

Course Contents for Subjects with Code: ZOOL

This document only contains details of courses having code **ZOOL**.

Code	Subject Title	Cr. Hrs	Semester
ZOOL-101	Zoology-I (Invertebrate Diversity)	3	
Year	Discipline		
1	Botany, Zoology, Chemistry-I		

INVERTEBRATE DIVERSITY:

Classification of organisms; definition, concept, evolutionary relationships and tree diagrams; patterns of organization. Biodiversity.

Animal-Like Protists: The Protozoa:

Evolutionary perspective; life within a single plasma membrane; symbiotic life-styles. Protozoan taxonomy: (up to phyla, subphyla and super classes, wherever applicable). Pseudopodia and amoeboid locomotion; cilia and other pellicular structures; symbiotic ciliates; further phylogenetic considerations.

Multicellular and Tissue Levels of Organization:

Evolutionary perspective: origins of multicellularity; animal origins. Phylum porifera: cell types, and skeletons; body forms; maintenance functions. Phylum cnidaria (coelenterata) the body wall and nematocysts; alternation of generations; maintenance functions; reproduction and classification up to class. Phylum ctenophora; further phylogenetic considerations.

The Triploblastic, Acoelomate Body Plan:

Evolutionary perspective; phylum platyhelminthes: classification up to class; the free-living flatworms and the tapeworms; phylum nemertea; phylum gastrotricha; further phylogenetic considerations.

The Pseudocoelomate Body Plan: Aschelminths:

Evolutionary perspective; general characteristics; classification up to phyla; Some important nematode parasites of humans; further phylogenetic considerations.

Molluscan Success:

Evolutionary perspective: relationships to other animals; origin of the coelom; molluscan characteristics; classification up to class. Diversity in gastropods, bivalves and cephalopods; further phylogenetic considerations.

Annelida: The Metameric Body Form:

Evolutionary perspective: metamerism and tagmatization; classification up to class. External structure and locomotion, feeding.

The Arthropods:

Evolutionary perspective: classification and relationships to other animals; classification up to class.

The Hexapods and Myriapods:

Insect and humans; further phylogenetic considerations.

GENETICS:

Mendelion inheritance & Basic concepts, Sex-determination, Probability and X2 test, Multiple alleles and blood groups, Linkage and crossing over, Chromosome changes, Mutations, Inbreeding and Heterosis, Extrachromosomal Inheritance, Quantitative Inheritance, Population Genetics

Books Recommended:

1. Miller, S.A. and Harley, J.B., 1999 & 2002. Zoology, 4th & 5th Edition (International). Singapore: McGraw Hill.

- 2. Hickman, C.P., Roberts, L.S. and Larson, A., 2004. Integrated Principles of Zoology, 11th Edition (International). Singapore: McGraw Hill. Pechenik, J.A., 2000. Biology of Intervebrates, 4th Edition (International). Singapore:
- 3. McGraw Hill.
- Kent, G.C. and Miller, S., 2001. Comparative Anatomy of Vertebrates. New York: 4. McGraw Hill.
- Campbell, N.A., 2002. Biology 6th Ed. Menlo Park, California: Benjamin/Cummings 5. Publishing Company, Inc.
- Snustad, D.P. and Simmons, M.J. 2003. Principles of Genetics. 3rd Ed. John Wiley 8. and Sons Ins. New York, USA.
- 9. Strickberger, M.W. 1985. Genetics. McMillan, N.Y. USA.
- 10. James F. Crow., Genetics Notes