

B.S. 4 Years Program : First Semester – Fall 2021

Paper: Calculus-I

Course Code: MATH-121

Roll No. Time: 3 Hrs. Marks: 60

Q.1. Solve the following:

(6x5=30)

(i)	At what points the function fails to be continuous? Also discuss differentiability at those points as well. $y = \frac{x tanx}{1 + x^2}$	(5)
(ii)	Find the maximum and minimum on the given interval of $h(x) = -\sqrt{5 - x^2}$, $-\sqrt{5} \le x \le 0$	(5)
(iii)	Find the point 'c' of Mean Value Theorem for the function $f(x) = x + \frac{1}{x}, [\frac{1}{2}, 2]$	(5)
(iv)	Find the Taylor Series for the function at $x = 2$ $f(x) = \frac{1}{x}$	(5)
(v)	Find the direction of $\overrightarrow{P_1P_2}$ $P_1(-1,1,5), P_2(2,5,0)$	(5)
(vi)	Graph the function $f(x) = 5 - 2Sinx$	(5)

Solve the following:

(5x6=30)

Q.2	Fin the limit of a) $\lim_{t\to 0} (1 - \cos t)$	(6)
	b) $\lim_{x \to 4} \frac{4-x}{5-\sqrt{x^2+9}}$	
Q.3	If $x^2 - y^2 = 1$, Find $\frac{dy}{dx}$ and show that $\frac{d^2y}{dx^2} = -\frac{1}{y^3}$.	(6)
Q.4	Find $\frac{dp}{dq}$ if: a) $p = (1 + cosecq)cosq$	(6)
	b) $p = \frac{tanq}{1+tanq}$	
Q.5	Does the sequence converge , then find the limit of convergence $a_n = \left(\frac{n+1}{2n}\right) \left(1 - \frac{1}{n}\right)$	(6)
Q.6	Find center, foci, vertices of $\frac{(x+3)^2}{9} + \frac{(y+2)^2}{25} = 1$	(6)