Course Objectives:

- 1. To provide knowledge about the importance and use of statistics in life sciences.
- 2. To familiar students with the methods of data analysis pertaining to their research work and to assess the significance of their experimental designs.

Course Outcomes:

Students who successfully complete this course will be able to:

- 1. **DESCRIBE** the roles biostatistics serves in zoology and biomedical research.
- 2. **EXPLAIN** general principles of study design and its implications for valid inference.
- 3. ASSESS data sources and data quality for selecting appropriate data for specific research questions.
- 4. TRANSLATE research objectives into clear, testable statistical hypotheses.
- 5. **DESCRIBE** basic principles and the practical importance of key concepts.
- 6. APPLY numerical, tabular, and graphical descriptive techniques commonly used characterize and summarize data.

Course Contents:

- 1. Introduction:
- Definition, branches of statistics,
- Scope and importance of statistics
- 2. Data:
- Population and sample, variable, categorical and non-categorical data,
- Scales of measurements, errors of measurements
- 3. Presentation of data:
- Descriptive statistics

- Tabulation of data
- Parts of table and construction of table.
- Diagrams and graphs, pictogram, historigram, line chart, histogram, applications and uses of histogram
- Construction of histogram, comparison of data using histogram,
- Bar Chart, Multiple Bar Chart, Pie Chart, Gantt Chart, Timeline, Infograph, Pedigree Chart
- 4. Frequency distribution:
- Empirical FD, relative FD, Cumulative FD, Class frequency, Class limits, Class boundaries, Class mark, Class interval, Midpoints.
- 5. Measures of Central Tendency:
- Types of averages, arithmetic mean for grouped and ungrouped data, harmonic mean for grouped and ungrouped data, geometric mean for grouped and ungrouped data, median, quartiles, deciles, percentiles and mode.
- Advantages and disadvantages of arithmetic mean, harmonic mean, geometric mean, median and mode.
- 6. Measures of Dispersion:
- Range, grouped and ungrouped data, coefficient of range
- Mean deviation of grouped and ungrouped data. Coefficient of mean deviation.
- Standard deviation and variance of grouped and ungrouped data, variance and standard deviation of population and sample data.
- 7. Probability:
- Definition, properties, experiment and random experiment, event, outcome, trial, multiplication rule, sample space and sample point, mutually exclusive event, combinations and permutations, probability distribution, binomial experiment
- 8. Tests of Significance:
- Hypothesis testing
- Steps of hypothesis testing
- Z-test
- T-test, types,
- Chi-square
- ANOVA, its uses and LSD
- Correlation
- Regression

Practicals/Tutorials:

- 1. Data collection, arrangement and frequency table
- 2. Data presentation in table, graphs (simple bar chart, multiple bar chart, component bar chart)
- 3. Construction of timeline, pedigree chart, organogram, Gantt chart, infogram
- 4. Calculating arithmetic mean, harmonic mean and geometric mean, median and mode from ungrouped and grouped data
- 5. Calculating mean deviation, standard deviation and variance from ungrouped and grouped data
- 6. Probability distribution
- 7. Z-test
- 8. T-test
- 9. ANOVA
- 10. Correlation
- 11. Regression

Teaching-Learning Strategies

Teaching will be a combination of class lectures, class discussions, and group work. Short videos/films will be shown on occasion.

Assignments

The sessional work will be a combination of written assignments, class quizzes, presentation, and class participation/attendance.

Assessments and Examination

Sessional Work: 25 marks Midterm Exam: 35 marks Final Exam: 40 marks

Text and Reference Books:

- Field A. (2013) Discovering Statistics with IBM SPSS Statistics. 4th Edition. SAGE Publication Ltd.
- 2. Belle V. B, Fisher, L.D., Heagerty, P.J., Lumley, T. (2004) Biostatistics A methodology for the health sciences. 2nd Edition. Wiley-Interscience
- 3. Quinn, G. (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press
- 4. Campbell, M.J., Swinscow, T.D.V. (2009) Statistics at Square One. 11th Edition. BMJ Books.

Course Objectives:

- 1. To impart knowledge about chemical, physical and biological properties of nucleic acids.
- 2. To understand different molecular mechanisms and their regulation in prokaryotes and eukaryotes.

Course Learning Outcomes:

Upon successful completion of the course, the student will be able to:

- 1. **EXPLAIN** how the structure and chemistry of nucleic acids relate to their functions, relative stability and interactions with proteins.
- 2. UNDERSTAND the regulation of proteins and nucleic acids interaction
- 3. COMPARE & CONTRAST mechanisms of DNA Replication, Transcription, Translation, Repair, recombination, Gene regulation, RNA processing in Erokaryotes and Eukaryotes.
- APPLY molecular knowledge to identify human genetic disorders and to understand underlying molecular mechanism

Course Outline:

- 1. Introduction
- Introduction to nucleic acids
- Chromosome structure, Chromatin,
- DNA forms, structures and packaging
- RNA types and structures
- 2. Replication

- DNA Replication in Prokaryotes
- DNA Replication in Eukaryotes
- Enzymology of replication
- DNA damage and repair
- 3. Transcription
- Types of RNA polymerases in prokaryotes and eukaryotes
- Synthesis of mRNA, rRNA and tRNA with special reference to enzymes involved
- RNA processing
- Split genes, concept of ribozymes
- Genetic Code
- 4. Translation
- Role of Ribosomes
- Mechanism of Translation in prokaryotes and eukaryotes
- Various factors, and Posttranslational processing
- 5. Mutation
- Types of Mutations
- Base-Analogue Mutagens
- Chemical Mutagens
- 6. Gene expression and control
- · Control of gene expression in Prokaryotes.
- Inducible and repressible operons.
- Control of gene expression in Eukaryotes.

Practicals:

- 1. Preparation of different stock solutions used in molecular biology (solution used in PCR, electrophoresis, DNA isolation, RNA isolation and Protein isolation.
- Isolation of DNA from human blood.
- 3. Quantification of DNA and RNA through spectrophotometer.
- 4. DNA amplification through polymerase chain reaction.
- 5. Separation of different sized DNA fragments on agarose gel.

Teaching-Learning Strategies

Teaching will be a combination of class lectures, class discussions, and group work. Short videos/films will be shown on occasion.

Assignments

The sessional work will be a combination of written assignments, class quizzes, presentation, and class participation/attendance.

Assessments and Examination

Sessional Work: 25 marks Midterm Exam: 35 marks Final Exam: 40 marks

Text and Reference books:

- 1. Weaver, R.F. 2020 Moleculer Biology, McGraw. Hill Companies. Inc. 6th Edition.
- 2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D. 2017. Molecular Biology of the Cell. 6th Edition. Garland Publishing Inc., New York.
- 3. Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger, Anthony Bretscher, Hidd Ploegh, Angelika Amon, Kelsey C. Martin. 2016. Molecular Cell Biology. W. H. Freeman Publishers, Scientific American Inc.
- 4. Geoffrey M.C., Robert E.H. 2007. The cell: A Molecular Approach, Sinauer Associates, INC.
- Karp, J. 2005. Cell and Molecular Biology, Concepts and Experiments, Jhon Wiley and Sons, INC.
- 6. De Robertis, E. D. P. 2017. Cell and Molecular Biology, 8th edition, Lea & Febiger, New York.

تدريس ترجمہ قرآن تا سورة الزمر تا سورة ق

Cr: 0(0+0)

ES... Special Paper / Thesis/ Research Project / Internship (Univ. Option)

Cr: 3(2+1)/3

ES... SPEICAL PAPER /UNIV. OPTION

Cr. 3 (2+1)

ES... SPEICAL PAPER /UNIV. OPTION

Cr. 3 (2+1)