BS (4 Years) for Affiliated Colleges

Code	Subject Title	Cr. Hrs	Semester
PHY-403	NUCLEAR PHYSICS-I	3	VII
Year	Discipline		
4	Physics		

Course Outlines:

Basic Properties of Nucleus: Size and mass of the nucleus, nuclear spin, magnetic dipole moment, electric quadrupole moment, parity and nuclear statistics.

Detectors: Passage of charged particles through matter, ionisation chamber, proportional counter, scintillation counter, semi-conductor detector, emulsion technique, bubble chamber, Particle Accelerators: Linear and orbital accelerators, Van de Graff, betatron, synchrocyclotorn, proton synchrotoron.

Radio-Active Decay: Theory of alpha decay, and explanation of observed phenoma, measurement of β -ray energies, the magnetic lense spectrometer, Fermi theory of β -decay, neutrino hypothesis, theory of gamma decay, multipolarity of gamma-rays, nuclear isomerism.

Nuclear Forces: Yukawa theory, proton-proton and neutron-proton scattering, charge independence and spin dependence of nuclear force, isotopic spin, Nuclear Models: Liquid drop model, shell model, collective model.

Books Recommended:

- 1. Nuclei and particles by E. Serge, 1980.
- 2. A Text Book of Nuclear Physics by C.M.H. Smith, Pergamon Press Oxford, 1966.
- 3. Nuclear Physics by I. Kaplan, Addison-Wesley, 1980.
- 4. Introductory Nuclear Physics by Krane, 1980.
- 5. Concepts of Modern Physics by Beiser, 1980.