UNIVERSITY OF THE PUNJAB B.S. 4 Years Program : Third Semester – Fall 2

B.S. 4 Years Program : Third Semester – Fall 2021

Semester – Fall 2021

Course Code: PHY-201

Time: 3 Hrs. Marks: 60

Paper: Concepts of Modern Physics Course Code: PHY-

Q.1.	Answer	the following	ig short o	questions:
------	--------	---------------	------------	------------

(15x2=30)

- i. If De Broglie wavelength of electron is 0.113pm, what is speed of electron?
- ii. What is difference between stimulated and spontaneous emission.
- iii. Why classical theory failed to explain photoelectric effect?
- iv. How superconductivity is useful in daily life?
- v. Why two-level laser is not possible?
- vi. Explain the difference between donor and acceptor impurity.
- vii. Briefly comment on energy time uncertainty relationship.
- viii. Write down the general nuclear reaction showing how atomic and mass number of an atom is affected with the emission of gamma radiation.
- ix. Write down Compton shift equation.
- x. Briefly mention four characteristics of laser.
- xi. What is nuclear reaction? Give the difference between fission and fusion reaction.
- xii. Which are the experiments that support the wave theory of light and the particle theory of light?
- xiii. What is blackbody radiation?
- xiv. Define correspondence principle.
- xv. Explain the difference between Rayleigh's law and Planck's Law.

Answer the following questions.

(3x10=30)

Q2. (a) What is fission chain reaction? Discuss the three problems together with their solu	tions
in working of nuclear reactor based on fission chain reaction.	(7)
(b) Consider a ²³⁶ U nucleus is in its ground. How much energy is required to remove	a
neutron from it, leaving a ²³⁵ U nucleus behind? The needed atomic masses are	
$n=1.008665 \text{ u}$; $^{235}\text{U}=235.043924 \text{ u}$; $^{236}\text{U}=236.045563 \text{ u}$;	(3)
Q3. (a)Describe the arrangement of atoms in solids in terms of free electron gas theory.	(8)
(b) Draw forward and reverse characteristics of PN junction	(2)
Q4. (a) Consider a particle is trapped in an infinitely deep potential well. Determine the	
expression for the energy of particle.	(7)
(b) An electron is confined to an infinite well (L=100 pm), which is roughly one atom	nic
diameter. What is the energy of the second least allowed state?	(3)