UNIVERSITY OF THE PUNJAB

Fifth Semester – 2019

	Roll	No.	in	Words.	
`	KOH	140.	111	44 OI #20	••

Roll No. in Fig.

Examination: B.S. 4 Years Program

PAPER: Classical Mechanics Part-I (Compulsory) Course Code: PHY-301

MAX. TIME: 15 Min. MAX. MARKS: 10

Signature of Supdt.:

Attempt this Paper on this Question Sheet only.

• .	Encircle the right answer, cutting and	overwri	iting is	not a	llowed.	(1x10=10				
	(i) The degree of freedom of a two paticles system moving freely in space is										
	(a) 4				-						
	(b) 2										
	(c) 3										
	(d) 6					•					
	(ii) Hamiltonian of a system describes its										
	(a) time evolution										
	(b) space evolution										
	(c) state										
	(d) constraints					•					
((iii) The brachistochorone problem is the										
	(a) least area problem										
	(b) least distance problem										
	(c) least time problem										
	(d) least energy problem										
(i	iv) If the Lagrangian does not involve a palled	articular	coordi	nate q	such co	oordinat	e is				
((a) Angle coordinate.										
	(b) Ficticious coordinate										
	(c) Complete coordinate										
	d) Cyclic coordinate.					ţ					
(Equation of conics $r = \frac{h}{1 + e \cos \theta}$ draws a partial $e = 1$	arabola v	when								
	b) $e > 1$										
	c) $e < 1$. A second					
Ċ	d) e = 0										

P.T.O.

(vi) The canonical transformations preserve

- (a) Lagrange equations
- (b) Hamilton's equations
- (c) Poisson equations
- (d) None
- (vii) The shortest distance between two points on a curved surface is
- (a) a straight line
- (b) a geodesic
- (c) a tangent
- (d) a semi-circle
- (viii) If the Lagrangian is cyclic in q_i , then:
- (a) p_i is not conserved.
- (b) p_i is conserved.
- (c) q_i appears in the Lagrangian
- (d) \dot{q}_i does not appear in the Lagrangian
- (ix) Scleronomous constraints have
- (a) explicit time dependence
- (b) no explicit time dependence
- (c) explicit force dependence
- (d) no explicit force dependence
- (x) Kepler's second Law of planetry motion directly follows from
- (a) Conservation of linear momentum
- (b) Conservation of angular momentum
- (c) Homogeniety of time
- (d) Homogeneity of space

UNIVERSITY OF THE PUNJAB

Fifth Semester - 2019 **Examination: B.S. 4 Years Program**

PAPER: Classical Mechanics Course Code: PHY-301

MAX. TIME: 2 Hrs. 45 Min.

MAX. MARKS: 50

ATTEMPT THIS (SUBJECTIVE) ON THE SEPARATE ANSWER SHEET PROVIDED

() 2. Show explicitly that

$$\frac{\partial \mathbf{x}}{\partial q_i} = \frac{\partial \dot{\mathbf{x}}}{\partial \dot{q}_i} \tag{5}$$

where $\mathbf{x} = \mathbf{x}(q_1, q_2, \cdots, q_n, t)$.

Q 3. State Hamilton's principle of least action and use it to derive

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0.$$

 \bigcirc 4. If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange equation of motion, show by direct substitution that (5)

$$L' = L + \frac{d}{dt}F(q_1, \cdots, q_n; t),$$

also satisfies the Lagrange's equation of motion where F is an arbitrary differentiable function of its argument.

Q 5. Consider a one parameter family of transformations

(5)

$$q_i(t) \to Q_i(s,t)$$
 $s \in \mathbb{R}$

such that $Q_i(0,t) = q_i(t)$. Show that if the Lagrangian is invariant under this transformation, then there exists a conserved quantity (Noether's Theorem)

Q 6. Consider the motion of a particle in a central force field

$$V(r) = -\frac{k}{r}.$$

Write down the Lagrangian in polar coordinates and integrate the equation of motion to derive

$$\theta(r) = \int \frac{l \ dr}{r^2 \sqrt{2\mu \left(E + \frac{k}{r} - \frac{l^2}{2\mu \ r^2}\right)}} + \text{constant},$$

where E is the total energy and l is the angular momentum. Now change variables as $u=\frac{l}{r}$ to derive the equation of a conic section

$$\frac{\alpha}{r} = 1 + \varepsilon \cos \theta.$$

Q 7. (a) Show that the transformation

(5)

$$q = PQ^2$$

$$p = \frac{1}{Q},$$

is canonical and also show that the corresponding generating function is

$$F = \frac{q}{Q}$$

(b) Find the force law for a central force field that allows a particle to move in a logarithmic spiral orbit given by (5)

$$r = k \exp(\alpha \theta)$$

where k and α are constants

Q 8. (a) Show that, if a transformation from (q, p) to (Q, P) be canonical then the bilinear form

 $\sum_{i} \left(\delta p_i dq_i - \delta q_i dp_i \right), \tag{5}$

is invariant under the canonical transformation.

(b) Show that the equation of a curve for which surface area is minimum is a catenary

$$x = a \cosh \frac{y - b}{a} \tag{5}$$

where a and b are constants.