UNIVERSITY OF THE PUNJAB

B.S. 4 Years Program : Seventh Semester - Fall 2021

Paper: Solid State Physics-I Course Code: PHY-419

	•	•	J	••	•	•	·	•	• •	•	• •	• •	•	••	• •	•	• •	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

RAII NA

Time: 3 Hrs. Marks: 60

Q.1. Answer the following short questions:

(6x5=30)

- a) What is Born-Oppenheimer approximation? Explain it briefly. Also, write Hamiltonian term and Schrödinger equation involving assumptions/variables of Born-Oppenheimer approximation.
- b) Explain free electron gas model. Write assumptions of classical free-electron theory.
- c) State Bloch theorem. Explain the concept of Bloch electron and Bloch wavefunctions.
- d) Explain at least two physical phenomenon's which cannot be explained on the basis of free electron model.
- e) Explain the concept of effective mass of an electron. What are the factors which make the consideration of effective mass important?
- f) Discuss electron-electron interactions in solids. How screening the Hartree-Fock approximation reduces the importance of electron-electron interactions.

Answer the following questions.

(3x10=30)

- Q. 2 Describe nearly free electron model and explain how this model helps in forming the energy band gaps in solids.
- Q. 3 Explain an augmented-plane wave (APW) method in detail. Solve Schrödinger waveequation and explain the limitations of APW method in calculating the band structure of solids.
- Q. 4 Define the term pseudopotential. Assume plane-wave like function, $f_n(k,r)$ and establish orthogonality condition for acceptable wave-functions. For a monoatomic crystal, write Hamiltonian with pseudopotential term and establish Schrödinger equation involving atomic pseudopotentials.