UNIVERSITY OF THE PUNJAB

Seventh Semester – 2019 Examination: B.S. 4 Years Program

Kol	1 No.	in Fig.	•••••	•••••	
``\	Roll	No. in	Words.		
	``				

PAPER: Inorganic Chemistry (Sp. Theory-I)
Course Code: CHEM-406 Part-I (Compulsory)

MAX. TIME: 15 Min. MAX. MARKS: 10

`Signature of Supdt.:

Attempt this Paper on this Question Sheet only.

Please encircle the correct option. Division of marks is given in front of each question.

This Paper will be collected back after expiry of time limit mentioned above.

Q.1. Encircle the		and overwriting is not	allowed. (1x10=10)			
(1) An advantage of o (a) Ease of handling	organic reagent in inorga	anic analysis is: (c) Presence of impurity	(d) High molecular weight			
(2) Which is/are mono (a) Chloro	odentate ligand(s) (b) Aqua	(c) Oxime	(d) Both (a) and (b)			
(3) Which has a $d\pi - \mu$ (a) PCl ₅	pπ bond: (b) (CH ₃) ₃ PO	(c) (CH ₃) ₃ NO	(d) SF ₄			
(4) 8-hydroxyquinolii (a) oxine	ne is also known as (b) brine	(c) Saline	(d) Nessler's reagent			
(5) Lone pair occupies equatorial position rather than axial (apical) position in: (a) Tetrahedral (b) Square planar (c) Trigonal bipyramidal (d) Bent/angular						
(6) The element that c(a) Boron from group(c) Bismuth from group		(b) T	on is: (b) Tin from group IVA (d) Selenium from group VIA			
(7) The stretching frequency of C ≡ O in the bridging carbonyl ligands in metal carbonyls is approximately:						
(a) 2155cm^{-1} (b) $2125 - 1850 \text{cm}^{-1}$ (c) 1		(c) 1800cm ⁻¹	0cm ⁻¹ (d) 2000cm ⁻¹			
(8) The strongest $p\pi$ – (a) $Si = Si$		(c) C = Si	(d) Ge = Ge			
(9) explains geometries and electronic spectra of small molecules: (a) Walsh diagrams (b) Molecular Orbital theory (c) Valence bond theory (d) Multicentred bonding						
(10) The symmetry of (a) C_{2v} (b) C_{3v}	BeCl ₂ is represented by (c) $D_{\infty h}$	the point group (d) T _d	is and the second of the secon			

WWW.

UNIVERSITY OF THE PUNJAB

Seventh Semester – 2019 Examination: B.S. 4 Years Program

Roll No.

MAX. TIME: 2 Hrs. 45 Min.

MAX. MARKS: 50

PAPER: Inorganic Chemistry (Sp. Theory-I)
Course Code: CHEM-406 Part – II

ATTEMPT THIS (SUBJECTIVE) ON THE SEPARATE ANSWER SHEET PROVIDED

Q. 2. Answer following short questions.

 $(2 \times 10 = 20)$

(i) Give two failures of Valence Bond theory.

(ii) What are physical states of different halogens at room temperature and why these are different?

(iii) Which type of bonding is stronger between $p\pi - p\pi$ and $d\pi - p\pi$ and why?

(iv) Give the structure of diborane molecule. What type of a bond explains its structure?

(v) What are amphoteric oxides? Give one example.

(vi) What is s – inert pair effect?

(vii) Name different organic reagents used as indicators in acid-base titrations?

(viii) Name various types of organic reagents (other than indicators) used in analysis?

(ix) How chelates can be classified?

(x) What are complexometric titrations?

Q. 3. Answer following questions.

 $(3\times10=30)$

(i) Discuss $p\pi - p\pi$ bonding in the heavier congeners of group IVA.

(10)

(ii) Brief the role of organic reagents in different analytical techniques.

(10)

(iii) Explain use of "d" orbital in bonding by non-metals with few examples.

(10)