

B.A. / B.Sc. Part – I Annual Examination - 2017 (Special Exam)

Roll No.

Subject: Mathematics General-I

PAPER: Calculus (Differential and Integral Calculus)

TIME ALLOWED: 3 hrs. MAX. MARKS: 100

Attempt any SIX questions by selecting TWO questions from Section-I, TWO questions from Section-II, ONE question from Section-III and ONE question from Section-IV.

Section-I

Q. 1. (a)

4+4

- i. Solve the inequality |2x+5| > |2-5x|
- ii. Find the points of discontinuity of the function:

$$f(x) = \begin{cases} x+2 & \text{if } 0 \le x < 1 \\ x & \text{if } 1 \le x < 2 \\ x+5 & \text{if } 2 \le x < 3 \end{cases}$$

(b)

4+5

i. If $x, y \in \mathbb{R}$, then prove that

$$|x+y| \le |x| + |y|, \ \forall \ x,y \in \mathbb{R}.$$

ii. Examine the continuity of

$$f(x) = \begin{cases} \frac{x^2}{a} - a & \text{if } 0 < x < a \\ 0 & \text{if } x = a \end{cases}$$
 at $x = a$

Q. 2. (a) If $y = arc \tan x$. Show that

8+9

 $(1+x^2)$ y"+2xy' = 0. Hence find the value of y⁽ⁿ⁾ at x=0.

- (b) Show that f(x) = |x| + |x-1| is continuous for every real value of x but is not differentiable at x = 0 and x = 1.
- Q. 3. (a) Differentiate $(arcsinx)^{x^{\frac{1}{x}}}$ with respect to 'x'.

8+9

(b) Discuss the validity of Rolle's Theorem. Find c if possible such that f'(c) = 0.

$$f(x) = x (x+3)e^{-\frac{x}{2}}$$
 on [-3.0]

Q. 4. (a) Show that, under certain conditions to be stated,

Ω

 $f(a+h) = f(a) + h f'(a+\theta h)$ where $0<\theta<1$. Prove that the limiting value of θ ,

when h decreases indefinitely, is $\frac{1}{2}$.

(b) Evaluate the given Limits:

4+5

$$\lim_{x\to 0} \left(\frac{\sin hx}{x}\right)^{\frac{1}{x^2}}$$

$$\lim_{x\to 0} \frac{x\cos x - \ln(1+x)}{x^2}$$

Section-II

- Q. 5. (a) Find a reduction formula for $\int x^n \operatorname{Sina} x \, dx$ where n>1 is an integer. Hence evaluate $\int x^4 \operatorname{Sin} 4x \, dx$.
 - (b) Evaluate $\int \frac{secx}{1+cosecx} dx$.
- Q. 6. (a) Show that $\int_0^1 \frac{\ln(1+x)}{1+x^2} dx = \frac{\pi}{8} \ln 2.$
 - (b) Use the trapezoidal rule with n=4 to approximate $I = \int_0^4 \sqrt{x^2 + 1} \, dx$. Also find the exact value of the integral.

8+9

- Q. 7. (a) If a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, with Centre C, meets the major and minor axes in T and t. Prove that $\frac{a^2}{cT^2} + \frac{b^2}{ct^2} = 1$.
 - (b) Sketch the graph of the curve. $r = a \cos 3\theta$, a>0
- Q. 8. (a) Find the measure of the angle of intersection of the curves $r = \cos 2\theta$ and $r = \sin \theta$ at $(\frac{1}{5}, \frac{\pi}{6})$.
 - (b) Prove that $x \sin t y \cos t + a \cos 2t = 0$ is an equation of the normal to the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, t being parameter.

Section-III

- Q. 9. (a) Locate the points of relative extrema of the curve $f(x) = \sin x \cos 2x$. 8+8
 - (b) Find the area of the region bounded by the loop of the curve $x^4+y^4=2a^2 xy$
- Q. 10. (a) Find equations of the asymptotes of the curve. $x^{2}(x-y)^{2}+a^{2}(x^{2}-y^{2})=a^{2}xy$ 8+8
 - (b) Calculate the perimeter of the limacon $r = a + b\cos\theta$, if $\frac{b}{a}$ is small.

Section-IV

- Q. 11. (a) Find the extrema of $f(x,y) = 2 x^4 + y^2 x^2 2y$. 8+8
 - (b) Use differentials to approximate $\sqrt{299^2 + 399^2}$.
- Q. 12. (a) Find the first order partial derivatives of $f(x,y)=\ln\left[\frac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}+x}\right]$ 8+8
 - (b) Find the area outside the circle r=3 and inside the Cardioid $r=2(1+\cos\theta)$

B.A. / B.Sc. Part – I Annual Examination - 2017

Roll No.

Subject: Mathematics General-I

PAPER: Calculus (Differential and Integral Calculus)

TIME ALLOWED: 3 hrs. MAX. MARKS: 100

Attempt any SIX questions by selecting TWO questions from Section-I, TWO questions from Section-II, ONE question from Section-III and ONE question from Section-IV.

Section-I

Q. 1. (a)

i. Solve the inequality

4+4

$$\frac{2x}{x+2} \ge \frac{x}{x+2}$$

ii. Evaluate

$$\lim_{x \to -1} \frac{x^{\frac{1}{3}} + 1}{x + 1}$$

(b)

4+5

at x=0

i. Examine the continuity of

$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}} & if \ x \neq 0\\ 1 & if \ x = 0 \end{cases}$$

ii. If $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Q. 2. (a) Find the values of 'a' and 'b' so that the function f is continuous and differentiable at x = 1, where

8+9

$$f(x) = \begin{cases} x^3 & \text{if } x < 1 \\ ax + b & \text{if } x \ge 1 \end{cases}$$

(b) If $f(x) = \frac{1}{\sqrt{b^2 - a^2}} \ln \left[\frac{\sqrt{b + a} + \sqrt{b - a} \tan \frac{x}{2}}{\sqrt{b + a} - \sqrt{b - a} \tan \frac{x}{2}} \right]$, then show that $f'(x) = \frac{1}{a + b \cos x}$

Q. 3. (a) Differentiate arc tan $(\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}})$ with respect to arc $\cos x^2$. 8+9

(b) Find first four terms of the Maclaurin Series of

$$f(x) = \sec x$$

Q. 4. (a) Evaluate the given Limits:

4+4

$$\lim_{x\to\infty}(e^x+e^{-x})^{\frac{2}{x}}$$

ii. $\lim_{x\to 0} (\frac{1}{x})^{tanx}$

(b) If x > 0, prove that: $x - \ln(1+x) > \frac{x^2}{2(1+x)}$

9

PTO

Section-II

- Q. 5. (a) Evaluate $\int \arcsin(\sqrt{\frac{x}{x+a}}) dx$.
 - (b) Evaluate $\int \frac{x}{(x^2-2x+2)\sqrt{x-1}} dx$.
- Q. 6. (a) Show that $\int_0^{\pi} \frac{x \tan x}{s e c x + c o s x} dx = \frac{\pi^2}{4}$.
 - (b) Prove that $\int_0^{\frac{\pi}{2}} \cos^m x \sin nx \, dx = \frac{1}{m+n} + \frac{m}{m+n} \int_0^{\frac{\pi}{2}} \cos^{m-1} x \sin(n-1) x \, dx$.
- Q. 7. (a) Find the locus of the middle points of a system of parallel chords of the parabola $y^2=4ax$.
 - (b) If PF₂Q, PF₁R be two chords of an ellipse through the foci F₂,F₁, show that $\frac{|PF_2|}{|F_2Q|} + \frac{|PF_1|}{|F_1R|}$ is independent of the position of P.
- Q. 8. (a) Show that the pedal equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} \frac{r^2}{a^2b^2}$ 8+9
 - (b) Find the points at which $r = 1 + \cos\theta$ has horizontal and vertical tangents.

Section-III

- Q. 9. (a) Find the intrinsic equation of the cardioids: $r = a(1-\cos\theta)$ 8+8
 - (b) Find the area of the region bounded by the curve $xy^2=4(2-x)$ and the y-axis.
- Q. 10. (a) Find an equation of the osculating circle to the hyperbola $\frac{x^2}{4} \frac{y^2}{9} = 1$ 8+8 at the point (-2,0)
 - (b) Find the length of the arc of the parabola $y^2=4ax$ cut off by the straight line 3y=8x

Section-IV

- Q. 11. (a) Verify that $f_{xy}(x,y) = f_{yx}(x,y)$ if $f(x,y) = \ln(\frac{x^2 + y^2}{xy})$.
 - (b) The side of α building is in the shape of α square surmounted by an equilateral triangle. If the length of the base is 15m with an error of 1%, find the percentage error in the area of the side.
- Q. 12. (a) Find the point on $x^2 2y^2 4z^2 = 16$ at which the tangent plane is parallel to the plane 4x 2y + 4z = 5.
 - (b) Find the volume of the solid bounded by the graphs of $x^2 + y^2 = 4$, $z = \sqrt{16 x^2 y^2}$, z = 0.

B.A. / **B.Sc.** Part – I <u> Annual Examination - 2017</u>

Roll No. ..

Subject: Mathematics A Course-I

PAPER: Calculus and Analytical Geometry

TIME ALLOWED: 3 hrs. MAX. MARKS: 100

NOTE:

Attempt SIX questions by selecting TWO questions from Section-I, TWO questions from Section-II, ONE questions from Section-III and ONE question from Section-IV.

SECTION - I

Q.1: (9,8)

Solve the inequality $\frac{x^2-2}{1-2x} > 1$ (a)

Let $f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$, discuss the continuity of f at x = 0. (b)

Q.2: (9,8)

Find $\frac{dy}{dx}$, if $y = arc \tan \left(\frac{x \sin \alpha}{1 - x \cos \alpha} \right)$ (a)

(b) Use differentials to find approximate value of cos61°.

Q.3: (9,8)

If $y = (arc \sin x)^2$, show that $(1-x^2)y'' - xy' - 2 = 0$, differentiate this equation n times (a) and find the value of $y^{(n)}$ at x = 0.

If x > 0. Prove that $\frac{x}{x+1} < \ln(x+1) < x$. (b)

0.4:

Find by Maclaurin formula, the first four terms of expansion of $f(x) = e^{ax} \cos bx$ (a) and remainder after n terms.

Evaluate $\lim_{x\to 0} (\tan x)^{\sin 2x}$ (b)

Q.5: Integrate the following.

(5,5,7)

(i)
$$\int \frac{\sin x}{\sin 3x} dx$$

(ii)
$$\int \frac{dx}{(1+x)\sqrt{x^2-1}}$$

(iii)
$$\int \frac{dx}{ax^n + bx}$$

Q.6: (8,9)

- (a) Prove that $\int_0^{\pi} \frac{x \, dx}{1 + \sin x} = \pi$
- (b) Obtain a reduction formula for $\int \frac{x^n}{\sqrt{1-x^2}} dx$ and hence evaluate $\int \frac{x^3}{\sqrt{1-x^2}} dx$

Q.7: (9,8)

- (a) Show that the pedal equation of the astroid $x = a\cos^3\theta$, $y = a\sin^3 is \ r^2 = a^2 3p^2$
- (b) Show that tangents to cardioids $r = a (1 + \cos \theta)$ at points $\theta = \frac{\pi}{3}$ and $\theta = \frac{2\pi}{3}$ are respectively parallel and perpendicular to initial line.

Q.8: (9,8)

- (a) Show that the curves $r^m = a^m \cos m\theta$ and $r^m = a^m \sin m\theta$ cut each other orthogonally.
- (b) Prove that the area enclosed by parallelogram formed by the tangents at end of conjugate diameters of ellipse is constant.

SECTION - III

Q.9: (8,8)

- (a) Find the asymptotes of the curve $x^2y + xy^2 + xy + y^2 + 3x = 0$
- (b) Find the relative maxima and minima of $r = 1 \cos \theta$

Q.10: (8,8)

- (a) Show that the intrinsic equation of the parabola $x^2 = 4ay$ is $S = a \tan \alpha \sec \alpha + a \ln (\tan \alpha + \sec \alpha)$
- (b) Prove that radius of curvature at point (2a,2a) on the curve $x^2y = a(x^2 + y^2)is$ 2a

SECTION - IV

Q.11: (5,5,6)

- (a) A straight line makes angle of measure $\alpha, \beta, \gamma, \delta$ with the diagonals of a cube. Prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{3}{4}$
- (b) Find an equation of the plane passing through the point (2,-3,1) and containing the lines x-3=2y=3z-1.

Q.12: (8,8)

- (c) Find equation of sphere for which the circle $x^2 + y^2 + z^2 + 7y 2z + 2 = 0$, 2x + 3y 4z 8 = 0 is a great circle.
- (d) Find the direction of Qibla of Badshai Mosque, Lahore, latitude = 31°35.4′N and longitude = 74°18.4′E.

B.A. / B.Sc. Part – I Annual Examination - 2017

Roll	No.	 • • • • • •	

Subject: Mathematics B Course-I

PAPER: Vector ANALYSIS AND MECHANICS

TIME ALLOWED: 3 hrs. MAX. MARKS: 100

NOTE: Attempt SIX questions in all, selecting one question from section-I, Two questions from section-III and one question from section-IV

SECTION-I

- 7. (a) Prove that (i) $\iint [\bar{a}.\bar{f}(t)]dt = \bar{a}.\iint [f(t)]dt$ (ii) $\iint [\bar{a}\times\bar{f}(t)]dt = \bar{a}\times\iint [f(t)]dt$
 - (b) Prove that $(\bar{a} \times \bar{b}) \cdot (\bar{c} \times \bar{d}) = \begin{vmatrix} \bar{a} \cdot \bar{c} & \bar{a} \cdot \bar{d} \\ \bar{b} \cdot \bar{c} & \bar{b} \cdot \bar{d} \end{vmatrix}$.
- 2. (a) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then evaluate grad r^n .
 - (b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then prove that $curl(\vec{a} \times \vec{r}) = 2\vec{a}$, where \vec{a} is a constant vector.

SECTION-II

- 3. (a) Forces P, Q, R act along the sides BC, CA, AB of a triangle ABC. Find the condition that their resultant is parallel to BC and determine its magnitude.
 - (b) A couple of moment G acts on a square board ABCD of side a. Replace the couple by the forces acting along AB, BD and CA.
- 4. (a) Two equal smooth spheres, each of weight W and radius r, are placed inside a hollow cylinder open at both ends which rests on a horizontal plane; if a(<2r) be the radius of the cylinder, show that the least weight it can have so as not to be upset is $2W\left(1-\frac{r}{a}\right)$.
- (b) Find the c.g. of a semi-circular lamina of radius r when the density varies as the cube of the distance from the centre.
- 5. (a) A uniform ladder rests in limiting equilibrium with one en on a rough floor whose coefficient of friction is μ and with the other against a smooth vertical wall. Show that its inclination to the vertical is $Tan^{-1}(2\mu)$.
 - (b) Find the centroid of the region bounded by the coordinate axes and the circle $x^2 + y^2 = a^2$ which lies in the first quadrant.
- 6. (a) Find the least force necessary to support a heavy particle on an inclined plane.
 - (b) A uniform rod of length 2a rests in equilibrium against a smooth vertical wall and upon a smooth peg at a distance b from the wall. Show that, in the position of equilibrium the beam is inclined to the wall at

an angle
$$\sin^{-1}\left(\frac{b}{a}\right)^{\frac{1}{3}}$$
.

SECTION-III

- 7. (a) A particle is moving with uniform speed V along the curve $x^2y = a(x^2 + a^2/\sqrt{5})$. Show that its acceleration has the maximum value $10V^2/9a$.
 - (b) Discuss the motion of a particle executing S.H.M in a straight line.

P.T.O.

- 8.(a) A particle is projected vertically upward with a velocity $\sqrt{2gh}$ and another is let fall from a height h at the same time. Find the height of the point where they meet each other.
 - (b) A shell of mass M is moving with speed V. An internal explosion generates an amount of energy E and breaks the shell into two portions whose masses are in the ratio $m_1 : m_2$. The fragments continue to move

in the original line of motion of the shell. Show that their speeds are $V + \sqrt{\frac{2m_2E}{m_1M}}$ and $V - \sqrt{\frac{2m_1E}{m_2M}}$. 8

- 9. (a) A particle is projected at time t = 0 in a fixed vertical plane from a given point O with a speed $\sqrt{2ga}$ of which the vertical component is V. Show that at time t=2a/V, the particle is on a fixed parabola (parabola of safety), that its path touches the parabola, and that its direction of motion is then perpendicular to its direction of projection.
 - (b) A particle is launched at an angle α from a cliff of height H above sea level. If it falls into the sea at a distance D from the base of the cliff, prove that the maximum height above the sea level is $H + D^2 \tan^2 \alpha/4(H + D \tan \alpha)$.
- 10.(a) A particle of mass m moves along the curve defined by $\vec{r} = a(\cos \omega t)\hat{i} + b(\sin \omega t)\hat{j}$. Find the torque and the angular momentum about the origin.
 - (b) A particle of mass m moves along x-axis under the influence of a conservative field of force having potential V(x). If the particle is located at positions x_1 and x_2 at respective times t_1 and t_2 . Prove that if

E is the total energy then
$$t_2 - t_1 = \sqrt{\frac{m}{2}} \int_{x_1}^{x_2} \frac{dx}{\sqrt{E - V(x)}}$$
.

SECTION-IV

11.(a) A particle describes the curve $\frac{a}{r} = \cosh n\theta$ under force F to the pole, show that the force is stated as

 $F \propto \frac{1}{r^3}$.

- (b) A particle of elasticity e is dropped from a vertical height a upon the highest point of plane which is of length b and is inclined at an angle α to the horizontal and descend to the bottom into three jumps. Prove that b = 4ae (1+e)(1+e+e²)(1+e²)sin α.
- 12. (a) A rubber ball is dropped from a height h after rebounding twice from the ground. It reaches to height h/2. Find the coefficient of restitution. What would be the coefficient of restitution had the ball reached at height h/2 after rebounding three times.
 - (b) Two equal smooth and perfectly elastic spheres moving at right angle to one another impinging obliquely. Show that after impact, they will still move at right angle to each other.