120	Cr. Hrs.	03
Paper Title	THE SCIENCE OF GLOBAL CHALLENGES		
Domain	Natural Sciences		

Course Introduction

Through this course, students will learn about and discuss some of the core challenges mankind is facing because of advancement in Scientific knowledge that has enabled us to harness nature's resources in various ways. The course also addresses scientific reasoning behind all these challenges and actions that must be taken to create a future free of these problems. Three main areas to focus on are suggested to be Climate Change, the Energy Crisis and the survival of humanity in the wake of deadly viruses and infectious diseases. Through this course, the students will get to see the complex relationship between Science, Technology and our Society and some future directions that promise a safer future for the humanity.

Learning Outcomes

On the completion of the course, the students will be able to:

- 1. Explain the scientific principles that help understand the key challenges we are facing today.
- 2. Describe natural systems modulating the Earth's climate, articulate causes and consequences of anthropogenic climate change, and discuss measures to curb global greenhouse gas emissions.
- 3. Differentiate between renewable and nonrenewable systems.
- 4. Explain the working principles of various renewable systems and devices including solar photovoltaics, wind will, hydro power, geo thermal and bio energy.
- 5. Explain the working principle of key biological ideas including viruses and diseases, evolution by natural and artificial selection.
- 6. Demonstrate an understanding of the deep connection between science, society and technology.

Course Content		Assignments/Readings
Week 1	Major advancements in the last 200 years	
	Associated challenges: Climate crisis, over reliance of	
	fossil fuels and mass extinction of various species.	
Week 2	Greenhouse effect	
	Challenges and risks of climate change	
Week 3	Geological history, role of ocean currents in	
	regulating global climate	
	Large scale wind patterns and global climate	
Week 4	Constraints by climate on ecosystems and impact of	
	ecosystems on global climate	

	Projections of future climate				
Week 5 Week 6	Measuring anthropogenic climate change				
	GCMs. Carbon emission and sustainability.				
	Science of energy	Halliday Resnick, Ch. 7			
	Forms of energy, Energy conversion	Halliday Resnick, Ch. 8			
	Sustainability of Energy Systems,				
Week 7	Working of renewable devices, renewable vs				
	nonrenewable energy				
Week 8	Solar cells, Photoelectric effect	Halliday Resnick, Ch. 27, Sec 38-2			
	Introduction to semiconductors	Halliday Resnick, Sec. 26-5			
***	Band gaps	Halliday Resnick, Sec. 41-1			
Week 9	Wind energy, Wind mills				
	Physics of a generator	Halliday Resnick, Sec. 31-3			
Week 10	Infectious diseases and their types				
	History of germs and vaccines				
Week 11	Evolution by natural and artificial selection				
	Species crossing by viruses				
Week 12	Antibiotic resistance				
	Human physiological limits				
Week 13	Changing interactions and new diseases				
Week 14	Complex web of science, politics and social systems,				
	role of wars				
	Scientific funding				
	Technological progress and ethical constraints				
Week 15	Human experiences as Data				
Week 16	Nanotechnology and its applications in medicine,				
	food, computational systems and energy				
	Biotechnology, future of agricultural production of				
	food, genetic modification, gene therapy				
Toythooks and Pooding Material					

Textbooks and Reading Material

Textbook.

"Fundamentals of Physics" by Halliday, Resnick and Walker. Publisher: Wiley. Extended $10^{\rm th}\,\rm ed.~2018.$

Teaching Learning Strategies

- Asking students for what they have learnt and what do they think
 Group activities
 Using video resources
 Reading suggested readings

- 5. Essay writing

Assignments: Types and Number with Calendar

Assessment

Sr. No.	Elements	Weightage	Details
4.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
5.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
6.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.