# **UNIVERSITY OF THE PUNJAB**

B.S. 4 Years Program /Eighth Semester - 2019

∖ Roll No. in Words. ....

Signature of Supdt.:

Roll No. in Fig. .....

Paper: Analytical Chemistry (Sp. Theory-II)

(a) 300-500 nm

Course Code: CHEM-432 Part – I (Compulsory) Time: 15 Min. Marks: 10 ....

### ATTEMPT THIS PAPER ON THIS QUESTION SHEET ONLY.

Division of marks is given in front of each question.

This Paper will be collected back after expiry of time limit mentioned above.

|                            |                                                           |                           |                         |                         |                  | ``                    |  |
|----------------------------|-----------------------------------------------------------|---------------------------|-------------------------|-------------------------|------------------|-----------------------|--|
| Q.1.                       | Encircle the corre                                        | ect option.               |                         |                         |                  | (10x1=10)             |  |
| (i) V                      | Which one of the follow                                   | owing is exam             | ple of tu               | nable laser?            |                  |                       |  |
|                            | (a) CO <sub>2</sub> Laser                                 |                           |                         |                         | (b) D            | ye Laser              |  |
|                            | (c) Excimer Laser                                         |                           |                         |                         | (d) Al           | l of them             |  |
| (ii)                       | Fundamental process                                       | for laser action          | on is                   |                         | ` '              |                       |  |
|                            | (a) Absorption                                            |                           |                         |                         | (b) Sti          | mulated emission      |  |
| (c) Spontaneous emission   |                                                           |                           |                         |                         | (d) all of above |                       |  |
| (iii)                      | : Excimer laser is                                        |                           |                         |                         |                  |                       |  |
|                            | <ul> <li>a) Optically pimped solid state laser</li> </ul> |                           |                         |                         | (b)Liquid laser  |                       |  |
|                            | (c) Gas laser                                             |                           |                         |                         |                  | miconductor laser     |  |
| (iv)                       | Spin quantum numb                                         | er of <sup>19</sup> F is? |                         |                         | ` ′              |                       |  |
| (                          | a) 1                                                      | (b) <sup>1</sup>          | /2                      | (c) z                   | ero              | (d) 3/2               |  |
| (v)                        | The frequency of 1H                                       | as compared t             | o <sup>13</sup> C in tl | he same field           | d stren          |                       |  |
|                            | (a) Less                                                  | (b) More                  | (c)                     |                         |                  | (d) None of the above |  |
| (vi)                       | The transition of nuc                                     | cleus from $\alpha$ s     | pin to $\beta$ s        | pin state is            | called           | • •                   |  |
|                            | (a) Spin flipping                                         |                           |                         | (b) Spin relaxation     |                  |                       |  |
| (c) Metastable state       |                                                           |                           |                         | (d) Spin precession     |                  |                       |  |
| (vii)                      | Which of the protor                                       | is maximum                | deshielde               |                         | -                |                       |  |
| (                          | a) Alkyl                                                  | (b) CH <sub>2</sub>       | (c)                     | Benzene                 |                  | (d) OH                |  |
| (vii                       | i) To avoid thermal of                                    | decomposition             | sample a                | are introduce           | d by:            |                       |  |
|                            | (a) Cold inlet system                                     |                           |                         | (b) Heated inlet system |                  |                       |  |
| (c) Direct insertion probe |                                                           |                           |                         | (d) Jet spray system    |                  |                       |  |
| (ix                        | Alexandrite laser pr                                      | roduces laser i           | n the rang              | ge of?                  |                  |                       |  |

(c) 700-815 nm

(d) None

(c) Inductive effect (d) Isotropy

(b) 450-600 nm

(x) Protons of benzene are deshielded due to?(a) Magnetic anisotropy (b) Resonance



## **UNIVERSITY OF THE PUNJAB**

B.S. 4 Years Program /Eighth Semester - 2019

Roll No. ....

(5)

(5)

Paper: Analytical Chemistry (Sp. Theory-II)

Course Code: CHEM-432 Part – II Time: 2 Hrs. 45 Min. Marks: 50

## ATTEMPT THIS (SUBJECTIVE) ON THE SEPARATE ANSWER SHEET PROVIDED

| Section-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Q no 2: Attempt all the following Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2x10=20)  |
| <ul> <li>(a) Describe ring Nitrogen Rule with suitable examples.</li> <li>(b) Write a note on Fast Atom Bombardment (FAB) in Mass Spectrom</li> <li>(c) What is difference between single focusing and double focusing an</li> <li>(d) Define coupling constant. How it is calculated?</li> <li>(e) Briefly describe principle of NMR.</li> <li>(f) What is spin-spin relaxation?</li> <li>(g) Write down different parts of NMR Spectrometer.</li> <li>(h) What is population inversion in laser?</li> <li>(i) Describe four level lasers with diagram.</li> </ul> |            |
| <ol><li>Why TMS is used as internal standard in NMR.</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| Section II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Attempt all the following long Questions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Q no 3:<br>(a) Describe two applications of Mass Spectrometer.<br>(a) Prove that: $\frac{m}{e^+} = \frac{H^2 R^2}{2V}$ Q no 4:                                                                                                                                                                                                                                                                                                                                                                                                                                      | (5)<br>(5) |
| (a) Describe McLafferty Rearrangement with example. (b) Describe different factors affecting coupling constant?                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (5)<br>(5) |

(a) Discuss methods of excitation/population inversion in laser.

(b) Describe the working of Alexandrite Laser.