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ABSTRACT  

Alpuri valley is part of the Eastern Hindukush region of Northern Pakistan and 
is bounded by the lofty mountains. Geologically, it composes of the youngest 
mountain system and is mainly prone to frequently occurring landslides. 
Every year, human losses and damage to infrastructure are reported in the 
study area. The aim of this study is to prepare a comprehensive landslide 
inventory map and landslide susceptibility map using the Relative effect 
model. In order to achieve the objective, seventeen causative factors were 
selected on the basis of data availability. These factors are geology, slope, 
aspect, general curvature, profile curvature, plan curvature, topographic 
roughness index, drainage density, distance from road, distance from stream, 
NDVI, NDWI, stream power index, rainfall, land use land cover, distance from 
fault and elevation. The landslide inventory was prepared from the Google 
Earth and Sentinel 2 satellite images using the visual interpretation technique 
and field survey. A total number of 89 landslides were identified and mapped 
over the images. A bivariate statistical model i.e., Relative effect was used to 
evaluate the overall relationship between the causative factors and landslide 
occurrences and for the landslide susceptibility modelling.  The developed 
landslide susceptibility map was classified into four classed very high, high, 
moderate and low categories, having 7.55% of the total area being very 
highly susceptible to the landslide and 27.31% of the total areas as low 
susceptible. The area under curve (AUC) method such as the success rate 
curve and prediction rate curve was used to verify the landslide susceptibility 
map. The prediction rate of the model was 87.87% to show the prediction 
power of the model whereas the success rate was 74.75% to show the 
accuracy of the susceptibility map. The landslide inventory and landslide 
susceptibility map can be helped for decision making and used for land use 
planning and landslide mitigation strategies. 

KEYWORDS: landslide causative factors, Landslide susceptibility maps, 
Relative effect model, Alpuri valley 

1. INTRODUCTION  

Landslides are a recurrent and widely spread natural phenomenon all over 
the world (Dahal et al., 2008; Lv et al., 2022). The trend and frequency of 
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Landslides are increasing day by day (Pareek et al., 2010; Rahman and 
Shaw, 2015). This severe hazard is especially found in the northern region 
of Pakistan which is covered with huge, lofty and rugged mountains (Khan 
et al, 2022). Pakistan consists of the three largest mountainous arcs such 
as Himalaya, Karakoram, and Hindukush (Baig et al., 2020; Rehman et al., 
2022). Geologically these mountainous arcs are considered younger 
mountains system with weak and fragile slopes, fractured and folded and 
weathered rocks (Dahal and Hasegawa, 2008; Rehman et al., 2022). 
Various events such as landslides, glacial lake outburst floods, floods and 
earthquake activities (Rahaman and Shaw 2014; Rahman et al., 2019) are 
recurrent phenomena in the Hindukush-Himalayan region. Among them, 
landslides are the most terrible geological hazard in the Hindukush-
Himalayan region of Northern Pakistan (Rahman et al., 2019). In the 2006 
report of the P&D Department Shangla, the earthquake of October 8, 
2005, caused life losses, damage to infrastructure and the economy. 
Earthquakes, flash floods, heavy rain and snow are the major natural 
hazards with high priority (https://cms.ndma.gov.pk). The frequently 
occurring phenomena found in these regions are the landslide which 
disturbs human life related to their activities (Crozier, 1986; Kamp et al., 
2009). Most of the research find out that one-third of landslides are 
present in the Himalayas region of the world (GOP, 1987; Khan, 2000). This 
problem represents small-scale to large-scale landsliding and depends on 
the topographic, morphologic, hydrologic and climate change factors 
(Groneng et al., 2011; Vandromme et al., 2020). Kashmir is an example of a 
landslide-prone area in the Himalayan region (Khattak et al., 2010; Zaz and 
Romshoo, 2022). 

Alpuri valley is part of the eastern Hindukush mountain region which is 
vulnerable to landslide hazards. Alpuri valley is bounded by lofty 
mountains and is considered a severe landside area.  Earthquakes and 
heavy rain are the major causes to generate the landslides in the study 
area. heavy rains during Monsoon Season from July to September are 
prone to landslides.  In this study, landslide susceptibility mapping of Alpuri 
valley was generated by using the landslide causative factors with past 
landslides to analyze the landslide probabilities and help the planner for 
future planning and management. The landslide causative factors were 
related to geological, hydrological, topographic and other related factors.  

Various types of models have been prepared for landslide susceptibility 
assessment (Luo and Liu, 2018). These models are based on a qualitative 
and quantitative approach. Qualitative models are subjective, based on 
experts’ experiences and opinions are very important role (Ada and San, 
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2018; Feizizadeh et al., 2014; Hong et al., 2017b; Pourghasemi et al., 2012). 
These are such as geomorphological mapping (Reichenbach et al., 2005), 
heuristic or index-based method (Ercanoglu and Gokceoglu, 2002; 
Pourghasemi et al., 2012), and analysis of landslide inventory (Galli et al., 
2008). Quantitative methods are objective, based on the mathematical/ 
statistical equations which analyze the relationship between the landslide 
base environmental factors and past landslides (Arnone et al., 2016; Sezer 
et al., 2017), frequency ratio (FR) (Wang and Li, 2017; Khan et al. 2019), 
logistic regression, naive Bayes (Pham et al., 2017a), weight of evidence 
(Ilia and Tsangaratos, 2016; Razavizadeh et al. 2017) etc., are quantitative-
based methods. 

To solve this problem, Relative Effect is one of the quantitative base 
model, utilized for landslide susceptibility assessment in Alpuri Valley. this 
approach has been used by various researchers to identify the landslide 
susceptibility assessment in hilly areas (Ghafoori et al., 2006; Naveen Raj et 
al., 2011; Neelakantan and Yuvaraj, 2012; Pradhan and Kim, 2014; Ramesh 
and Anbazhagan, 2015). Relative effect model can be better used for 
constitution, investigation and identification of landslides. The past 
landslide inventory map was developed and combined with causative 
factors with the help of Relative Effect model to find out the landslide 
possibilities area in Alpuri valley. Area under the curve (AUC) was used to 
indicate the performance and accuracy of the model. 

2. MATERIAL AND METHOD 

Alpuri valley is a part of the Shangla District and has been considered in 
the present research study (Fig 1). Location coordinates of Alpuri valley are 
34.94N and 72.65E (WGS).  Approximately, it covers an 812Km2 area of 
Shangla District. Topographically, the area is surrounded by high and 
rugged mountains.  Its elevation from sea level is 1471 meters. 
Climatically, Alpuri Valley is temperate and warm. In Alpuri Valley, 15.8oC 
and 1010mm are the average annual temperature and rainfall. 623.7 Km2 is 
the density of population in Alpuri Valley. This area is considered a 
landslide-prone area in Northern Pakistan. It causes the loss of human lives 
and damaged infrastructure. 

The objective of the research is to use the geospatial techniques along 
with the various software to prepare the landslide susceptibility map. In 
the present research, 17 landslide causative factors such as elevation, 
slope, aspect, general curvature, profile curvature, plan curvature, stream 
power index, drainage density, terrain roughness index, normalized 
difference vegetation index (NDVI), normalized difference wetness index 
(NDWI), geology, distance from stream, distance from road, distance from 
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fault, Landuse Landcover and rainfall data were highlighted for the 
responsible in triggering the landslides and selected for landslide 
susceptibility mapping (Table1). In the beginning, the landslide inventory 
map was prepared with the help of fieldwork, Google Earth and sentinel 
images of the study area. A total of 89 landslides were mapped in the 
landslide inventory map. 

 
Fig. 1. Alpuri Valley 

The ALOSPALSAR DEM (12.5 m resolution) was used to extract the 
morphometric terrain attributes such as slope, aspect, general curvature, 
profile curvature, plan curvature, terrain roughness index, stream power 
index, drainage density, and elevation. Sentinel satellite images (10m 
resolution) of the study area were downloaded from the website. These 
images were used to develop the normalized difference vegetation index 
(NDVI), and normalized difference wetness index (NDWI). Sentinel Satellite 
Landuse Landcover images having 10m spatial resolution were used to 
extract the landuse landcover causative factor. Faults were digitized from 
the fault map of Besham. The geology map was digitized from the 
geological map of north Pakistan. Distance from the road, distance from 
Stream and distance from faults were created from multiple buffer tools in 
ArcGIS software. Rainfall data was downloaded from Global Precipitation 
Measurement Mission and converted into point data. The IDW 
interpolation technique was used to generate the rainfall map. All vector 
data was converted into raster data in Arc GIS for analytical purposes. The 
process of landslide susceptibility mapping was divided into three sections. 
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In the first section, digitized landslide inventory map and selection of 
causative factors. In the second section, Relative Effect model the 
logarithmic model was used to find out the correlation of landslide 
inventory with the selected causative factors. The inventory map was set 
into test and training data set and prepared the landslide susceptibility 
map. In the third section, the validation and performance of the selected 
model were checked by using the testing and training data set. AUC was 
used to calculate the success and predictive curve rates. Success curve rate 
was used for overall data whereas, predictive curve rate was used for 
validation purposes. All the landslide thematic maps were integrated into 
the GIS environment.  

Relative Effect model (Pradhan and Kim, 2014; Ramesh and Anbazhagan, 
2015) was calculated by using the equation given below; 

𝑅𝐸 = 𝐿𝑜𝑔 (
𝑆𝑅

𝐴𝑅
+ 𝜀)                                                (1) 

Whereas, 

𝑆𝑅 =
𝑠𝑙𝑑

𝑆𝐿𝐷
                                                                    (2) 

𝐴𝑅 =
𝑎

𝐴
                                                                          (3) 

 Whereas relative effect shows as RE, a indicates the area of each class in 
an individual class, A is the total area of the study area, sld represents the 
total area of landslide in an individual class, SLD is a total area of landslide 
in the study area., ε is the small positive value near to zero. The value of 
Relative Effect model was calculated for all classes of 17 selected causative 
factors (Table 1).  

A positive value represents the strong relationship between the landslide 
occurrence and classes of each factor map. Landslide susceptibility is high 
in positive value. But negative value indicates weak relation between each 
class of factor map with landslide occurrence and low landslide 
susceptibility. In case of zero value, no relationship is found between the 
landslide occurrence and causative factor. All the factor maps were 
integrated into the GIS environment to calculate the landslide 
susceptibility index by using the Relative effect values using equation 9. 
The resultant map known as landslide susceptibility mapping was 
developed from the landslide susceptibility index and classified into four 
zones. 
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3. RESULT AND DISCUSSION  

Landslide is a natural hazard in northern Pakistan. Due to landslide 
hazards, multiple cases were reported throughout the years in Pakistan. 
Downward movement of the mass of debris, earth, or rocks under the 
effect of gravity is known as landslides (Cruden, 1991). Geological causes, 
the intensity of rainfall and earthquake are the trigger factors of landslide 
events (Lee and Talib, 2005). It causes losses in terms of properties and 
human life as well as resources (Davies, 2015). Landslide is not a new thing 
and its mitigation is necessary to prevent it in future. Mapping of landslide 
affected area is very important to determine the susceptibility zones of 
landslide. Relative effect is one of the popular model of landslide 
susceptibility mapping.  

 

 Fig 2. Alpuri valley, landslide inventory and distribution of past landslides. 

3.1 Preparation of landslide inventory 

In the statistical analysis of Landslide susceptibility, landslide inventory 
plays a significant role to extract the information on parameters of the 
landslide affected and adjacent areas (Bui et al., 2011; Shit et al., 2016). 
Landslide inventory provides information on landslide distribution (Mondal 
and Mandal, 2017). The landslide inventory indicates the area, location, 
shape, and types of movements and materials of the landslide area. GPS 
was used in the field survey to conduct landslide information (Bai et al., 
2010). Satellite images and google earth were the other resources to 
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collect landslide information. Total of 89 landslides was digitized and 

rasterized into the 12.5 by 12.5m spatial resolution. Fig 2 is showing the 
spatial distribution of landslides. This was used to calculate the ratio of 
landslide frequency with the help of several cells in a different class of 
selected factors. 

Table 1. Landslide causative factors and their Relative effect values to 
landslide. 
Causative Factors Classes % Of total 

Pixels in 
Class 

% Of 
Landslide 
Pixels in 
Class 

Relative 
effect 
value 

Geology Kamila 
Amphibolites (Ka) 

25.14  30.01  0.08  

 Indus Suture 
Melange (Ism) 

20.07  22.19  0.04  

 Swat Granites 
(Swg) 

2.58  0.14  -1.26  

 Cambrian 
Manglaur (Cb)  

2.52  2.84  0.05  

 Karora group (Pr) 18.13  8.82  -0.31  

 Besham 
formation (A) 

20.00  28.59  0.16  

 Alpuri group (Ms) 11.56  7.40  -0.19  

Slope Gradient 0 - 18 11.31  9.06  -0.096  

 18 - 28 23.47  18.97  -0.093  

 28 - 36 30.89  33.29  0.032  

 36 - 46 24.99  27.88  0.047  

 46 - 78 9.34  10.81  0.064  

Slope Aspect North 10.24  8.38  -0.17  

 Northeast 11.05  13.44  0.09  

 East 14.45  19.03  0.12  

 Southeast 15.84  18.84  0.08  

 South 12.23  16.14  0.12  

 Southwest 13.05  9.42  -0.14  

 West 12.38  7.86  -0.20  

 Northwest 10.74  6.72  -0.20  

Distance From 
Road 

0 - 200 8.22  20.63  0.40  

 200 - 400 7.06  7.40  0.02  

 400 - 600 6.52  3.18  -0.31  

 600 - 800 6.13  2.09  -0.47  

 >800 72.07  66.71  -0.03  

Distance From 
stream 

0 - 200 5.17  20.72  0.60  
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 200 - 400 5.00  3.41  -0.17  

 400 - 600 4.89  5.97  0.09  

 600 - 800 4.79  2.89  -0.22  

 >800 80.16  67.00  -0.08  

General Curvature -73.60 - -4.96 2.02  2.18  0.03  

 -4.96 - -1.77 17.61  23.47  0.12  

 -1.77 - 0.89 50.30  51.45  0.01  

 0.89 - 4.61 28.07  20.39  -0.14  

 4.61 - 6.08 2.00  2.51  0.10  

Elevation 535 - 1459 15.42  21.57  0.15  

 1459 - 1973 30.07  22.90  -0.12  

 1973 - 2482 30.96  29.45  -0.02  

 2482 - 3158 16.00  25.65  0.21  

 3158 - 4400 7.56  0.43  -1.25  

Plan Curvature -32 - 2.06 4.23  5.17  0.09  

 -2.06 - -0.70 20.02  24.56  0.09  

 -0.70 - 0.39 39.77  41.01  0.01  

 0.39 - 1.75 29.19  23.38  -0.10  

 1.75 - 37.40 6.80  5.88  -0.06  

Profile Curvature -25.84 - -2.57 3.10  3.18  0.01  

 -2.57 - -0.72 21.82  16.64  -0.12  

 -0.72 - 0.60 44.82  43.24  -0.02  

 0.60 - 2.45 26.52  32.48  0.09  

 2.45 - 41.60 3.74  4.46  0.08  

Terrain Roughness 
Index 

0.10 - 0.38 6.62  13.04  0.29  

 0.38 - 0.46 22.13  22.76  0.01  

 0.46 - 0.52 35.74  42.58  0.08  

 0.52 - 0.59 26.60  16.17  -0.22  

 0.59 - 0.95 8.91  5.45  -0.21  

NDVI -0.40 - 0.18 2.63  11.66  0.65  

 0.18 - 0.39 7.10  44.71  0.80  

 0.39 - 0.53 18.84  24.23  0.11  

 0.53 - .0.62 35.38  13.13  -0.43  

 0.62 - 0.86 36.04  6.26  -0.76  

Stream Power 
Index 

0 - 17346033 99.93 99.53 0.00  

 17346033 - 
69384135 

0.05 0.33 0.81  

 69384135 - 
160450813 

0.01 0.14 0.99  

 160450813 - 
307892102 

0.00 0 0 
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 307892102 - 
55904832 

0.00 0 0 

NDWI -0.74 - -0.52 26.57  4.98  -0.73  

 -0.52 - -0.44 38.76  14.46  -0.43  

 -0.44 - - 0.33 23.11  27.50  0.08  

 -0.33 - 0.17 8.37  41.68  0.70  

 0.17 - 0.51 3.19  11.38  0.55  

Drainage Density 0 - 0.56 81.57  68.14  -0.08  

 0.56 -  1.12 8.73  10.05  0.06  

 1.12 - 1.68 7.20  7.11  -0.01  

 1.68 - 2.24  2.13  8.20  0.59  

 2.24 - 2.8 0.36  6.50  1.26  

Landuse 
Landcover 

Bare Land 0.75 1.70 0.38 

 Built Area 18.98 18.96 0 

 Clouds 0.00 0 0 

 Crops 0.27 0 0 

 Rangeland 37.74 59.69 0.20 

 Snow/Ice 2.68 0 0 

 Trees 39.35 18.72 -0.32 

Distance From 
Fault 

0 - 200 11.57 17.21 0.17 

 200 - 400 10.93 13.94 0.10 

 400 - 600 10.14 9.01 -0.05 

 600 - 800 9.23 8.25 -0.05 

 >800 58.13 51.59 -0.05 

Rainfall  96.73 - 101.88 10.21 16.83 0.22 

 101.89 - 105.67 18.74 24.37 0.11 

 105.68 - 109.21 26.96 26.22 -0.01 

 109.22 - 112.43 25.45 20.19 -0.10 

 112.44 - 117.26 18.61 12.37 -0.18 

3.2 Relationship between causative factors and Relative 
effect model 

3.2.1  Surface geology and relative effect model 

The geology and tectonics of the Northern Pakistan region is evidence of 
the collision of the Indian and Eurasian plate. Tectonic movements and 
lithology units have a great effect on slope instability because of their 
different susceptibilities (Dai et al., 2002; García-Rodríguez et al., 2008; 
Nefeslioglu et al., 2008). The geology map of the study area was prepared 
from the geological map of northern Pakistan (Fig 3a). Fig 4a; Table 1 is 
showing an overall correlation between geology and landslides and 
relative effect values. Relative effect values of lithological units such as 
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Besham formation, Indus suture melange, Cambrian Manglaur, and Kamila 
Amphibites were high which indicated a high possibility of landslides 
occurrence. Besham group appeared in the Late Archean to Early 
Proterozoic. This group is sub-grouped into Thakot and Pazang formations. 
This formation is based on less quantity of calcareous, graphitic schist 
gneiss, marbles, psammite, and banded quartzite. Manglaur formation 
contains quartz, quartz-mica-garnet schist, and graphitic schist. Indus 
suture mélange which consists of serpentine , melanges and high-pressure 
blueschists. Kamila Amphibolite belt is meta plutonic rock. Khan et al. 
(1997) determined the Kamila Amphibolite belt as a complex mass of 
amphibolite facies meta plutonic and metavolcanic rocks. According to 
Rahman et al., (2019), it is identified that Besham group showed high 
susceptibility score, Cambrian Manglaur showed second high susceptibility 
score whereas, Karora group has the lowest susceptibility score by using 
the frequency ratio model. In this research, the same result was found. 
Besham group show a strong correlation with landslide events whereas 
Karora group shows weak relation with landslide events. Other lithological 
units such as Kamila Amphibolites and Indus Suture Melange also have a 
positive impact on landslide possibilities. 

3.2.2  Slope gradient and Relative effect model 

Slope gradient is a direct effect and triggering factor on landslide 
occurrence (Lee and Min, 2001). Landslide events depend on the slope 
angle which affecteds the surface runoff, shear stress on the slope and 
weather process (Meena and Gudiyangada Nachappa, 2019). The angle of 
slope increases then the shear force also increases which will induce the 
landslides (Pham et al., 2017c). It increases the density ratio of landslides 
with an increase in the slope gradient (Dai et al., 2001; Rahman et al., 
2017). Slope gradient was extracted from the ALOSPALSAR DEM having 
12.5m resolution (Fig 3b). Slope gradient was classified into five classes by 
using the natural break. As a result, relative effect value for each class of 
causative factors was calculated and shown in Fig 4b; Table 1. The analysis 
revealed that a high frequency of landslides has been found from 28 
degrees to 78 degrees of slope which indicated a strong correlation with 
landslide events. It was found that anthropogenic activities are high which 
increases the ratio of landslides. 

3.2.3 Slope aspect and relative effect model 

Orientation of slope is called slope aspect which consists of 9directions of 
slope (Bui et al., 2014; Pham et al., 2018). The relation of slope aspect is 
indirect with landslide occurrence. Slope aspect depends on the duration 
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and intensity of solar radiation, vegetation type, evapo-transportation and 
precipitation (Kouli et al. 2010; Shirzadi et al., 2017). The slope aspect 

factor was extracted from ALOSPALSAR DEM as shown in Fig 3c. In this 
study, northeast to south-facing slopes have high intensity of solar 
radiation and precipitation both during winter and monsoon seasons. 
Highest values of the slope aspect were indicated in the east and south 
direction which described strong relation and high possibility of landslide 
occurrence in the study area as shown in Fig 4c; Table 1. This result 
indicated the same result of Rehman et al. (2019) in the Shahpur Valley, 
Shangla district. Other active phenomena such as thermal expansion and 
contraction are exposed to the sunlight on the south-facing slope. East-
facing slopes have contact with high rainfall in the monsoon season. This 
analysis showed that variation of intensity of rainfall and duration and 
intensity of solar radiation has a relationship with the variation in density 
of landslide occurrence. 

3.2.4 Elevation and relative effect model 

Elevation is related to the topographic causative factor (Table 1). It affects 
various geologic and geomorphic conditions. It classified the relief based 
on maximum and minimum elevation above the sea level (Youssef et al., 
2014). It plays the role of an indicator of landslide and predictive factor for 
landslide susceptibility mapping. Elevation factor was extracted from 
ALOSPALSAR DEM as shown in Fig 3d. It is classified into five classes. Table 
1; Fig 4d showed the highest relative effect value of class (2482 - 3158) has 
highest positive relative effect value of 0.21, indicating the high tendency 
of landslide occurrence as compared to the other classes. The second-
highest relative effect value was found from 535 to 1459 m elevation. 
Most of the population and infrastructure are found in these classes. 
Infrastructure development decreases the vegetation-covered area and 
cuts the toe of the slopes which increases the rate of landslides in the 
study area. 

3.2.5 Distance from stream and relative effect model 

River works as an agent of erosion. Fluvial cycle is an example of an 
erosion process where subsurface and surface flow water eroded the base 
of slope. These erosion activities take place near the river. The area where 
the river density is high indicated the area has high susceptibility to 
landslide events (Hong et al., 2015; Myronidis et al., 2015; Chen et al., 
2016). Regular flow of water in a river can destroy the strength for slope 
declination which generate the landslides surrounding the river. Proximity 
of rivers is determined by distance from stream. In Alpuri Valley, the 
distance from stream map was developed through multiple buffers around 
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the streams as shown in Fig 3e. Multiple buffers were generated at 200m 
intervals with the help of the multiple buffer tool in ArcGIS. The resultant 
value of relative effect indicated that high value was calculated near the 
river which represents high possibility of landslide occurrence due to high 
runoff water and lateral erosion process in stream, especially during the 
summer monsoon as shown in Fig 4e; Table 1. In the study of Rehman et 
al. (2019), the same result was found that susceptibility was high near the 
river and low when moving away from the stream. 

3.2.6 Distance from road and relative effect value 

Road is an androgenic agent, that takes part in landslides in hilly areas 
(Jaafari et al., 2014; Zhao et al., 2015). Road construction and expansion 
are the factors which support the erosion process and disturb the 
continuity of rocks and soil masses and destabilize the slope.  In this 
research, the distance from road factor was generated with the help of 
buffers around the road as shown in Fig 3f. 200m interval has been placed 
between every buffer zone. Value of every class of factor was measured 
through relative effect model which determined the influence of landslide 
occurrence. The resultant value indicates that near to road has a high 
possibility of landslide events due to erosion process, road construction, 
vehicle movement, and road expansion. This possibility decreases when 
moving away from the road (Fig 4f; Table 1). In the analysis of Rehman et 
al. (2019), the landslide susceptibility score was high near to road and 
decreased when moving away from the road. 

3.2.7 Stream power index and relative effect model 

Stream power index is the hydrological factor which is utilized to calculate 
the erosion power of the water inflow accumulation area (Moore and 
Wilson, 1992; Mohammady et al., 2012; Sun et al., 2018). It shows the 
direct relation of erosion power with slope toe erosion (Nefeslioglu et al., 
2008). The stream power index is a quantitative value based on a 
hypothesis (Moore et al., 1991). The equation of stream power index is 
given below; 

𝑆𝑃𝐼 = 𝐴
𝑡𝑎𝑛𝛽

𝑏
                                                            (4) 

Whereas,  

A is the flow accumulation area and b is slope gradient. In Alpuri valley, the 
relative effect model is used to calculate the value of Stream power index. 
The stream power index was classified into five classes as shown in Fig 3g. 
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As a result, the relative effect values were calculated for the entire Alpuri 
Valley and visualized and tabulated in Fig 4g; Table 1. It was found from 
the analysis that Second and Third class of SPI shows a positive correlation 
with relative effect values of 0.81 and 0.99 respectively which indicated 
the high ratio of erosion power of water and possibility of landslide 
occurrences. 

3.2.8 Drainage density and relative effect model 

Drainage density is an indirect factor of landslide events. It describes the 
lithology, climate, relief, structure landform flux density and vegetation of 
the study area (Udin et al., 2021). Runoff water from streams is important 
for drainage density. Runoff water carries the eroded material in a hilly 
area and causes the landslide (Mitra et al., 2017). The drainage density can 
be calculated by dividing the total length of the stream by the total area of 
a drainage basin. The drainage density can be calculated as: 

𝐷𝐷 = (
𝐿𝑆

𝐴𝐷
)                                                  (5) 

Whereas, 

Drainage density represents by DD, LK is the total length of steam/ river 
and AD is the total drainage basin area of the study area. Drainage density 
is the quantitative value defined from low to high. High value represents 
the high ratio of runoff and low rate of infiltration. Due to the high velocity 
of water flow and low infiltration rate, the possibility of landslide 
occurrence increases. In this study, drainage density map was prepared in 
a GIS environment as shown in Fig 3h. Map classified into five classes. Each 
class was calculated the relative effect value, which indicated the influence 
of the landslide event (Table 1). The result showed that value increases 
from low density to high drainage density. It is also observed that drainage 
density from 1.68 to 2.8 showed high relative effect value than other 
classes. So the rate of landslide events is high tendency in this range of 
drainage density. The overall result of each class of factors is shown in 
Table 1; Fig 4h.  

3.2.9 Normalized difference Vegetation index and Relative 
effect model 

Normalized Difference Vegetation Index is causative factor of landslide 
occurrence (Lundgren, 1972). This index represents the density of 
vegetation in the study region (Iqbal et al., 2021). Forest, crops, rangeland 
etc. on the land surface are the different forms of vegetation (Guo et al., 
2015; Eker et al., 2015; Chen et al., 2016). It gets negative impact on 
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landslide occurrences when the presence of dense vegetation and positive 
in the absence of vegetation. Dense vegetation decreases the erosion 
process and increases the cohesion strength in soil. The normalized 
vegetation index was calculated from the difference between an infrared 
and red band of satellite images. Calculation of index is given by (Justice et 
al., 1985): 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
                               (6) 

Whereas NDVI is the normalized difference vegetation index, NIR is 
infrared wavelength band of satellite image. RED is the red wavelength 
band of satellite images. The index value was found between -1 and +1 
value. -1 value indicates less vegetation area and +1 indicated dense 
vegetation area. In Alpuri Valley, NDVI map is classified into five classes 
which define the concentration of vegetation in each class (Fig 3i). The 
relative effect value was calculated which defines the frequency of 
landslide occurrence in each class. On basis of relative effect values, the 
NDVI class of 0.18-0.39 is showing highest value to determine the high 
possibility of the landslide which shows a positive correlation between the 
causative factor and landslides. whereas, NDVI class of 0.62 – 0.86 has less 
prone to landslide occurrences (Table 1; Fig 4i). 

3.2.10 Normalized difference water index and relative effect  

Normalized difference water index was developed by McFeeters 
(McFeeters, 1996). This index gives the knowledge about the water bodies 
in the study area as shown in Fig 3j. It is used to find out the soil depth, 
erosion rate, and wetness (Aslam et al., 2021). Satellite image was used to 
calculate the normalized difference water index by utilizing the green band 
and the Near-infrared band of the satellite image. Following equation used 
to measure the NDWI is given below: 

𝑁𝐷𝑊𝐼 =
(𝐵𝐴𝑁𝐷 𝐺𝑅𝐸𝐸𝑁 − 𝐵𝐴𝑁𝐷 𝑁𝐼𝑅)

(𝐵𝐴𝑁𝐷 𝐺𝑅𝐸𝐸𝑁 − 𝐵𝐴𝑁𝐷 𝑁𝐼𝑅)
                                (7) 

NDWI has values which define the ratio of water bodies on the surface. If 
the value is less than zero it represents the no water body present on the 
surface area whereas if the value is greater than zero identified the water 
bodies on the surface area. The relative effect value for each class of NDWI 
was calculated which indicated the presence or absence of water bodies by 
increasing or decreasing the values.  when analysing the result of NDWI, 
the relative effect values were increased toward NDWI class of (0.17 – 
0.51). The NDWI class of (-0.33 – 0.17) indicated high relative effect value 
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which revealed high frequency of landslides and high susceptibility to 
landslide events (Fig 4j; Table 1). 

3.2.11 Terrain Roughness index and relative effect 

Terrain roughness index plays a positive role in landslide occurrence (Jebur 
et al., 2015). Terrain term was used for the local relief in the study. Terrain 
roughness index is the index to find out the ruggedness of the terrain (Al-
Najjar and Pradhan, 2021). Range value describes the heterogeneous 
situation of the local terrain. Terrain roughness index is the following 
formulation: 

𝑇𝑅𝐼 = √|𝑥|(𝑚𝑎𝑥2 − 𝑚𝑖𝑛2)                                     (8) 

Whereas,  

max represents steep slope and roughness of the terrain surface and min 
represents the flat and smoothness of surface terrain (Riley et al., 1999). 
Range of data present from 0 to 1. 

High roughness of surface terrain indicates high heterogeneity and low 
roughness shows the smoothness or homogeneity of the landscape. Raster 
calculator tool was used to calculate the terrain roughness index as shown 
in Fig 3k. Relative effect value of each class was calculated to identify the 
impact of landslide events. It was identified that first class was high value 
of relative effect model which shows high rate of landslide occurrence (Fig 
4k; Table 1). It is observed that positive values of TRI show smooth to low 
ruggedness of the landscape which represents a strong correlation 
between landslides and causative factors and is highly prone to landslide 
occurrences. 

4.2.12 General curvature and relative effect model 

Curvature is the topographic factor which helps in the landslide hazard 
analysis. Mathematically, it is a change in slope gradient with respect to a 
very small arc of curve (Thomas, 1968). It works opposite the radius of 
circle in form of a tangent over a small arc (Kepr, 1969). The curvature line 
formed at the intersected point of imaginary plane with ground surface. In 
landslide analysis, three values of curvatures were used (Dikau, 1989; 
Moore et al., 1993a, b; Ayalew and Yamagishi, 2004). The curvature is 
divided into classes such as concave, convex, and neutral. The neutral class 
is the flat area and has zero value. The concave class consists of positive 
and concave class indicates negative value. ALOSPALSAR DEM was used to 
extract the general curvature (Fig 3l). Relative effect values of each class 
were calculated to find out the influence of landslide occurrence. In this 
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study area, general curvature class from -73.60 to -1.77 showed the 
concave class with the relative effect value of 0.30 and 0.12, respectively. 
Class from -1.77 to 0.89 represents the flat class with a value of 0.01 and 
class from 4.61 to 6.08 shows the convex class with a value of 0.10. All 
these classes determine positive relation between landslide and high 
influence and susceptible to landslide events (Fig 4l; Table 1). 

3.2.13 Profile curvature and relative effect model 

Profile curvature is downward in slope direction to indicate the movement 
of sediment and erosion (Chen and Chen, 2021). It works to control the 
runoff of the water (Pourghasemi et al., 2018). It is a curvature line 
prepared by the intersection of a vertical plane with ground surface (Al-
Najjar and Pradhan, 2021). Generally, it is classified into three areas such 
as convex, concave, and flat or neutral. It is the inverse of plan curvature. 
Convex surface contains the positive profile curvature and concave surface 
consists of negative profile curvature. It influences the resisting and driving 
pressure in the landslide movement within the landslide. ALOSPALSAR 
DEM was utilized to develop the profile curvature as shown in Fig 3m, and 
relative effect model was used to measure the values of each class of 
factor. As a result, it is observed that concave surface identified a high 
ratio of landslides and strong relationship with the landslide events as 
compared to the convex and flat surface (Fig 4m; Table 1).  

3.2.14 Plan curvature and relative effect model 

Plan curvature is the inverse of profile curvature where it is prepared by 
the intersection of imaginary horizontal plane with ground surface (Kannan 
et al., 2013; Iqbal et al., 2021). Plan curvature determines the convergence 
and divergence of landslide material and the flow of water in the landslide 
movement path (Carson and Kirkby, 1972; Yilmaz et al., 2012).  Concave, 
convex and flat is a subdivision of plan curvature. Concave is the 
convergent part having positive value, convex is the divergent part, having 
negative value and flat is the neutral part, having zero value. ALOSPALSAR 
DEM was employed to prepare the plan curvature factor and five classes 
were generated as shown in Fig 3n. Relative effect model was used to find 
out the relative effect value of each class to determine the influence of 
landslide events in each class of the factor. As a result, the positive 
correlation and high concentration of landslide events for concave class as 
compared to flat and convex classes as shown in Fig 4n; Table 1. 
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3.2.15 land-use land-cover and relative effect model 

Land use landcover is an anthropogenic and affected factor in most 
landslide susceptibility studies. Land use of any area is affected by human 
intervention and infrastructure development. Several publications have 
considered landuse landcover factors in their analysis (Restrepo et al. 
2003). However, vegetative cover area has low erosional activity as 
compared to bare area having unconsolidated material. In this study, 
Sentinel 2 landuse landcover classified satellite images having the 10m 
spatial resolution were used to extract the landuse landcover map of the 
study area (Fig 3o). As a result, Fig 4o; Table 1 shows that the highest 
relative effect value was found in Bare land-use class. The bare land is 
showing the value of 0.38 and indicates a positive relation with landslide 
events. The second highest value was found in the Rangeland class and 
showed the value of 0.20. rangeland also shows high susceptibility to 
landslides. The analysis revealed that bare land and rangeland show low 
Landcover area which is suspicious as a factor that causes landslide 
susceptible. It is also found that the fields were found on the terraces on 
the fragile slopes with the help of human intervention supported by 
landslide activation. Rest of the land use Landcover classes was shows no 
influence on landslide occurrences. 

3.2.16 Distance from fault and relative effect model 

Active and deep fault structure controls the landslide's development. Fault 

map of the study area was digitized from the geologic map of the Beshani 
and Allai-Kohistan areas (Baig, 1990). Distance from fault was 
determined by multiple buffer technique with 200m intervals and 
classified into five buffer zones as shown in Fig 3p. The purpose of the 
buffers was to determine the proximity to each fault line on landsliding. 
Relative effect values were determined by using the relative effect model. 
the analysis shows that the buffer class 0 to 400 is showing positive values 
of 0.172 and 0.105, respectively. They show a high possibility of landslides 
due to reducing the cohesion power of rock and a strong correlation with 
landslide occurrences. The results show that an area near the fault line has 
high possibility and is more susceptible to landslide than the area further 
away (Fig 4p; Table 1). The analysis of Rehman et al. (2019) also showed 
that the landslide susceptibility score was high near to fault line and 
decreased when moving away from the faultlines. 

3.2.17 Rainfall and relative effect model 
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Rainfall is the triggering factor for landslide occurrence (Bordoni et al., 
2015; Abdo, 2021). It is considered a geo-environmental factor. Long-term 
excessive rainfall causes landslides in the study area. It decreases the shear 
strength of the material, opens the pores of the soil/rock mass and creates 
flow conditions resulting in landslides. It also supported the erosion 
process and surface runoff. The Global precipitation measurement mission 
(GPMM) data was used for rainfall mapping. the interpolation technique 
such as Inverse Distance weightage was used to prepare the rainfall map of 
the study area (Fig 3q). In Fig 4q; Table 1, the analysis revealed that rainfall 
from 96.73mm to 105.67mm is indicating the positive relative effect values 
of 0.22 and 0.11 respectively and showing the strong relationship between 
the landslides and causative factor (Table 1) and thus highly prone to 
landslide events.  
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Fig. 3 Thematic maps of the study area: (a) geology; (b) slope gradient; (c) 
slope aspect; (d) elevation; (e) distance from river; (f) distance to road; (g) 
stream power index; (h) drainage density; (i) NDVI; (j) NDWI; (k) TRI; (l) 
general curvature; (m) profile curvature; (n) plan curvature; (o) LULC; (p) 
Distance from fault lines; (q) Rainfall 

 In this study, 17 causative factors were used to prepare the landslide 
susceptibility map of the study area. Relative effect values of each class of 
17 causative factors were computed and show their impact on landsliding. 
Overall results revealed that the slope with gentle to steep having the 
northeast to southward slope facing, having the geology units of Besham 
formation, Kamila Amphibolite complex, Indus Suture melange and 
Cambariam Manglaur with the elevation of 535 to 3158 m and buffer 
zones 0 to 200m and 400 to 600m of distance from stream, buffer zones of 
0 to 400m of distance from roads and faults show high possibility of 
landslide occurrences. Landuse Landcover with Bare land and Rangeland 
classes with high intensive rainfall in monsoon season, with high density of 
water to produce high lateral erosion process where a high probability of 
water bodies and low and no vegetation found with low roughness area 
and concave like region indicated as highly susceptible to landslide events. 
This study suggested that this region will be further affected by recurrent 
landslide phenomena with climatic events. So it is very necessary to 
Government to take proper planning and monitoring to reduce the impact 
of landslides.  
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Fig. 4 percentage of landslides with the causative factors and relative 
effect values: (a) geology; (b) slope gradient; (c) slope aspect; (d) elevation; 
(e) distance from river; (f) distance to road; (g) stream power index; (h) 
drainage density; (i) NDVI; (j) NDWI; (k) TRI; (l) general curvature; (m) 
profile curvature; (n) plan curvature; (o) LULC; (p) Distance from fault; (q) 
Rainfall 

3.3. Landslide susceptibility mapping 

Landslide is one of the hazard term found in Alpuri valley which causes loss 
of life, destroy the human infrastructures, deforestation and loss of 
economy of the country. The landslide susceptibility mapping in form of 
zonation plays important role in planning and safety in landslide-affected 
areas. Preparation of landslide susceptibility map is a primary and 
necessary step for hazard and risk assessment. In the landslide 
susceptibility zonation map, the hazard areas are classified into different 
zones to determine the level of susceptibility on the bases of selected 
causative factors. All the causative factors were integrated into the GIS 
environment to prepare the landslide susceptibility zonation map of Alpuri 
valley. Landslide susceptibility map was prepared with the help of landslide 
susceptibility index. This index is a summation of all 17 selected factors 
with relative effect values which are given below: 
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𝐿𝑆𝐼 = ∑ 𝑅𝐸                                    (9) 

After the preparation of the landslide susceptibility map, it was classified 
into four classes to identify the level of prone in Alpuri Valley as shown in 
Fig 5. The range of landslide susceptibility mapping was (-5.30 to 5.64). 
High value represented the high frequency of landslide occurrence. The 
classification map showed the low, moderate, high, and very high classes 
(Fig 5). It is analyzed that 7.55% of the susceptibility area was very high, 
and 25.33 % was a high susceptibility zone. Results showed that total of 
32.88% area was the high landslide susceptibility zone which represented a 
highly prone area in future as shown in Table 2; Fig 6. 

 

Fig. 5. Landslide susceptibility zones map of Alpuri Valley 

 

Fig. 6. Landslide Susceptibility zones of Alpuri Valley 
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Table 2. Landslide susceptibility zone of Alpuri Valley 

Classes 
Alpuri 

Low Moderate High Very High 

Percentage 27.31 39.81 25.33 7.55 

3.4. Validation and model performance  

It is an important factor to check the validation and performance of the 
model in landslide susceptibility mapping. According to Chung and Fabbri 
(2003), it is useless and not of scientific importance without the process to 
check the performance and validation of models and maps. In previous 
studies, receiver operating characteristics (ROC) was used as a useful 
method for observing the performance and validation of landslide 
susceptibility models (Hong et al., 2017a, 2018a, b, c; Hussin et al., 2016). 
Area under the curve (AUC) is used for indicating the ability of the model 
to predict the occurrence and non-landslide occurrence pixels. Before to 
prepared the AUC, the past landslide inventory was divided into two data 
set, one is the training dataset which was used in modelling and other 
datasets such as testing will be used for validation purpose. Two types of 
curves were prepared, one is the success rate curve which is prepared by a 
70% training dataset and prediction rate curve was prepared from 30% 
testing dataset. According to AUC values (Fig 7), the results of success rate 
and prediction rate curves show that the Relative model has good 
outcomes. AUC value and success rate curve were calculated at 0.7475 and 
74.75% whereas the AUC value and prediction rate curve was calculated at 
0.8787, and 87.87%. Hence, the results show that success and prediction 
curves fall in good citatory of AUC and satisfactory result of Relative Model 
identified in Alpuri Valley. 

 

Fig. 7.  Success rate and predictive rate of the landslide susceptibility map 
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4.  CONCLUSION  

In this study, Alpuri valley was selected as the landslide-prone area and 
find out the spatial probability of landslide occurrence. For this purpose, 
landslide susceptibility mapping is a very important step to determine the 
landslide-prone area in Alpuri valley. The main objective of this study was 
to utilise the Relative Effect model for preparing the landslide susceptibility 
map and identifying landslide probe areas. Total of 89 landslides was 
pointed out and digitized using GIS. 17 causative factors were selected on 
the availability of data in the study area. The resultant map of landslide 
susceptibility was prepared by combing these causative factors such as 
elevation, slope gradient, general curvature, slope aspect, profile 
curvature, plan curvature, distance from road, distance from stream, 
distance from faultlines, rainfall, landuse landcover, NDWI, NDVI, terrain 
roughness index, drainage density, stream power index and surface 
geology. The Relative values of every class of these factors were calculated 
to define the influence of landslide occurrences. The positive value of class 
of factors showed the high influence of landslide occurrence and negative 
value indicated low or no influence of landslide occurrence. The resultant 
landslide susceptibility map was identified into zones from low to very 
high. It is accounted that 7.55% and 25.33% were very high and high 
susceptibility zone, respectively. Total of 32.88% was considered a high 
susceptibility zone. Receiver operating characteristic (ROC) was used to 
check the validation and performance. Area under the Curve (AUC) was 
the area plotted under the ROC. Success rate curve and prediction rate 
curve accounted for the performance of model. Predictive rate curve of 
model was 87.87% which is used on (30%) testing data for validation 
purposes whereas the success rate curve was 74.75% which is used on 
(70%) training data for overall mapping. Accuracy of model shows the 
87.87% which helps the landuse planner and decision-maker in the good 
planning and management. 
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