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ABSTRACT 

In present world one of greatest challenges faced by pharmaceutical industry is to maximize efficacy of various 

neuroactive agents and minimize the risk of neurotoxicity of drugs designed for peripheral body systems. 

Bioavailability of a neuroactive active agent depends upon its transport across blood brain barrier and thus, is a factor 

of vital importance in determining drug efficacy. Over the past few decades, intensive research efforts have been made 

to elucidate blood brain barrier permeability of compounds. However, these experiments are very costly and time 

demanding endeavors. In this study various chemometeric models, including Principal Component Analysis (PCA) 

and Partial Least Square Analysis (PLS) using GRID Independent Descriptors have been developed to predict BBB 

permeability of a diverse dataset of 218 compounds. Our model elucidates two hydrogen bond donor groups at a 

mutual distance of 6.00 to 6.40 Å and a hydrophobic group at a distance of 10-10.4Å from one of the hydrogen bond 

donor groups may have a positive impact on blood brain barrier permeability of already marketed neuroactive agents.  
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INTRODUCTION 
Blood brain barrier is a selective barrier which consists 

of capillary forming endothelial cells and perivascular 

neurons[1]. These endothelial cells are joined to each 

other through transcellular proteins such as claudins, 

occludinand JAMs (Junctional adhesion molecules) 

forming tight junctions (TJs).Unlike a normal 

capillary these tight junctions restrict the passive 

movement of the molecules across blood brain barrier, 

providing protection to the brain from pathogens and 

toxins[2]. Numerous transporters,such as P-

glycoprotein (P-gp) are also present on luminal and 

abluminal membranes of the cerebral endothelial cells 

that are responsible for controlling transcellular traffic 

between brain and blood. [3].This highly selective 

nature of BBB restricts free movement of the 

molecules and thus, providing protection brain. 

Therefore, a lot of potentially active drugs are also not 

allowed to enter brain through normal circulatory 

system due to tight junctions and high levels of efflux 

transporters[4]. This protective mechanism of blood 

brain barrier has been a major obstacle in designing 

drugs for various psychological and neurological 

diseases for a couple of decades[5]. Therefore, it is 

very important to know the BBB permeability of 

drugs-like entities achieve maximum efficacy of neuro 

active agents and to avoid psychotropic effects of non 

CNS drugs. A gold standard parameter used to 

measure the BBB permeability experimentally is log 

BB. Log BB is described represents the proportion of 

drug concentration in the brain compared to drug 

concentration in the plasma. Log of this ratio of 

concentration between brain and blood is signified as 

log BB and is given by Equation mentioned below.  

 

Log BB = Log (CBRAIN/CBLOOD) 

Higher the value of log BB for a compound, higher is 

its BBB permeability[6].Various traditional methods 

have been used previously to calculate Log BB 

experimentally. These includein vivotechniques which 

involve the dissection of laboratory rats andinvitro 

techniques such as PAMPA and IAM.PAMPA has 

been able to show good prediction ability[7-11]. 

PAMPA was established in 1998 by Kansy et al to 

forecast passively permeation via the GI tract. 

[12]however, Di, et al  adapted it for BBB studies[13, 

14].However, these methods are time consuming and 

very expensive. Therefore, computational models 

have been developed in past few decades to predict 

BBB permeability.[15-20].These and many other 

studies illustrated the importance of lipophilicity, 

topological indices, , hydrogen bonding potential and 

molecular volume parametersin blood brain barrier 

permeability [21-24],  [25], [26], [27],[28][29]. 

However, these classical 3D QSAR approaches were 

alignment dependent, time consuming and produced 

user biased results depending upon the alignment 

used[6, 30-34]. More over superimposition of a 

structurally diverse dataset is nearly impossible. To 

counter this problem, alignment free approaches  

based on autocorrelation functions have been 
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suggested by Broto, Gasteiger et al and Clementi et 

al[35].Broto used classic autocorrelation transform to 

obtain autocorrelation vectors from 2D and 3D 

structures. Gasteiger used special autocorrelation 

function on molecular surface properties. Clementi 

also used autocorrelation vectors but only for planer 

compounds[35].All these approaches were quite 

effective in providing solution to alignment problems 

faced by classical QSAR models yet necessary 

transformations produce difficulty in interpretation of 

resultant models in original descriptors. 

In present study, a 3D-QSAR model has been 

developed usingmolecular interaction field (MIF) 

based GRID independent (GRIND)descriptors that are 

independent of superimposition of the data [35]. 

Instead of absolute 3D coordinates as in classical 3D 

QSAR, GRIND measures the distances between 

relevant groups[35].Computation of the mutual 

distance between important 3D structural features 

such as Hydrogen bonding, hydrophobic features and 

shape based features has been identifiedas significant 

outcome of this study. 

 

Methodology 

 

Dataset Collection 

A structurally diverse dataset of 552 compounds along 

with their experimentally determined log BB values  

has been collected from different publication, [44], 

[45], [15]. Utilizing software, 3D structures of each 

compound in the data set were created. Molecular 

Operating Environment version 2018-01[35] followed 

by computation of the partial charges and energy 

minimization using MMFF94 force field [46]. A 

complete data curation protocol is provided in figure 

1. Briefly, at first step data was cleaned by eliminating 

redundancies and shards, next to the application of 

drug like filters as defined by Lipinski et al,[47, 48]. 

This results in a final dataset of 218 compounds as 

training set for building the GRIND model as shown 

in SM table 1. Interestingly, more than 53% of the 

training data include drugs already available in the 

market such as Bupropion, Sertraline,Maprotiline and 

Imipramine to deal with a variety of mental & 

psychological abnormalities[35]. Additionally, a 

separate dataset of 44 compounds as shown in SM 

table 2 has been taken from some different publication 

sources as test set [15, 47-49] 

 

Computation of Physicochemical Parameters 

So as to estimate impact of physical & chemical 

attributes on blood brain barrier permeability, 2D 

physicochemical descriptors including log P (o/w), 

molecular weight and topological polar surface area 

have been computed using software MOE version 

2018-01 as provided in SM table 1. 

 

 

 
Figure1: Data pre-processing protocol for the refinement of structural and biological data (log BB) data of 

the  Training and test set 
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3D QSAR Modeling  

Applying CORINA CLASSIC, standard 3D variations 

of the training and test sets were produced. [50]. These 

extended 3D conformations along with log BB 

measurements of dataset molecules were imported to 

software package pentacle v1.05 to compute 

alignment-free molecular descriptors (GRID-

Independent molecular descriptors)[35]. 

The molecular interaction fields (MIFs) provide 

information that the GRIND technique seeks to extract 

[35] and condense it into new categories of variables 

whose magnitudes are unaffected by the molecule 

under study's geographical location. Default program 

values were used for the computation of MIF using 

four probes (DRY representing hydrophobic 

interaction, O (Carbonyl Oxygen) representing 

hydrogen bond acceptor group, N1 (Amide Nitrogen) 

representing hydrogen bond donor groups and TIP 

representing the shape descriptor). Using an 

optimization technique (AMANDA) that employs the 

mutual node-node distances between the selected 

nodes and the intensity of the field at a node as a score 

function, the most pertinent regions were recovered 

from the MIF.[51]. The Lennard-Jones energy (Elj), 

hydrogen bond (Ehb), and electrostatic (Eal) 

interactions are added to determine the interaction 

energy (Exyz) at each site. 
 

ETOTAL = ∑ELj+ ∑ Ees + ∑ Ehb 
  
For the discretization of MIF, the following default 

values for the probe cutoff were used: DRY= -0.5, O= 

-2.6, N1= -4.2, and TIP= -0.74. Nodes whose energy 

value fell below this cutoff were eliminated. The pre-

filtered nodes were then encoded into GRIND using 

the consistently large auto and cross-correlation 

(CLACC) approach. Correlogram plots, which show 

the products of node-node energies reported against  

 

distance separating the nodes, were used to directly 

display the values received from the analysis. 

Through the use of GRIND variables, Principle 

Component Analysis (PCA) and Partial Least Square 

(PLS) Analysis have been carried out to comprehend 

the structural variance of the data and its link with 

logBB values. Briefly, Leave One Out (LOO) cross 

validation procedure[52] was utilized to correlate the 

observed verses predicted log BB values.  

 

Results & Discussion 

Estimation of Physicochemical Parameters 

 

Principle Component Analysis (PCA) 

Principle Component Analysis (PCA) of the GRIND 

variables revealed40 % structural variance of the 

training data with the help of first two principle 

components. Briefly, 1st principle component define 

the data on the basis of explicit distance ranges of a 

hydrogen bond donor reference feature from other 3D  

structural features including, a hydrophobic group, a 

molecular steric hotspot, another hydrogen bond donor 

and from a hydrogen bond acceptor group within the 

respective extended conformation of a molecule as 

depicted by DRY-O, O-TIP O-O and O-

N1correlograms respectively in figure 2 A. However, 

2ndprinciple component differentiate the training data 

by delineating the distance of a hydrogen bond 

acceptor reference feature from same 3D structural 

features as characterized by 1st PC. These are 

illustrated by DRY-N1, N1-TIP N1-N1and O-

N1correlograms respectively as shown in figure 2 B. 

A summary, of the respective distance variables of 

different 3D structural features as defined by PC1 and 

PC2 are provided in table 2. 

 

 



50 
 

 
 
Figure2: (A) Represents GRIND variables of the 1st PC where, O-O, DRY-O, O-N1 and O-TIP correlograms are 

characterized by the more significant variables defining the data. (B) Represents GRIND variables of the 2nd PC where, 

DRY-N1, N1-TIP N1-N1 and O-N1correlograms are depicted as the important variables defining the data. 

 

Table1: Representing distances in Angstrom (A) between important 3D structural features of the data depicted by 

first two principal components 

 

PCs Probes 
Distances b/w GRIND 

Variables 
Comments 

PC1 

O-O 6.80-7.20 Absent in cluster A & some compounds of 

cluster B  

DRY-O 6.40-6.80 Absent in only Cluster A 

O-N1 4.40-4.80 Absent in Cluster A & Cluster B 

O-TIP 4.80-5.20 Absent in only Cluster A  

PC2 

N1-N1 8.00-8.40 Absent in Cluster B & some compounds of 

Cluster A 

DRY-N1 6.80-7.20 Absent in only Cluster B 

O-N1 6.40-6.80 Absent in Cluster A & Cluster B 

N1-TIP 12.00-12.40 Absent in only Cluster B 

 
A plot between 1st and 2nd principle component in 

figure 3shows that a H bond donor group is absent 

within respective chemical scaffolds of compound in 

cluster A and therefore, the feature distances ranges 

defined by 1st PC on the basis ofDRY-O, O-TIP O-O 

and O-N1 correlogram in figure 2A are absent in this 

cluster of the data set.  Similarly, ahydrogen bond 

acceptor feature is absent in all compounds encircled 

as cluster B in figure 3 and therefore, a reference point 

for mapping the distances of characterized 3D 

structural features defined by DRY-N1, N1-TIP N1-

N1and O-N1correlogram is absent in cluster 

B.Nevertheless, rest of the data exhibit one to two 

hydrogen bond acceptor as well as donor group within 

respective chemical scaffold thus, are defined by the 

presence of all O-O, DRY-O, O-TIP, DRY-N1, N1-TIP, 
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N1-N1and O-N1 variables depicted by first two PCs 

as shown in figure 2.  

 

 

 

 

 
Figure 3:  Graphical representation of Principal Component Analysis. Clusters are produced by plot between PC 1 

and PC 2. 

 

Furthermore, the impact of presence or absence of 

acceptor and donor groups for hydrogen bonds at 

specific distance from rest of the pharmacophoric 

features on blood brain barrier has been elucidated by 

Partial Least Square (PLS) Analysis. 

 

 Partial Least Square (PLS) Analysis  

The full set of GRIND variables were subjected to 

partial least square (PLS) analysis utilizing Leave One 

Out (LOO) cross validation, which produced a model 

with unsatisfactory statistical values of q2= 0.46, R2= 

0.59, and SDEP= 0.52. This is might be due to the  

presence of some inconsistent set of variables as 

defined by pastor et al[35]. Therefore, a variable 

selection algorithm known as FFD (Fractional 

factorial design) was applied to remove inconsistent 

variable [36]. An improvement in the statistical 

parameters of different GRIND models after 

subsequent 1st and 2nd FFD run has been observed as 

shown in table 2. A final GRIND model was obtained 

after the 2ndFFD cycle with q2 = 0.50, r2= 0.63 and 

standard error of prediction (SDEP) of 0.49 as shown 

in table 2.  

 

Table 2 Blood brain barrier permeability model statistics after subsequent 1stand 2nd FFD cycles. 

FFD Cycle Variables # Q2 R2 SDEP 

0 Complete 0.46 0.59 0.52 

1st 440 0.48 0.61 0.51 

           2nd 408 0.50 0.63 0.50 

Figure 4 displays the plot of actual log BB values 

against predicted values obtained from multiple linear 

regression analysis utilizing leave one out (LOO) cross 

validation.  As can be seen in SM table 1, nearly all 

compounds in the training set as well as the test set (44 

compounds) are accurately predicted with an error of 

less than 1.5 log units between the actual and predicted 

logBB.   
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Figure 4:  Plot of experimental versus predicted log BB values obtained from multiple linear regression model. 

 

 
Figure 5: PLS coefficient correlograms plot representing the influence of 3D structural features on Log BB. 

 

Figure 5 represent a PLS coefficient correlograms plot 

where positive and negative auto and cross 

correlogram peaks represent the 3D structural features 

having direct and inverse correlation with blood brain 

barrier permeability. Highly negative variable values 

of N1-N1, TIP-TIP, and N1-TIP correlogramsin figure 

5 represent the 3D features that are present in non-

permeable compounds. However, highly positive O-

O, DRY-O, O-N1 and O-TIP correlogramsvariables 

depict the 3D structural features at certain mutual 

distance having positive impact on blood brain barrier 

permeability. 
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Figure 5 represent a PLS coefficient correlograms plot 

where positive and negative auto and cross 

correlogram peaks represent the 3D structural features 

having direct and inverse correlation with blood brain 

barrier permeability. Highly negative variable values 

of N1-N1, TIP-TIP, and N1-TIP correlogramsin figure 

5 represent the 3D features that are present in non-

permeable compounds. However, highly positive O-

O, DRY-O, O-N1 and O-TIP correlograms variables 

depict the 3D structural features at certain mutual 

distance having positive impact on blood brain barrier 

permeability. 

Briefly, the most positive O-O correlogram depicts the 

presence of two hydrogen bond donor groups (Don1 

and Don2) at a mutual distance of 6.00 - 6.40 Å in 

highly permeable compounds having logBB values 

range 0.32 to 1.40 as shown in figure 6. Within our 

training data, two hydrogen bond donor groups at a 

mutual distance of 6.00 - 6.40 Å have been observed 

in extended 3D conformations of various 

antipsychotic agents including Nebivolol, Bupropion, 

Bromperidol, Zanapezil, Tramadol, Oxazepam, 

Lubeluzole, Biperiden and Donepezil exhibiting log 

BB of 0.48 to 1.44. However, a decrease in blood brain 

barrier permeability (log BB) has been observed as the 

distance between two hydrogen bond donor group 

increases. For instance, the two features, are present at 

a longer distance range of 11.6-12.0Å in least 

permeable compounds (log BB: 0.30 to -2.69) 

including 9-hydroxy risperidone, SKF89124 (7-

hydroxy ropinirole) and SKF 93319 as shown in figure 

6 and thus, are absent CNS active agents in our 

training data. Interestingly, O-N1 correlogram 

variables complement the O-O correlogram and 

represent a hydrogen bond donor group (Don1) at a 

distance of 6.0 to 6.4 Ǻ from a hydrogen bond acceptor 

group in highly permeable compounds having a log 

BB range of 0.39 to 1.64 Ǻ. 

Similarly, the DRY-O correlogram shown in the figure 

5 illustrates the presence of hydrophobic group at a 

mutual distance of 10.0–10.4 Ǻ from a hydrogen bond 

donor group (Don1) in only highly permeable 

compounds having log BB range between 0.30 to 1.6 

including Sertraline, Desipramine, Tamozifin and 

Methadone. Thus, it highlights the influence of 

hydrophobic feature of the molecules on blood brain  

barrier permeability which is in accordance with 

previous study conducted by Gulyaevaet al, in which 

relative hydrophobicity and lipophilicity of drugs on 

log BB was measured by aqueous two-phase 

partitioning, octanol-buffer partitioning and 

HPLC[37]. Nevertheless, the most positive variable in 

O-TIP correlogram depicts the presence of a hydrogen 

bond donor group (Don1) at a mutual distance of 4.80 

to 5.20 Ǻ from molecular steric hotspots in highly 

permeable compounds exhibiting a log BB range of 

0.28 to 1.60 Ǻ.   

As a whole, our PLS model revealed the significance 

of one hydrogen bond donor group, Don1, which is 

depicted in figure 6 and may serve as an anchor for 

determining the locations of additional 

pharmacophoric characteristics. Moreover, PC1 also 

separated our training data on the basis of 

presence/absence of a hydrogen bond donor reference 

feature. Therefore, for the compounds of cluster A, 

distance between 3D structural features defined by O-

O, DRY-O, O-N1 and O-TIP correlogram could not be 

mapped mostly because of scarcity of a hydrogen bond 

donor reference point in their respective chemical 

scaffolds. Moreover, the influence of hydrogen bond 

donor group on BBB permeability of the drug like 

compounds have been demonstrated in previous 

studies by considering descriptors like number of 

hydrogen bond donors/acceptors present within 

molecules and polarity [12, 22, 38]. These studies 

associate higher blood brain barrier permeability with 

lower counts of hydrogen bond donors and acceptors 

within a molecule. Moreover, a study conducted by 

Prashant et al, correlates blood brain barrier 

permeability with the strength of hydrogen bond 

acceptor or donor groups within a molecule[39]. 

Additionally, van de Water beemdet al demonstrated 

the importance of shape of the molecule towards blood 

brain barrier permeability using molecular size, shape 

and hydrogen bonding descriptors [40]. These 

previous investigations are in line with our study and 

thus, strengthen our models. Additionally, our models 

utilizes > 50% of already marketed drugs including 

CNS active agents which may provide a better scaffold 

to correlate and understand the 3D structural features 

important for BBB permeability. Moreover, our 

models were able to define and map the distances 

between these 3D structural features.  
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Figure 6: Represents a blood brain barrier permeable compound. In this figure blood red contour shows hydrogen 

bond donor hot-spots, Moss green contour represents hydrophobic hotspots and sea green contour represents 

molecular edges. 

 

Table 3: Summary of GRIND variables, their mutual distance and impact on blood brain barrier permeability. 

 
Likewise, N1-N1 correlogramvariables in figure 5 

depictthe presence of two hydrogen bond acceptor 

groups(Acc1, Acc2) at a mutual distance of 1.60 to 2.0 

Å in least permeable compounds (-2.6 to -0.18) of the 

training data as shown in figure 7. Similarly, the most 

negative N1-TIP correlogramvariable illustrates a 

distance of 17.6 to 18 Å between a hydrogen bond 

acceptor group (Acc1) and a molecular steric hotspot 

edge in non-permeable compounds of our dataset.  

Highly negative TIP-TIP correlogramvariable depicts 

the presence of two molecular steric boundaries (TIP1 

and TIP2) at a mutual distance of 15.6 to16.0 Å in non-

permeable (log BB -0.54 to -2.6) compounds of the 

dataset as shown in figure 7. Thus, it may suggests that 

as the distance between the molecular edges increase 

and molecule gets more flexible then the permeability 

of the molecule decreases which has also been 

mentioned in a previous study by Pardridgeet al[41] 

 

 

 

 

 

 

Correlogram Distance Influence on log BB 

O-O 6.00-6.40 Å + 

DRY-O 10.00-10.40 Å + 

O-N1 6.00-6.40 Å + 

O-TIP 4.80-5.20 Å + 

N1-N1 1.60-2.00 Å - 
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Figure 7: Represents a non-permeable compound in which blue contour represents hydrogen bond acceptor hotspots 

where as sea green contour refers to molecular edges. 

 
Overall, GRIND model suggests that the permeability 

of the compounds has been influenced by the distance 

between four 3D structural features such as hydrogen 

bond donors, hydrogen bond acceptors, shape and 

hydrophobic features which is in agreement with 

previously developed QSAR models in which 

Lipophilicity and molecular volume have been 

identified as important properties along with hydrogen 

bonding potential to cross BBB [22, 24-27, 29, 42]. 

Several QSAR models correlates physiochemical 

descriptors such as lipophilicity, water-accessible 

volume, Molecular weight, potential to ionize, charge, 

topology polarized area, hydrogen bonds, rotator 

bonds and numerous others[43]. These descriptors 

reflects the presence of certain functional groups 

within the molecules[38]. However, in our study, the 

effect of 3D structural features has been found to be 

dependent on the distances present between these 

features within the extended conformations of the 

molecules. The presence of two hydrogen bond donor 

will show positive behavior towards BBB 

permeability only if they are present within a molecule 

at 6.00 - 6.40 Å distance from each other. However,  

 

hydrogen bond donor groups present at a mutual 

distance of 11.6-12.0 Å will show a negative effect on 

blood brain barrier permeability of compounds. 

Similarly, a molecule will exhibit permeability, if the 

hydrogen bond acceptor groups such as carbonyl 

oxygen is present at distance of 6.00 - 6.40 Å from 

hydrogen bond donor group with a molecule whereas,  

a negative effect will be observed for a mutual distance 

of 10.8-11.2 Å. The aromatic moieties present at 

distance of 10.0-10.4 Å from the donor groups within 

molecules will contribute positively towards BBB 

permeability of the molecule while a negative effect 

on BBB permeability of the molecules will be 

observed for a mutual distance of 20.0-20.4 Å. These 

facts signify the important role of relative distance 

between 3D structural features for BBB permeability 

of compounds. Moreover, a mutual distance of 4.80-

5.20 Å between hydrogen bond donor and molecular 

edges will act as a positive contributor towards BBB 

permeability in our model. It is very interesting to note 

that protonated nitrogen in straight chain has been 

found as a common hydrogen bond donor in highly 

permeable compounds as shown in the figure 6. 
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Figure 6: Represents a blood brain barrier permeable compound. In this figure blood red contour shows hydrogen 

bond donor hot-spots, Moss green contour represents hydrophobic hotspots and sea green contour represents 

molecular edges.  

 
Table 3: Summary of GRIND variables, their mutual distance and impact on blood brain barrier permeability. 

 

Likewise, N1-N1 correlogramvariables in 

figure 5 depictthe presence of two hydrogen 

bond acceptor groups(Acc1, Acc2) at a 

mutual distance of 1.60 to 2.0 Å in least 

permeable compounds (-2.6 to -0.18) of the 

training data as shown in figure 7. Similarly, 

the most negative N1-TIP 

correlogramvariable illustrates a distance of 

17.6 to 18 Å between a hydrogen bond 

acceptor group (Acc1) and a molecular steric 

hotspot edge in non-permeable compounds of  

 

our dataset. Highly negative TIP-TIP 

correlogramvariable depicts the presence of  

two molecular steric boundaries (TIP1 and 

TIP2) at a mutual distance of 15.6 to16.0 Å 

in non-permeable (log BB -0.54 to -2.6) 

compounds of the dataset as shown in figure 

7. Thus, it may suggests that as the distance 

between the molecular edges increase and 

molecule gets more flexible then the 

permeability of the molecule decreases which 

has also been mentioned in a previous study 

by Pardridgeet al[41] 

 

Correlogram Distance Influence on log BB 

O-O 6.00-6.40 Å + 

DRY-O 10.00-10.40 Å + 

O-N1 6.00-6.40 Å + 

O-TIP 4.80-5.20 Å + 

N1-N1 1.60-2.00 Å - 
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Figure 7: Represents a non-permeable compound in which blue contour represents hydrogen bond acceptor hotspots 

where as sea green contour refers to molecular edges. 

 
Overall, GRIND model suggests that the permeability 

of the compounds has been influenced by the distance 

between four 3D structural features such as hydrogen 

bond donors, hydrogen bond acceptors, shape and 

hydrophobic features which is in agreement with 

previously developed QSAR models in which 

Lipophilicity and molecular volume have been 

identified as important properties along with hydrogen 

bonding potential to cross BBB [22, 24-27, 29, 42]. 

Several QSAR models correlates physiochemical 

descriptors such as lipophilicity, water-accessible 

volume, Molecular weight, potential to ionize, charge, 

topology polarized area, hydrogen bonds, rotator 

bonds and numerous others[43]. These descriptors 

reflects the presence of certain functional groups 

within the molecules[38]. However, in our study, the 

effect of 3D structural features has been found to be 

dependent on the distances present between these 

features within the extended conformations of the 

molecules. The presence of two hydrogen bond donor 

will show positive behavior towards BBB 

permeability only if they are present within a molecule 

at 6.00 - 6.40 Å distance from each other. However, 

hydrogen bond donor groups present at a mutual 

distance of 11.6-12.0 Å will show a negative effect on 

blood brain barrier permeability of compounds. 

Similarly, a molecule will exhibit permeability, if the 

hydrogen bond acceptor groups such as carbonyl 

oxygen is present at distance of 6.00 - 6.40 Å from 

hydrogen bond donor group with a molecule whereas, 

a negative effect will be observed for a mutual distance 

of 10.8-11.2 Å. The aromatic moieties present at 

distance of 10.0-10.4 Å from the donor groups within 

molecules will contribute positively towards BBB 

permeability of the molecule while a negative effect 

on BBB permeability of the molecules will be  

 

observed for a mutual distance of 20.0-20.4 Å. These 

facts signify the important role of relative distance 

between 3D structural features for BBB permeability 

of compounds. Moreover, a mutual distance of 4.80-

5.20 Å between hydrogen bond donor and molecular 

edges will act as a positive contributor towards BBB 

permeability in our model. It is very interesting to note 

that protonated nitrogen in straight chain has been 

found as a common hydrogen bond donor in highly 

permeable compounds as shown in the figure 6. 

 

Conclusion: 

In the light of the predictions made by 3D QSAR 

model using GRID independent descriptors (GRIND) 

it has been demonstrated that the relative distance 

between important pharmacophoric features such as 

hydrogen bond donors/acceptors, hydrophobicity and 

shape based features may affect BBB permeability of 

a compound.Optimum distance of a hydrogen bond 

donor pharmacophore from the other features which 

include hydrophobic group, another donor group and 

molecular edges, determines the fate of molecule to 

cross the BBB. According to our model, two hydrogen 

bond donor groupsare present at a mutual distance of 

6.00 to 6.40 Å in CNS active agents having high 

logBB values. One of the hydrogen bond donor group, 

at a distance of 10Å-10.4Å from a hydrophobic group 

and at a distance of 6.00 - 6.40 Åfrom a hydrogen bond 

acceptor functional group also represent important 

attributes for blood brain barrier permeability. 

Similarly the optimum distance between the reference 

hydrogen bond donor group and molecular edges 

should be in a range of 4.8Å- 5.2Å for BBB 

permeability as suggested by our GRIND model. 

Overall, our GRIND model not only highlights the 

important 3D structural features of a molecule for 



58 
 

BBB penetration but also maps the relative distance 

between the functional groups optimum for BBB 

permeability. Since the descriptors used to build this 

model, are highly relevant to biological activity, 

alignment free and easy to obtain therefore, this model 

can prove to be useful for prediction of blood brain 

barrier permeability of new chemical entities in early 

stages of drug development. 
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