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Abstract. Hemodynamic analysis plays a crucial role in the prevention, 
diagnosis, and treatment of human vascular diseases. The use of mag-netic 
particles in biomedicine and clinical therapies for targeted drug de-livery 
within cells provides simple diagnostic tools. In this article we will study the 
periodic pulsatile blood flow in the femoral and coronary ar-teries using 
nano-particles. Based on experimental data regarding blood rheology, the 
study employs the constitutive equation of an Oldroyd-B fluid. Moreover 
to capture more control, the problem is modeled using the ABC fractional 
derivative operator and solved through the application of integral transforms. 
Furthermore, a comprehensive graphical analysis is conducted to understand 
the influence of the fractional order parame-ter and various material factors, 
such as amplitude, lead angle, frequency of body acceleration, magnetic field, 
particle concentration, and tempera-ture effects, leading to significant 
conclusions. The obtained results help to optimize targeted drug delivery to 
infected tissues, and hyperthermia treatments.
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1. Introduction

Biomagnetic fluid dynamics (BFD) is a  specific subject of  fluid dynamics that studies 
fluid flow in the presence of magnetic fields. Bio-magnetic-fluids (BMF) play a crucial part 
in bioengineering, particularly in applications such as magnetic drug delivery, enhancing 
blood flow during surgeries, treating cancerous tumours, regulating blood flow during med-
ical procedures and transporting complex biological waste fluids. BFD is also crucial for 
the development of instruments for cell separation and endoscopy [33, 34, 23]. The human
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blood circulatory system consists of a complex network of arteries and veins. Arteries are
elastic vessels that transport oxygenated blood throughout the body. Their elasticity allows
them to accommodate the volumetric changes necessary to move blood (an incompressible
fluid), through the vascular system. Westerhof [48] proposed and modeled a simplified
arterial network, comprising 55 major arteries in the human body, using electrical circuit
analogies. Furthermore, the fluid properties that mimic blood, composed of blood plasma
and RBCs, are adopted from a prior study [17]. Haik et al. [18] developed the concept of
BMF within the human body. Specifically, BFD primarily addresses non-Newtonian vis-
cous fluid flows, such as blood in arteries.
Variation in blood circulation can be caused by external acceleration. The body expe-
riences acceleration forces during activities such as traveling at high speeds in vehicles
and airplanes or making quick movements while playing sports. These forces can lead to
headaches and an elevated heart rate. Prolonged exposure to such conditions may impair
blood circulation, potentially causing vision loss. Therapeutic therapies and the creation
of novel diagnostic instruments may benefit from controlled acceleration. Since blood is a
BMF, its circulation can be optimized and regulated using external magnetic fields, poten-
tially preventing heart issues [13].
A BFD model that was similar to ferro-hydrodynamics was developed in 1999 by Haik et
al., further investigation related to the effects of magnetic fields on blood circulation was
done by Tzirtzilakis [43], while studies on arteries with numerous stenoses were undertaken
by Lundgren et al. [22] and Varshney and Kumar [46]. Unsteady flow of non-Newtonian
fluids is influenced by the thermal variations [4]. Furthermore, the heat transfer charac-
teristics and blood circulation in stenosed arteries were studied under a magnetic field by
Bourhan and Magableh [9]. Moreover, Mustapha et al. [29] also made important con-
tributions to this subject. The therapeutic value of magnetic particles in biomedicine has
been recognised by numerous researchers that have explored blood mixed with magnetic
particles in various geometries under the influence of magnetic fields. A blood circulation
model with suspended magnetic particles along with magnetic field was used in Ali et al.
[3] to analyse the therapeutic potential of magnetic particles. They observed that by con-
trolling the magnetic field intensity suitably, the blood’s and the particles’ velocities could
be controlled.
Grief et al. [16] studied the effect of a perpendicular magnetic field on blood flow, contain-
ing suspended magnetic particles, and concluded that the magnetic particles could increase
the effectiveness of cancer therapy. Kilgus [20] observed that the addition of magnetic
particles enhanced the model’s ability to deliver targeted genes. In order to cure atheroscle-
rosis and hypertension. Shit and Roy [39] developed a model that used magnetic particles
in blood and demonstrated that blood flow could be controlled by an external magnetic
field. Mirza et al. [28] studied the role of a magnetic field in treating stenosed arteries and
observed significant changes in magnetized blood flow with suspended magnetic particles
near the stenosed area. Further, Jawad et al. [19] investigated the computational study on
MHD flow of nanofluid flow.

Blood closely resembles an Oldroyd-B fluid [31] due to its complex viscoelastic prop-
erties, which encompass both elasticity and viscosity. It consists of plasma, a Newtonian
fluid, and suspended cellular components such as red blood cells (RBCs), white blood cells,
and platelets. These elements collectively impart viscoelastic behavior to blood:
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• Elasticity: RBCs deform and recover their shape, exhibiting elastic characteristics.
• Viscosity: Plasma contributes to the viscous properties of blood flow.

An Oldroyd-B fluid model is specifically designed to represent such viscoelastic behaviors,
making it a more accurate representation of blood compared to purely Newtonian or other
non-Newtonian models. Additionally, blood demonstrates stress relaxation, where stress
diminishes over time under constant strain, and elastic memory, enabling it to revert to its
original configuration. These properties align with the fundamental features of Oldroyd-
B fluids, which incorporate memory effects in their constitutive equations. While bloods
shear-thinning behavior (reduction in viscosity with increased shear rate) is often modeled
using power-law [10] or Carreau models [11], its dynamic interaction of elastic and viscous
properties across varying flow conditions aligns well with the predictive capabilities of the
Oldroyd-B fluid framework. Furthermore, blood flows in pulsatile patterns within vessels
due to the heart’s pumping action. The Oldroyd-B model effectively captures the oscilla-
tory shear stress response and the phase lag between stress and strain, which are hallmarks
of blood flow. In microcirculation, where RBC deformation significantly impacts flow and
resistance, an Oldroyd-B model provides a better representation of these deformation and
relaxation effects than simpler Newtonian models.

More recently, fractional calculus (FC) has enabled the creation of more realistic and
adaptable models that incorporate memory effects, displaying remarkable efficiency in
controller design [27],[32],[21]. These benefits make FC modelling useful for develop-
ing active control schemes and linear state-feedback controllers to manage hyper-chaos
[37]. For usefulness of fractional-order magnetohydrodynamic boundary layer fluid flow
we refer the work of Sadiq and Hamasalh [36]. Furthermore, for the human liver, Baleanu
et al. [8] suggested a fractional-order model (FOM). Furthermore, in the presence of a
magnetic field, a FOM for blood flow was studied by Shah et al.[40] later by Riaz and
Zafar [35]. Moreover, Zafar et al. [51] reported analytical results for two-phase blood flow
in the presence of a magnetic field. Likewise, Maiti et al. in [30]investigates a FOM for
blood flow with heat and mass transfer in the presence of thermal radiation. Recently, in
[7] Awrejcewicz et al. investigate the blood rheology through the coronary and femoral
arteries influenced by body acceleration.

Available literature indicates that blood acts as a Newtonian fluid at high shear rates,
typically present in larger arteries, and displays non-Newtonian properties at low shear
rates found in smaller arteries. Additionally, experimental data suggests that blood pos-
sesses viscoelastic characteristics under specific conditions [45, 12]. Thurston [41] was the
first one to identify these viscoelastic properties, developing an extended Maxwell model
for one-dimensional flow. Yeleswarapu et al. [42] and Yeleswarapu [50] proposed a three-
parameter Oldroyd-B fluid model to study blood flow. Blood is known to be slightly vis-
coelastic, although most computational fluid dynamics studies have not taken this into con-
sideration. An aggregate of red blood cells exhibits solid-body behavior and the capacity
to store elastic energy at low shear rates. However, viscoelastic effects become less notice-
able at high shear rates because of the fluid-like behavior of red blood cells. Consequently,
blood flow under oscillatory flow conditions and at low shear stress is better represented by
viscoelastic models [49].
For simulating a mathematical model there are several methods depending upon the nature
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of problem for instance CrankNicolson finite-difference scheme [5], [6]. Sometimes, inte-
gral transform methods seems to be more useful.

While traditional studies on blood models have predominantly treated blood as a New-
tonian fluid, there has been limited exploration of non-Newtonian fluid models using FC.
Addressing this gap, our manuscript focuses on developing a blood flow model for a spe-
cific category of non-Newtonian fluids with fractional order (FO) derivatives, incorporating
uniformly distributed magnetic nanoparticles (NP) as the blood flows through coronary and
femoral arteries. By adjusting parameters in the governing equation of the model, for in-
stance, setting the λ2 retardation parameter to zero results in blood behavior analogous to
a Maxwell fluid, while a zero value for the λ1 relaxation parameter reverts the model to a
Newtonian fluid. This flexibility allows for a generalized modeling approach. The Laplace
transform (LT) method and well known Stehfest’s numerical inversion algorithm (SNIA)
[38] are employed to solve the model under the given initial and boundary conditions.
Our research also extends to the application of magnetic particles in biomedical and clinical
therapies, which has become a focal point of interest in recent years. This study presents
a mathematical model of two-phase unsteady pulsatile blood flow in femoral and coronary
arteries, incorporating suspended NP, body acceleration, and an external magnetic field,
alongside heat transfer effects. More precisely:

a: Our aim is to investigate a time-fractional model for blood rheology (regarded as
an Oldroyd-B fluid) containing uniformly dispersed magnetic NP passing through
the coronary and femoral arteries.

b: This dimensionless form model accounts for the effects of fractional order pa-
rameters, an external magnetic field, periodic body acceleration, and an oscillating
pressure gradient.

c: Specifically, the Atangana-Baleanu (ABC) time fractional derivatives will be uti-
lized to model the problem, as the ABC derivative provides superior results for
problems involving heat transfer.

d: The LT method, FHT and SNIA are employed to simulate the model subject to
given constraints.

e: Numerous results from the literature can be retrieved and replicated from our gen-
eral solutions by suitably adjusting the parameters and functions. Consequently,
the challenges linked to analogous models will be thoroughly resolved.

f: A comprehensive parametric analysis is performed through graphical methods,
yielding valuable insights that contribute to process optimization and the advance-
ment of innovative medical technologies.

1.1. Research Design. Our methodological approach begins with an overview of existing
research and the motivation behind the study. In Section 2, the mathematical model of
the proposed problem is formulated in its dimensional form, with governing equations ex-
pressed as partial differential equations (PDEs) under appropriate constraints. In Section 3,
the system of equations is transformed into a dimensionless form, and a non-integer order
model is developed using the ABC non-integer order derivative operator. Section 4 presents
the solution to the mathematical model, achieved through the application of integral trans-
forms (specifically the LT and FHT), along with Stehfests algorithm for the inverse LT. The
validation of the obtained results is addressed in Section 5. A detailed graphical analysis
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of the results is provided in Section 6, followed by a discussion. Finally, conclusions and
remarks are presented in Section 7, with future directions outlined in Section 8.

2. MATHEMATICAL FRAMEWORK OF THE PROBLEM

The study considers blood, modeled as an Oldroyd-B fluid, flowing through an artery
represented as a cylindrical glass tube with a radius r0. This tube contains uniformly dis-
tributed magnetic NP, specifically iron oxide. The flow is directed along the z-axis and is
influenced by a magnetic field, periodic body acceleration, and an axial pulsatile pressure
gradient. The physical geometry of the problem is shown in figure 1. The primary focus

FIGURE 1. Physical geometry of the fluid flow.

of this investigation is the non-Newtonian blood flow through the femoral and coronary
arteries. Typically, coronary arteries have an average diameter of approximately 3.1 mm,
while femoral arteries generally range in diameter from 3.9 mm to 8.9 mm.
Our presumptions are as follows:
a) The blood and magnetic particles exhibit zero velocity at the artery walls, complying
with the no-slip requirement.
b) The induced magnetic field has a minor effect since the magnetic Reynolds number is
kept low.
c) Blood’s physical characteristics, such as its density and viscosity, never change.
d) The blood volume has an even distribution of magnetic NP.
The blood and magnetic NP are both still at t = 0. The fluid with suspended particles
begins to move shortly after t = 0, driven by an oscillating pressure gradient and convec-
tive heat transfer. Newton’s second law defines particle motion, while the Navier-Stokes
equation governs fluid motion. The electromagnetic field’s behaviour is determined by
Maxwell’s equations.
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The momentum equation of fluid stream is [30], [7].(
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where λ1 is relaxation time parameter, Vf denotes velocity of fluid, ∂p
∂z is the pressure

gradient along the flow direction, Ba denotes the body acceleration, λ2 is the retardation
time parameter, S is Stoke’s constant, N denotes the number of magnetic particles per
unit volume, Vp is the velocity of particles, σ is the electric conductivity, Bapp strength
of applied magnetic field, Tf denotes temperature of fluid, βTf

is the thermal expansion
coefficient and Tf∞ is the ambient temperature. All other nomenclature is declared in
Table 1. Considering small values of Reynolds number for relative velocities, the net force

TABLE 1. Nomenclature

Symbol Quantity Symbol Quantity
α Fractional parameter β, γ Fractional parameters
a Womersley number q Laplace transform parameter
ψ0 Constant amplitude φ Lead angle
ψ1 Pulsatile component’s amplitude ωr Frequency of body acceleration
mav Average mass of magnetic particles Ha Hartman number
µ Viscosity (Dynamic) Gr Grashof Number
ν Viscosity (Kinematic) Ag Amplitude
cp Specific heat at constant pressure k coefficient of thermal conductivity

acting on fluid depends linearly on their relative velocities of blood and suspended magnetic
NPs, therefore

mav
∂Vp(r, t)
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= S(Vf (r, t)− Vp(r, t)). (2. 2)

Moreover, energy equation is given as
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Like in [25] ∂p∂z is considered as

−∂p
∂z

= ψ0 − ψ1cos(ωpt), (2. 4)

where ψ0 represents the constant amplitude of pressure gradient, while ψ1 denotes the am-
plitude of pulsatile component of pressure gradient which give rise to systolic and diastolic
pressure gradient, pω = 2πpf with pf is the pulse frequency. The approximate value of
ψ0 is 32 × 10−3Nm−1 for femoral and subsequently 698.65 × 10−3Nm−1 for coronary
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arteries (for details see [15], [26] ). Expression for the body acceleration along the axial-
direction is determine by

Ba = Agcos(ωbt+ θ), (2. 5)

where Ag represents amplitude, θ is the lead angle with regarding cardiac activity and ωb
is frequency for body acceleration.
The associated constraints for the problem are:

Vf (r, 0) = Vp(r, 0) = 0, Tf (r, 0) = Tf∞, at t = 0 and r > 0, (2. 6)
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∂r
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= 0, at r = 0 and t > 0, (2. 7)

Vf (r, t) = Vp(r, t),= 0, Tf (r, t) = Tfw, at r = r0 and t > 0. (2. 8)

3. NON-DIMENSIONALIZATION AND FRACTIONAL ANALOGUE OF THE PROBLEM

To make the problem under consideration geometry free, the following dimensionless
quantities are introduced:
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Moreover, the initial and boundary conditions associated with the fluid flow model in di-
mensionless relations are:

Vf (r, t) = 0, Tf (r, t) = 0, at r = 0, t > 0, (3. 13)
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∂Tf (r, t)
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Here, a is a dimensionless parameter known as the Womersley number [47], which ex-
presses the relationship between pulsatile flow frequency and viscous effects. This number
is critical for preserving dynamic similarity when scaling experiments. It is used to scale
up the vascular system for experimental investigations due to its potent effects. The Wom-
ersley number is a dimensionless parameter crucial in hemodynamics, as it measures the
relative influence of unsteady (oscillatory) inertial forces compared to viscous forces in
pulsatile blood flow. It plays a key role in understanding blood flow dynamics across dif-
ferent regions of the circulatory system.
At low Womersley numbers (less that unity): Viscous forces dominate, resulting in para-
bolic flow profiles resembling steady laminar flow, typically observed in small vessels such
as capillaries.
At high Womersley numbers (greater than 10): Inertial forces take precedence, leading to
flatter velocity profiles and wave-like flow propagation, characteristic of large arteries like
the aorta.
At intermediate values (between 1 and 10): A combination of viscous and inertial effects
leads to pronounced velocity oscillations throughout the cardiac cycle.
The Womersley number also describes how the oscillatory nature of blood flow, driven by
the hearts pumping action, interacts with vessel walls and the viscous properties of blood.
This parameter provides valuable insights into the behaviour of pulsatile blood flow under
various conditions, enhancing our understanding of cardiovascular physiology and support-
ing the development of diagnostic and therapeutic approaches.
As we have obtained our model equations (10)-(15) in dimensionless form, the equivalent
non-inter order model is obtained by exchanging time derivative terms by the ABC-non-
integer order derivative operator, hence
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where α, β, γ ∈ (0, 1) and Dδ
t (.) is the ABC-non-integer order derivative operator [2]
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and 1
1−δEδ

[
− δ

1−δ t
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is the kernel of the derivative operator with Eδ(.)is the well cele-

brated Mittag-Leffler function [1]. Furthermore, the LT of the FO ABC operator is:
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4. COMPUTATIONAL FRAMEWORK

In this section, we will simulate our model governing equations by employing the in-
tegral transforms. Moreover, it is important to note that in order to solve the momentum
equation we need to find the solution for temperature. Therefor first we will solve Eq. (18)
and then use it in the solution of Eqs. (16) and (17)

4.1. Computation for the Temperature Profile. The equation derived by applying Laplace
Transform (LT) [14] to Eq. (18) is
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4.2. Computation for the Velocity Profile. Applying Laplace transform [14] to Eq.(16),
we get:
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(
1 + λ1

qα

(1− α)qα + α

)
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λ1)βx12, x25 = ((1−α)+λ1)(β)x13+(1−β)x13α+βx11α, x26 = ((1−α)+λ1)x14+
x14(1−β)α+βx12+βx12α, x27 = βαx13, x14α, x31 =M+(1−α)((1−α)+λ1), x32 =
(M +(1−α))((1−β)α+α2(1−β)((1−α)+λ1)λ1), x33 = (M +(1−α))β((1−α)+
λ1), x34 = αβ(M + (1− α)) + αβ((1− α) + λ1), x35 = (1− β)α2, x36 = α2β, x2n =
(((1 − β)λ2)(1 − α)(M + (1 − α)))r2

n, x3n = (((1 − β) + λ2)(α(1 − α) + α(M +
(1 − α))))r2

n, x4n = ((1 − β) + λ2)r
2
nα

2, x5n = r2
nβ(1 − α)(M + (1 − α)), x6n =

r2
nβ(α(1− α) + α(M + (1− α))), x7n = r2

nα
2β, x8n = x26 + x6n, x9n = x28 + x6n.
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The desired results in the time domain can be determined by applying the inverse Laplace
Transform to these expressions and in our case it is admittedly laborious. So, we apply
SNIA to these expressions. SNIA for Laplace inversion is defined as [38]

L−1{Ṽf (r, q)} = Vf (t) = ln2
1
t

2l∑
j=1

(−1)j+l
min(j,l)∑
m= j+1

2

ml(2m)!

(l −m)!m!(m− 1)!(j −m)!(2m− j)!
Ṽf

(
ln2

1
q

)
.

(4. 29)
.
For computing velocity of magnetic particles, taking the LT [14] of Eq. (17),we have

M
qα

(1− α)qα + α
Ṽp(r, q) = (Ṽf (r, q)− Ṽp(r, q)), (4. 30)

Ṽp(r, q) =

(
(1− α)qα + α

(M + (1− α))qα + α

)
Ṽf (r, q). (4. 31)

Applying FHT [14], we get

Ṽp(rn, q) =

(
(1− α)qα + α

(M + (1− α))qα + α

)
Ṽf (rn, q), (4. 32)

Ṽp(rn, q) =
[ 1

Ma

qα

qα +Mb
+Mb

1

qα +Mb

]
Ṽf (rn, q). (4. 33)

Applying inverse LT [14], we get

Vp(r, t) =
[ 1

Ma
Rα,−α

(
− 1

Mb
, t
)
+

1

Mb
Fα

(
− 1

Mb
, t
)]
∗ Vf (rn, t). (4. 34)

Applying the inverse FHT [14], we get

Vp(r, t) =
[ 1

Ma
Rα,−α

(
− 1

Mb
, t
)
+

1

Mb
Fα

(
− 1

Mb
, t
)]
∗ Vf (r, t). (4. 35)

where Ma = 1 +Ma0, Mb =
a1
Ma

.

5. VALIDATION OF OBTAINED RESULTS

Our results in the limiting case when α, β approaches unity, λ1 = 0 ,λ2 = 0 andGr = 0
are displayed in Fig.2. It is found that our results exhibit a satisfying consistency with the
existing findings of Awrejcewicz et al. [7]. This obviously corroborates the validity of our
model and further strengthens the utility of our obtained results. Moreover, as special or
limiting case when α and β approaches unity, the Oldroyd-B fluid reduces to its classical
model. Furthermore, when λ2 = 0, obtained results are reduced to analogous fractional
Maxwell model. Additionally, when both λ1 = 0 and λ2 = 0, this model behaves as a
Newtonian fluid. Thus, corresponding results from the established works can be readily
derived from our comprehensive results.
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6. GRAPHS AND DISCUSSION

Hemodynamic analysis plays a crucial role in the prevention, diagnosis, and treatment
of human vascular diseases. The use of magnetic particles in biomedicine and clinical ther-
apies for targeted drug delivery within cells provides simple diagnostic tools. In this article
we have studied the periodic pulsatile blood flow in the femoral and coronary arteries using
nano-particles. Moreover to capture more control, the problem is modeled using the ABC
fractional derivative operator and solved through the application of integral transforms.
Furthermore, in this section a comprehensive graphical analysis is conducted to understand
the influence of the fractional order parameter and various material factors, such as ampli-
tude, lead angle, frequency of body acceleration, magnetic field, particle concentration, and
temperature effects, leading to significant conclusions. Additionally, graphical analysis is
performed to analyze the flow behavior using some fixed values of parameters (where not
mentioned) such as α = 0.7,β = 0.7,γ = 0.7, wr = 0.2, amplitude Ag = 0.5, lead angle
θ = 0, relaxation time parameterλ1 = 0.5, retardation time parameter λ2 = 0.5, Prandtl
number Pr = 2, particles concentration parameter R = 4, Hartman number Ha = 4 and
Grashof Number Gr = 5. It is pertinent to mention that the range of the chosen parameter
for graphical analysis is considered from the experimental study carried out in [42], [44]
and [38].

(a) Influence radial parameter
Figures 3(a) and 3(b) depict velocities in the femoral and coronary arteries, respectively. It
has been shown that the central artery has the highest magnetic and fluid particle velocities.
This is explained by the fact that due to no slip at the walls of artery results in lowering the
blood flow near the walls than along the axis. The velocity of magnetic particles follows
a similar trend. Furthermore, it has been determined that the coronary artery has a greater
blood and magnetic NP flow velocities than the femoral artery.

(b) Influence Ag and ωr
Figures 4(a) and 4(b) show velocity profiles against time for the coronary and femoral
arteries, respectively, with varying Ag at r = 0. It is shown that raising Ag leads to the
faster motion of blood and magnetic particles. Figures 5(a) and 5(b) indicate that blood
velocity decreases with increasing ωr.

(c) Influence of lead angle θ
Figures 6(a) and 6(b) show velocity profiles over time for various lead angle θ values at
r = 0. Compared to the coronary artery, where blood velocities decrease as the lead angle
increases, the femoral artery exhibits a more pronounced effect of the lead angle on blood
velocity.

(d) Influence of fractional parameter α and β
The control of the non-integer order parameters α and β on the velocity fields are seen
in Figures 7(a) − 7(b) and 8(a) − 8(b). These curves show unique behaviour known as
the memory effect that is not captured by classical derivatives and are produced at a fixed
period. The fractional parameter α behaves differently at larger and smaller times as shown
in Figures 7(a) and 7(b). Additionally, it is noted that the coronary artery has a compara-
tively higher blood and magnetic particle flow velocity than the femoral artery. The curves
that are obtained will assist the researchers and experimentalists for curve fitting using data
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from their experiments. Physically, at the middle of the artery, increasing α values causes
the fluid’s thermal conductivity to rise and its viscosity to drop for short periods of time,
but over long periods, the effects reverse. Figures 8(a) and 8(b) illustrate velocity profiles
versus radius for the coronary and femoral arteries, respectively, for various values of β at
t = 0.2 and t = 2. Results have shown that increasing β causes the blood and magnetic
particles to flow at lower velocities.

(e) Influence of fractional parameter γ
The effects of the non-integer order parameter γ on the velocity fields and temperature are
illustrated in figures 9 and 10. These curves reveal unique behaviors, known as the mem-
ory effect, that are not captured by classical derivatives and occur at specific intervals. The
fractional parameter γ exhibits opposite behaviors at larger and smaller times.
Figures 9(a) and 9(b) show integral curves and solutions that are not comprehensible in
non FO models. Additionally, the coronary artery shows a comparatively higher blood and
magnetic particle flow velocity than the femoral artery. These curves will assist experimen-
talists in fitting data from their experiments.
Figure 10 depicts temperature profiles against the radius for multiple values of γ at t = 0.2
and t = 2. Analysis reveals that increasing gamma results in lower temperatures at t = 0.2,
while an opposite trend is seen at t = 2.

(f) Influence of Hartman numberHa, particle concentration parameterR and Grashof
Number Gr

Figures 11(a)and11(b) show how the magnetic parameter impacts velocity profiles; in-
creasing magnetic parameter values causes the fluid velocity to drop significantly. This
is physically conceivable because the transverse magnetic field generates a Lorentz drag
force, which opposes the bulk flow and reduces longitudinal velocity. Figures 12(a) and
12(b) demonstrate how the particle mass and particle concentration parameters influence
particle and blood velocities. They indicate a trend for velocities to decrease with rising R.
Higher particle concentrations cause more collisions, scattering particles off streamlines
and wasting energy, slowing the flow. Figures 13(a) and 13(b) show velocity profiles vs
radius for various values of Gr at t = 0.2 and t = 2. Results indicate that increasing
the Grashof number Gr results in higher velocities. Additionally, it has been determined
that the coronary artery exhibits a significantly greater blood and magnetic particle flow
velocity compared to the femoral artery.

(g) Influence of relaxation time parameterλ1, retardation time parameter λ2

Figures 14 and 15 show the influence of λ1 and λ2 (the Oldroyd-B fluid parameters) on
the velocity distribution. The figures make it evident that asλ1 increases, the velocity pro-
file ascends as well. This is because the fluid accelerates due to the rapid response of
shear forces, and λ1 is the time relaxation parameter. On the other hand, because of the
shear stress delay reaction, a higher value of λ2 results in a decreased velocity distribution.
Furthermore, it is observed that the coronary artery has a comparatively higher blood and
magnetic particle flow velocity than the femoral artery.
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FIGURE 2. Response of velocity profiles versus t, varying r values for
coronary and femoral artery

FIGURE 3. Response of velocity profiles versus t, varying r values for
coronary and femoral artery.
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FIGURE 4. Response of velocity profiles versus time, varyingAg values
for coronary and femoral arteries at r = 0

FIGURE 5. Response of velocity profiles versus time, varying ωr values
for coronary and femoral arteries at r = 0.
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FIGURE 6. Response of velocity profiles versus time, varying θ values
for coronary and femoral arteries at r = 0.
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FIGURE 7. Response of velocity profiles versus r varying α values for
coronary and femoral artery.
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FIGURE 8. Response of velocity profiles versus r varying β values for
coronary and femoral arteries at t = 0.2 and t = 2.
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FIGURE 9. Response of velocity profiles versus r varying γ values for
coronary and femoral arteries at t = 0.2 and t = 2.

FIGURE 10. Response of temperature profiles versus r varying γ values
at t = 0.2 and t = 2.
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FIGURE 11. Response of velocity profiles versus r varying Ha values
for coronary and femoral arteries at t = 0.2 and t = 2.



Advanced Hemodynamic Modeling of Pulsatile Blood Flow with Magnetic Nano-particles 21

FIGURE 12. Response of velocity profiles versus r varying R values for
coronary and femoral arteries at t = 0.2 and t = 2.
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FIGURE 13. Response of velocity profiles versus r varying Gr values
for coronary and femoral arteries at t = 0.2 and t = 2.
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FIGURE 14. Response of velocity profiles versus r varying λ1 values for
coronary and femoral arteries at t = 0.2 and t = 2.
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FIGURE 15. Response of velocity profiles versus r varying λ2 values for
coronary and femoral arteries at t = 0.2 and t = 2.

7. CONCLUSIONS

This study investigates blood flow non-integer order model in non-dimensional form sub-
ject to magnetic medium, incorporating factors such as transverse magnetic field, Stokes
drag on distributed magnetic particles, and temperature effects. The circulation through
the femoral and coronary arteries, driven by evenly suspended particles, is controlled by
oscillatory pressure gradients and periodic body acceleration. The Oldroyd-B fluid model
serves as the foundation for the governing equations, treating blood as a non-Newtonian
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fluid. A fractional model is developed using the Atangana-Baleanu time fractional deriva-
tive. By combining finite Hankel and Laplace transformations, the study provides precise
results for blood and suspended particles rheology.

• The Finite Hankel transform and Laplace transform were used to determine the
exact solution.

• Observations of the memory-carrying parameter reveal distinct curves for velocity
profiles at a fixed time, exhibiting dual behaviors over short and long periods.

• Blood velocity drops when Hartmann number rises.
• Higher amplitudes Ag of body acceleration in relation to cardiac activity result in

an increase in blood flow velocity.
• Larger value of the lead angle θ and particles’ concentration parameter R lead to

decreased velocity of fluid and particles. The control of these parameters con-
cerning coronary artery is prominent in contrary to femoral artery. Understanding
these relationships is crucial to biomedical applications and can aid in the design
of better therapeutic and diagnostic tools.

• In the femoral artery, ωr has a stronger effect on blood and magnetic particle ve-
locity than in the coronary artery

• λ1 and λ2 are the Oldroyd-B fluid parameters. As λ1 increases, the velocity profile
ascends but higher value ofλ2 results in a decreased velocity distribution.

• Larger value of the Grashof Number Gr leads to increased velocity of fluid and
particles.

7.1. Final Thoughts. The consequences of this study are significant for biomedical sci-
ence and clinical applications. The incorporation of a non-integer order model for blood
flow using the Atangana-Baleanu fractional derivative provides a more nuanced under-
standing of blood rheology, capturing memory effects and complex behaviors not addressed
in integer-order models. Moreover, the study demonstrates how various factors such as
magnetic fields, body acceleration, particle concentration, and temperature influence blood
and particle velocity. These findings can help in understanding hemodynamic responses
under different physiological and pathological conditions. By identifying how parameters
like Hartmann number, lead angle, and Grashof Number affect blood flow, the study of-
fers insights that can be applied to optimize treatments such as targeted drug delivery and
magnetic particle-based therapies. The distinct influence of body acceleration frequency
on blood flow in the femoral and coronary arteries provide a basis for tailoring diagnos-
tic tools for different arterial regions. The interplay between magnetic particles and fluid
dynamics under external magnetic fields offers potential for developing better therapeutic
strategies, such as magnetic hyperthermia or enhanced imaging techniques. Understand-
ing how parameters like relaxation and retardation times of the Oldroyd-B fluid influence
blood velocity can inform the design of medical devices, such as artificial pumps or stents,
that mimic or support natural blood flow. The studys findings can aid in developing per-
sonalized treatment plans for conditions like arterial blockages or blood flow irregularities
by allowing precise control of influencing factors. Overall, the study provides a compre-
hensive framework for analyzing blood flow behavior and opens avenues for innovative
solutions in medical diagnostics and therapies.
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8. FUTURE DIRECTIONS

In future studies, we plan to use other non-Newtonian models, such as the Sisko, Casson
fluid models and incorporate different nano-particles, such as gold, and silver and give a
comparative analysis of their fractional and non-fractional analogues with different frac-
tional order operators. Moreover, due to the length of the manuscript, the graphs related to
the influence of temperature are not included which would definitely be helpful in optimiz-
ing the cryosurgery, it would be incorporated in the future work.
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