Q.1. Solve the following:

1. With $\hat{\mathbf{e}}_{1}$ a unit vector in the direction of increasing u_{1}, show that

$$
\nabla \cdot \hat{e}_{1}=\frac{1}{h_{1} h_{2} h_{3}} \frac{\partial}{\partial u_{1}}\left(h_{2} h_{3}\right)
$$

2. Show that $\mathbf{r}=\rho \hat{\mathbf{e}}_{\rho}+z \hat{\mathbf{e}}_{z}$. Working entirely in circular cylinderical coordinates also prove that $\boldsymbol{\nabla} \cdot \mathbf{r}=3$ and $\boldsymbol{\nabla} \times \mathbf{r}=0$. (Note: $x=\rho \cos \phi, y=\rho \sin \phi, z=z$)
3. Given $A_{k}=\frac{1}{2} \varepsilon_{i j k} B^{i j}$, with $B^{i j}=-B^{j i}$, antisymmetric tensor, show that

$$
B^{m n}=\varepsilon^{m n k} A_{k} .
$$

4. Show that

$$
\frac{1}{2 \pi i} \oint_{C} z^{m-n-1} d z, \quad m \text { and } n \text { integers }
$$

(with the contour encircling the origin once counterclockwise) is a representation of the Kronecker $\boldsymbol{\delta}_{\boldsymbol{m n}}$.
5. Evaluate

$$
\oint_{|z-2 i|=4} \frac{z}{z^{2}+9} d z,
$$

by using Cauchy's integral formula.
6. Use the divergence theorem to establish Green's identity

$$
\iint_{S}(f \nabla g) \cdot \mathbf{n} d S=\iiint_{D}\left(f \nabla^{2} g+\nabla f \cdot \nabla g\right) d V
$$

here f and g are scalar functions with continuous second partial derivatives.

Q.2. Solve the following.

1. Evaluate the Cauchy principal value of

$$
\int_{-\infty}^{+\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}(a>0)
$$

2. The derivative of the second-order tensor \mathbf{T} with respect to the coordinate $u^{\boldsymbol{k}}$, find an expression for the covariant derivative $T_{;}^{i j}$ of its contravariant components.
3. Calculate the elements $g_{i j}$ of the metric tensor for spherical polar coordinate. Also calculate the $\Gamma_{i j}^{k}$ for spherical polar coordinates. (Note: $x=r \cos \phi \sin \theta, y=\rho \sin \phi \sin \theta, z=r \cos \theta$)
4. Use the Cauchy's residue theorem to evaluate

$$
\oint_{|z-1|=2} \frac{\tan z}{z} d z .
$$

5. Find the spherical coordinate components of the velocity and acceleration of a moving particle. ($x=$ $r \cos \phi \sin \theta, y=\rho \sin \phi \sin \theta, z=r \cos \theta$)
