PRE-REQUISITE: FSc Level Physics

CREDITE HOURS: 3

This course is one part of four that constitute the Introductory Physics program for Physics Majors. It is a stepping stone to all the upper-level Physics courses providing fundamental knowledge, mathematical techniques and laboratory practices. Many of the concepts in Waves, Optics and Thermodynamics introduced in this course will be encountered again & expanded upon in later courses.

COURSE OBJECTIVE:

Thus the main objective of this course is to provide students an introduction to the fundamental concepts of Waves, Optics, and Thermodynamics along with a thorough grounding in the associated mathematical and laboratory techniques.

- 1. Describe wave motion, including differentiating between transverse vs longitudinal waves, and standing vs progressive waves.
- 2. Derive and solve the equation for a propagating wave and a standing wave.
- 3. Describe the energy transported by a wave and the resonance condition,
- 4. Explain Huygen's Principle and perform calculations involving the Doppler effect.
- 5. Perform calculations related to the concept of superposition, including interference & diffraction.

COURSE OUTLINE:

Simple and Damped Simple Harmonic Oscillation: Mass-Spring System, Simple Harmonic Oscillator Equation, Simple Pendulum. Forced Damped Harmonic Oscillation, Resonance.

Mechanical waves: traveling waves, wave equation and power and intensity in wave motion, principle of superposition, Doppler Effect of sound waves

Interference: Interference from thin films, Michelson interferometer, Fresnel's biprism and its use,

Diffraction: diffraction from multiple slits, diffraction grating, X-ray diffraction and structure of matter,

Polarization: description of polarization states, rotation of plane of polarization, holography.

Evaluation Criteria

Examination	Туре	Marks
Internal Examination	Sessional Work	15%
	Mid-Semester	25%
External Examination	Final Semester	60%

REFERENCE BOOKS:

- 1. Physics Vol. I & II (extended) by Resnick, Halliday and Krane, 4th Edition, John Wiley and Sons Inc, New York, 1992.
- 2. Physics Vol. I & II by Resnick, Halliday and Krane, 5th Edition, John Wiley and Sons Inc, New York, 2002.
- 3. Fundamental of Physics by Halliday Resnick and Krane, 5th Edition, John Wiley and Sons Inc, New York, 1999.
- 4. University Physics 8th Edition by Sears, Zemansky and Young, Addison-Wesley, Reading (MA), USA, 2000.
- 5. Physics by Alonso and Finn: Addison-Wesley, Reading (MA), USA, 1999.