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Abstract. Chemical graph theory focuses on the physical features of
molecular structures using topological descriptors, where topological de-
scriptors are mathematical formulas that represents a molecular structure
and can be applied to any graph. Chemical graph theory depends exten-
sively on topological descriptors, particularly in relation with chemical
features of molecules. According to the structural characteristics of the
graphs implemented in their computation, they can be categorised. This
research paper focuses on several types of Zagreb descriptors for magne-
sium silicide’s molecular structure. The structure denoted by (Mg2Si),
comprises of eight magnesium Mg and four silicon Si atoms. The struc-
ture and shape of the molecular graph are commonly described by the
Zagreb indices. The significance of these indices in simulating the chemi-
cal characteristics of the magnesium silicide network is emphasised in the
paper.
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1. INTRODUCTION

Entropy, a basis in thermodynamics, is a measurement of randomness or disorder, im-
portant in system evolution based on the second law [36]. It is a basis in statistical mechan-
ics in physics [5], linking micro and macro properties [6]. Entropy is applied in reaction
spontaneity calculations by chemists with the Gibbs free energy, where δS (change in en-
tropy) is a deciding equilibrium. In information theory, Shannon reformulated entropy as
a measure of uncertainty in information transmission. Entropy is utilized in ecosystems
and cellular functions by biologists, where order and disorder are balanced in metabolism.
In chemical graph theory, molecules are graphically mapped (nodes into atoms, and edges
into bonds). Entropy in such a system is a structure complexity measurement useful in
prediction of chemical properties. Entropy in a graph is a Shannon-derived quantity based
on node degree distribution or topological indices and connectivity patterns. Architectural
variability is implied with high entropy and is a source of increased reactivity or instability.
They are useful in drug design in QSAR analyses where molecular structure is related with
bioactivity. Topological indices are numerical features based on a chemical substance’s
molecular graph and are a structure reflection independent of geometric and space-related
properties. Topological indices are increasingly utilized in chemical graph theory with a fu-
ture in representing physicochemical properties, bioactivity prediction, and designing new
molecules in cheminformatics and drug design.

Topological indices such as Randic Index [34], Zagreb Indices [17], and the Wiener In-
dex [41] are important in QSAR/QSPR research. They are applied in prediction of molec-
ular properties such as pharmacokinetics and drug design and in material science and in
prediction of molecular properties such as boiling points and stability. In pharmaceutical
chemistry, topological indices are used with a view to assessing molecular similarity and
leading the design of better drug candidates [11, 43, 19]. The Randic Connectivity In-
dex, for example, has been used with a view to screening compounds possessing potential
bioactivity versus a specific target molecule [14].

In nanoscience, geometric-arithmetic index and atom-bond connectivity index play a
significant role in simulating the electronic properties and the stability of nanomaterials
such as nanotubes and fullerenes [20, 29, 37]. Topological indices are also applied in esti-
mating chemical risks in the environment based on bioaccumulation and degradation prop-
erties. The Balaban Index is applied in estimating the ecological risks posed by pollutants,
among other applications. Outside the chemical discipline, these indices are applied in bio-
networks where they are applied in protein-protein research, in the study of metabolism
pathways, and in simulating biological systems.

Entropy-based molecular descriptors have been explored in recent times with increased
frequency because they are useful in characterizing molecular structure. Entropy-based de-
scriptors have been investigated in simulated and actual chemical compounds by Dehmer
et al. [9] and found useful in models based on statistics. Entropy measures have been ap-
plied in a vast array of polycyclic aromatic compounds (PAHs). Entropy calculations have
also been applied in research on metal-organic frameworks (MOFs) and finding important
structure and thermodynamic properties [22].
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In graph theory and chemical graph entropies, Kavitha et al. [26] investigated keku-
lene structure tessellations and their implications in the field of thermochemistry and spec-
troscopy. Likewise, Rahul et al. [35] utilized Shannon entropy in degree-based entropy
investigation in the field of graphyne and graphdiyne and provided insights about their
structure. Machine learning methods have been applied in the prediction of entropy, and a
prime example is provided by Aldosari et al. [3] who utilized machine intelligence in order
to forecast entropy and heat capacity in hydrocarbons

Topological indices and entropy metrics have been widely investigated in the structure
of zeolites. Jacob et al. [24] identified tetragonal zeolite merlinoites based on entropy
metrics and gave insights on their crystal properties. In a second investigation, Paul et
al. [33] made a comparison between multiplicative and scalar multiplicative descriptors in
QSAR/QSPR research and examined their entropy-driven efficiency.

Now a days, the most of researcher are focusing on entropy based descriptors for spe-
cific molecular networks. Zuo et al. [44] calculated the entropy of benzenoid structures
and Shanmukha et al. [38] determine the expectation values of Sombor indices and their
entropy for a graph associated with a graphene related graphs. These researchers’ effort
strengthen the position of entropy descriptors in computational chemistry and materials
science. Entropy descriptors have proved valuable in molecular modelling, pharmaceutical
chemistry, nanomaterials research, and QSAR/QSPR analyses. The further development of
entropy-based descriptors combined with machine learning and regression approaches will
increase the predictive power of molecular characterization techniques. Recently, many
authors worked on different types topological indices that helps to calculate the entropy
measures of different graphs. Answar al. et [4] determine the intuitionistic Sombor in-
dices via mathematical approach. By using the machine learning approach entropy based
QSPR analysis of drugs and Sombor indices of molecular graphs are studied in [1]. The
latest approaches to exploring the topological indices for different drugs [32] and flavonoid
molecular structures are considered [18]. In these papers, the authors used the new tech-
niques and methods that will helps the new researchers in future.

Magnesium silicide (Mg2Si) is a magnesium and silicon inorganic chemical and a metal
silicide [31]. It is a semiconductor with special properties and is a key substance in tech-
nology. Structurally, Mg2Si is in the arrangement type referred to as antifluorite and is a
face-centered cubic (FCC) system with space group Fm3̄m. The magnesium atoms are
in positions where fluorine is in CaF2, and silicon atoms are in positions where there is
calcium, and there is a resulting ionic substance with metallic and semiconductor proper-
ties. The crystal structure is what makes it stable and efficient in heat and is significant in
high-temperature uses.

The physical and chemical properties are also the cause of utility in the case of Mg2Si
[30, 27]. It has a molecular weight of 76.71 g/mol, a density of about 1.94 g/cm3, and a
melting point about 1,100 C. It is a semiconductor with a band gap with a value about 0.78
eV and is, therefore, used in electronics and thermos-electronics. It is insoluble in water
but acid-reactive and emits silane gas (SiH4), a useful feature in special chemical reactions.
The thermal stability is high in the case of Mg2Si, and owing to this, it is used in conditions
where there is a requirement for a substance with thermal decomposition resistance. The
existing study in [16] discovers the application of the Magnesium Iodide structure by using
modified M-polynomials to evaluate its topological and chemical properties.
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Magnesium silicide finds numerous uses in numerous sectors. One significant usage is
in thermoelectric power generation where magnesium silicide is a thermoelectric generator
with a potential ability to convert power wasted in heat into electrical power [7]. It is partic-
ularly useful in space exploration and in recovering process heat in the industry [28]. In the
field of optoelectronics, Mg2Si is utilized in the fabrication of sensors in the infrared and
in photonic devices because there is a favorable band gap in the infrared [25, 15]. Another
significant usage is in alloys with light metal where magnesium silicide is a hard phase
in magnesium-aluminum-silicon (Mg-Al-Si) alloys. These alloys are utilized in numerous
ways in the space, automotive, and electronics sectors in order to harden a substance while
keeping low density [42].

2. PRELIMINARIES

The first topological index depending on the initial vertex degree was proposed by Randi
in 1975 under the name connectivity index or Randi index [34]. In all the formulas γ1, γ2

are the vertices of the graph. The mathematical definition of this index is:

R− 1
2
(Mg) =

∑
γ1γ2∈Ξ(Mg)

1√
Υ(γ1)×Υ(γ2)

(2. 1)

The first and second Zagreb indices were introduced in 1972 by Gutman [17]

M1(Mg) =
∑

γ1γ2∈Ξ(Mg)

(Υ(γ1) + Υ(γ2)) (2. 2)

M2(Mg) =
∑

γ1γ2∈Ξ(Mg)

(Υ(γ1)×Υ(γ2)) (2. 3)

In 2013, Shirdel et al. [39] introduced the hyper Zagreb index

HM(Mg) =
∑

γ1γ2∈Ξ(Mg)

(Υ(γ1) + Υ(γ2))2 (2. 4)

Estrada et al. [10] introduced the atom-bond connectivity index:

ABC(Mg) =
∑

γ1γ2∈Ξ(Mg)

√
Υ(γ1) + Υ(γ2)

Υ(γ1)×Υ(γ2)
(2. 5)

The geometric arithmetic index was introduced by Vukicević et al. [40] in 2009:

GA(Mg) =
∑

γ1γ2∈Ξ(Mg)

2
√

Υ(γ1)×Υ(γ2)

Υ(γ1) + Υ(γ2)
(2. 6)

Furtula and Gutman [13] presented the forgotten topological index in 2015

F (Mg) =
∑

γ1γ2∈Ξ(Mg)

(Υ(γ1)2 + Υ(γ2)2) (2. 7)

Furtula et al. [12] defined the augmented Zagreb index in 2010
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AZI(Mg) =
∑

γ1γ2∈Ξ(Mg)

(
Υ(γ1)×Υ(γ2)

Υ(γ1) + Υ(γ2)− 2

)3

(2. 8)

Dehmer [8] presented the following notion:

Definition 2.1. [8]. Let MG = (V,Ξ) be a connected graph and ψ be an arbitrary infor-
mation functional. Then entropy of MG is defined by

EΛ(Mg) = −
∑

γ1γ2∈Ξ(Mg)

Λ(γ1γ2)∑
γ1γ2∈Ξ(Mg) Λ(γ1γ2)

ln

[
Λ(γ1γ2)∑

γ1γ2∈Ξ(Mg)Λ(γ1γ2)

]
(2. 9)

Randić entropy If Λ(γ1γ2) = 1√
Υ(γ1)×Υ(γ2)

, then

∑
γ1γ2∈Ξ(Mg)

Λ(γ1γ2) =
∑

γ1γ2∈Ξ(Mg)

(
1√

Υ(γ1)×Υ(γ2)

)
= R− 1

2
(Mg)

The first Zagreb entropy is obtained by simplifying Equation ( 2. 9 ) as follows:

ER− 1
2

(Mg) = ln
(
R− 1

2
(Mg)

)
− 1

R− 1
2

(Mg) ln

[∏
γ1γ2∈Ξ(Mg)

(
1√

Υ(γ1)×Υ(γ2)

) 1√
Υ(γ1)×Υ(γ2)

]
(2. 10)

First Zagreb entropy
If Λ(γ1γ2) = Υ(γ1) + Υ(γ2), then∑

γ1γ2∈Ξ(Mg)

Λ(γ1γ2) =
∑

γ1γ2∈Ξ(Mg)

(
Υ(γ1) + Υ(γ2)

)
= M1(Mg)

The first Zagreb entropy is obtained by simplifying Equation ( 2. 9 ) as follows:

EM1(Mg) = ln
(
M1(Mg)

)
− 1

M1(Mg) ln

[∏
γ1γ2∈Ξ(Mg)

(
Υ(γ1) + Υ(γ2)

)Υ(γ1)+Υ(γ2)

]
(2. 11)

Second Zagreb entropy
If Λ(γ1γ2) = Υ(γ1)×Υ(γ2), then∑

γ1γ2∈Ξ(Mg)

Λ(γ1γ2) =
∑

γ1γ2∈Ξ(Mg)

(
Υ(γ1)×Υ(γ2)

)
= M2(Mg)

The second Zagreb entropy is obtained by simplifying Equation ( 2. 9 ) as follows:

EM2(Mg) = ln
(
M2(Mg)

)
− 1(

M2(Mg)
) ln

[ ∏
γ1γ2∈Ξ(Mg)

[
Υ(γ1)×Υ(γ2)

][Υ(γ1)×Υ(γ2)
]]

(2. 12)
Hyper Zagreb entropy

EHM(Mg) = ln
(
HM(Mg)

)
− 1(

HM(Mg)
) ln

[∏
γ1γ2∈Ξ(Mg)

[
(Υ(γ1) + Υ(γ2))2

][(Υ(γ1)+Υ(γ2))2
]]

(2. 13)
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Atom bond connectivity entropy

EABC(Mg) = ln
(
ABC(Mg)

)
− 1(

ABC(Mg)
) ln

[∏
γ1γ2∈Ξ(Mg)

[√
Υ(γ1)+Υ(γ2)
Υ(γ1)×Υ(γ2)

][√Υ(γ1)+Υ(γ2)

Υ(γ1)×Υ(γ2)

]]
(2. 14)

Geometrical arithmetic entropy

EGA(Mg) = ln
(
GA(Mg)

)
− 1(

GA(Mg)
) ln

[∏
γ1γ2∈Ξ(Mg)

[
2
√

Υ(γ1)×Υ(γ2)

Υ(γ1)+Υ(γ2)

][ 2
√

Υ(γ1)×Υ(γ2)

Υ(γ1)+Υ(γ2)

]]
(2. 15)

Forgotten entropy The forgotten entropy is defined as follows:

EF (Mg) = ln
(
F (Mg)

)
− 1(

F (Mg)
) ln

[∏
γ1γ2∈Ξ(Mg)

[
(Υ(γ1)2 + Υ(γ2)2)

][Υ(γ1)2+Υ(γ2)2
]]

(2. 16)
Augmented Zagreb entropy

EAZI(Mg) = ln
(
AZI(Mg)

)
− 1(

AZI(Mg)
) ln

[∏
γ1γ2∈Ξ(Mg)

[(
Υ(γ1)×Υ(γ2)

Υ(γ1)+Υ(γ2)−2

)3
][( Υ(γ1)×Υ(γ2)

Υ(γ1)+Υ(γ2)−2

)3
]]

(2. 17)
Recently, some researchers determine the entropy of different families of graph with

new approaches. Ismail al. et [23] determine the entropy and topological indices of pheny-
lacetone monooxygenase by using Python coding, this will motivate the new researcher to
work in this direction with different coding techniques. Huang al. et [21] investigate the en-
tropy measure of cage network with subdivision via regression analysis. The entropy-based
modeling of chain hex-derived networks are determined by Ahmed [2] in 2024. These new
approaches will open up new horizons for future research and provide valuable directions
for further exploration in the field.

3. MAIN RESULTS

In this section, we present the entropy-based characterization of the Magnesium Silicide
molecular structure using various topological entropy measures.

3.1. Construction of Magnesium-Silicide Graph. Let Mg = Mg2Si be a molecular
graph with α1×α2×α3 cells see Figure 1. The cardinalities of the vertex set of this graph
is given by 12α1α2α3 + 2α1α2 + 2α2α3 + 2α1α3 + α1 + α2 + α3 + 1, and the edge
set is given by 32α1α2α3. There are four distinct types of vertex degrees 1, 2, 4, and 8.
Specifically, there are 8 vertices of degree 1, 4α1 + 4α2 + 4α3 − 12 vertices of degree 2,
8α1α2α3 + 4α1α2 + 4α2α3 + 4α1α3 − 4α1 − 4α2 − 4α3 + 6 vertices of degree 4, and
4α1α2α3 − 2α1α2 − 2α2α3 − 2α1α3 + α1 + α2 + α3 − 1 vertices of degree 8.

The edges of the molecular graph of Mg2Si are classified based on the degree pairs
of the two vertices they connect. In particular, edges connecting degree-1 and degree-4
vertices are collected in the set E1, and there are a total of 8 such edges. Edges connecting
degree-2 and degree-4 vertices are in the setE2, and there are a total of 8α1+8α2+8α3−24
such edges. Edges connecting degree-4 and degree-4 vertices are in the set E3, and there
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are a total of 16α1α2 + 16α2α3 + 16α1α3 − 16α1 − 16α2 − 16α3 + 24 such edges.
Finally, edges with degree-4 and degree-8 vertices are in the set E4, and there are a total
of 32α1α2α3 − 16α1α2 − 16α2α3 − 16α1α3 + 8α1 + 8α2 + 8α3 − 8 such edges. These
four edge partitions are the only possible pairs of degree pairs in the molecular structure of
Mg2Si See, Figure 1.

FIGURE 1. Structure of Mg2Si for α1 = α2 = α3 = 2

3.2. Entropy of Magnesium Silicide. Now, we determine Randić entropy, first, second
and hyper Zagreb entropy, Atom bond connectivity entropy, Forgotten entropy and Aug-
mented Zagreb entropy as follows:

3.2.1. Randić entropy. To compute the Randić entropy, we first calculate the Randić index.
Using the edge partitions and Eq. (2. 1 ), we get:

R− 1
2
(Mg) = 10+ (8α1+8α2+8α3−24)

√
2

4 +4α1α2 +4α1α3 +4α2α3−4α1−4α2−4α3 +
(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8)

√
2

8

The Randić entropy is computed using the Eq. (2. 10 ):
ER− 1

2

(Mg) = ln
(

10 +
√

2 (8α1+8α2+8α3−24)
4 + 4α1α2 + 4α1α3 + 4α2α3 − 4α1 − 4α2 − 4α3+
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√
2 (32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8)

8

)
−

[
4 ln(2) +

(8α1+8α2+8α3−24)
√

2 ln
(√

2
4

)
4 −

(16α1α2+16α1α3+16α2α3−16α1−16α2−16α3+24) ln(2)
2 +

(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8)
√

2 ln
(√

2
8

)
8

]/
[

10 + (8α1+8α2+8α3−24)
√

2
4 + 4α1α2 + 4α1α3 + 4α2α3 − 4α1 − 4α2 − 4α3

+ (32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8)
√

2
8

]

After, simplification we get:

ER− 1
2

(Mg) = ln(0.1006 + 0.2427α1 + 0.2427α2 + 0.2427α3

+1.1716α1α2 + 1.1716α1α3 + 1.1716α2α3 + 5.6568α1α2α3)

− 1.0(0.1817+0.1540α1+0.1540α2+0.1540α3−0.6440α1α2−0.6440α1α3−0.6440α2α3−9.8020α1α2α3)
0.1006+0.2427α1+0.2427α2+0.2427α3+1.1716α1α2+1.1716α1α3+1.1716α2α3+5.6568α1α2α3

3.2.2. First Zagreb entropy. First Zagreb entropy is computed using the Equations (2. 2 )
and (2. 11 ).
M1(Mg) = 384α1α2α3 − 64α1α2 − 64α1α3 − 64α2α3 + 16α1 + 16α2 + 16α3 − 8

EM1
(Mg) = ln(384α1α2α3 − 64α1α2 − 64α1α3 − 64α2α3 + 16α1 + 16α2 + 16α3 − 8)−
40 ln(5)+6(8α1+8α2+8α3−24) ln(6)+24(16α1α2+16α1α3+16α2α3−16α1−16α2−16α3+24) ln(2)

384α1α2α3−64α1α2−64α1α3−64α2α3+16α1+16α2+16α3−8 +
12(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8) ln(12)

384α1α2α3−64α1α2−64α1α3−64α2α3+16α1+16α2+16α3−8

EM1(Mg) = ln(384α1α2α3 − 64α1α2 − 64α1α3 − 64α2α3 + 16α1 + 16α2 + 16α3 − 8)−
(−32.93+58.39α1+58.39α2+58.39α3−210.94α1α2−210.94α1α3−210.94α2α3+954.20α1α2α3)

384α1α2α3−64α1α2−64α1α3−64α2α3+16α1+16α2+16α3−8

3.2.3. Second Zagreb entropy. Second Zagreb entropy is computed using the Equations
(2. 3 ) and (2. 12 ).
M2(Mg) = 1024α1α2α3−256α1α2−256α1α3−256α2α3+64α1+64α2+64α3−32

EM2
(Mg) = ln(1024α1α2α3 − 256α1α2 − 256α1α3 − 256α2α3 + 64α1 + 64α2 + 64α3 − 32)−

64 ln(2)+24(8α1+8α2+8α3−24) ln(2)+64(16α1α2+16α1α3+16α2α3−16α1−16α2−16α3+24) ln(2)
1024α1α2α3−256α1α2−256α1α3−256α2α3+64α1+64α2+64α3−32 +

160(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8) ln(2)
1024α1α2α3−256α1α2−256α1α3−256α2α3+64α1+64α2+64α3−32

EM2(Mg) = ln(1024α1α2α3 − 256α1α2 − 256α1α3 − 256α2α3 + 64α1 + 64α2 + 64α3 − 32)−
(−177.43+310.54α1+310.54α2+310.54α3−1064.6α1α2−1064.6α1α3−1064.6α2α3+3549α1α2α3)

1024α1α2α3−256α1α2−256α1α3−256α2α3+64α1+64α2+64α3−32

3.2.4. Hyper Zagreb entropy. Hyper Zagreb entropy is obtained using the Equations (2. 4 )
and (2. 13 ).
HM(Mg) = 4608α1α2α3− 1280α1α2− 1280α1α3− 1280α2α3 + 416α1 + 416α2 +

416α3 − 280
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EHM(Mg) = ln(4608α1α2α3 − 1280α1α2 − 1280α1α3 − 1280α2α3 + 416α1 + 416α2 + 416α3 − 280)−
400 ln(5)+72(8α1+8α2+8α3−24) ln(6)+384(16α1α2+16α1α3+16α2α3−16α1−16α2−16α3+24) ln(2)

4608α1α2α3−1280α1α2−1280α1α3−1280α2α3+416α1+416α2+416α3−280 +
288(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8) ln(12)

4608α1α2α3−1280α1α2−1280α1α3−1280α2α3+416α1+416α2+416α3−280
EHM(Mg) = ln(4608α1α2α3 − 1280α1α2 − 1280α1α3 − 1280α2α3 + 416α1 + 416α2 + 416α3 − 280)−

(−1789.4+2498.6α1+2498.6α2+2498.6α3−7191.4α1α2−7191.4α1α3−7191.4α2α3+22901α1α2α3)
4608α1α2α3−1280α1α2−1280α1α3−1280α2α3+416α1+416α2+416α3−280

3.2.5. Atom bond connectivity entropy. Atom bond connectivity entropy is computed us-
ing the Equations (2. 5 ) and (2. 14 ).

ABC(Mg) = 4
√

3+ (8α1+8α2+8α3−24)
√

2
2 + (16α1α2+16α1α3+16α2α3−16α1−16α2−16α3+24)

√
6

4 +
(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8)

√
5

4

EABC(Mg) = ln
(
2
(
−6 + (3 + 2 (α2 + α3 − 1)α1 + 2 (α3 − 1)α2 − 2α3)

√
3 + 2α1 + 2α2 + 2α3

)√
2 + 4

√
3+

2 (−1 + (1 + 2 (2α3 − 1)α2 − 2α3)α1 + (−2α3 + 1)α2 + α3)
√

5
)

+
−2
√

6 ((α2+α3−1)α1+(α3−1)α2−α3+ 3
2 ) ln

(√
6

4

)
−2(α1+α2+α3−3)

√
2 ln
(√

2
2

)
−2
√

3 ln
(√

3
2

)
−4
√

5 ((α2− 1
2 )(α3− 1

2 )α1+(−α3
2 + 1

4 )α2+
α3
4 −

1
4 ) ln

(√
5

4

)
(((2α2+2α3−2)α1+(2α3−2)α2−2α3+3)

√
3+2α1+2α2+2α3−6)

√
2+2
√

3+(((4α3−2)α2+1−2α3)α1+(−2α3+1)α2−1+α3)
√

5

3.2.6. Geometrical arithmetic entropy. Geometrical arithmetic entropy is computed using
Equations (2. 6 ) and (2. 15 )
GA(Mg) = 152

5 + 2(8α1+8α2+8α3−24)
√

2
3 + 16α1α2 + 16α1α3 + 16α2α3 − 16α1 −

16α2 − 16α3+
2(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8)

√
2

3

EGA(Mg) = ln
(

152
5 + 2(8α1+8α2+8α3−24)

√
2

3 + 16α1α2 + 16α1α3 + 16α2α3 − 16α1 − 16α2 − 16α3

+ 2(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8)
√

2
3

)
−(

32 ln( 4
5 )

5 +
2(8α1+8α2+8α3−24)

√
2 ln
(

2
√

2
3

)
3 +

2(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8)
√

2 ln
(

2
√

2
3

)
3

)
×

1

/[
ln
(

152
5 + 2(8α1+8α2+8α3−24)

√
2

3 + 16α1α2 + 16α1α3 + 16α2α3 − 16α1 − 16α2 − 16α3

+ 2(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8)
√

2
3

)]
3.2.7. Forgotten entropy. The forgotten entropy is obtained as follows:

EF (Mg) = ln(2560α1α2α3 − 768α1α2 − 768α1α3 − 768α2α3 + 288α1 + 288α2 + 288α3 − 216)−
[136 ln(17) + 20 (8α1 + 8α2 + 8α3 − 24) ln(20) + 160 (16α1α2 + 16α1α3 + 16α2α3 − 16α1 − 16α2 − 16α3 + 24)

ln(2) + 80 (32α1α2α3 − 16α1α2 − 16α1α3 − 16α2α3 + 8α1 + 8α2 + 8α3 − 8) ln(80)]

/
[2560α1α2α3 − 768α1α2

−768α1α3 − 768α2α3 + 288α1 + 288α2 + 288α3 − 216]

3.2.8. Augmented Zagreb entropy. Similarly, augmented Zagreb entropy is:
EAZI(Mg) = ln

(
67264
3375 + 76736

3375 α1 + 76736
3375 α2 + 76736

3375 α3 − 745472
3375 α1α2 − 745472

3375 α1α3 − 745472
3375 α2α3

+ 131072
125 α1α2α3

)
−
[

512 ln( 64
27 )

27 + 24 (8α1 + 8α2 + 8α3 − 24) ln(2) +

512(16α1α2+16α1α3+16α2α3−16α1−16α2−16α3+24) ln( 512
27 )

27 +
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4096(32α1α2α3−16α1α2−16α1α3−16α2α3+8α1+8α2+8α3−8) ln( 4096
125 )

125

]/
[

67264
3375 + 76736

3375 α1 + 76736
3375 α2 + 76736

3375 α3 − 745472
3375 α1α2 − 745472

3375 α1α3 − 745472
3375 α2α3 + 131072

125 α1α2α3

]
4. COMPARATIVE ANALYSIS

Calculation of different entropy values for the Magnesium Silicide network provides
valuable information about its structural complexity and chemical potential. The entropy
values calculated for Randi entropy, Zagreb entropy (First and Second), Hyper Zagreb en-
tropy, ABC entropy, GA entropy, Forgotten entropy, and Augmented Zagreb entropy indi-
cate how a number of topological indices behave under changing molecular arrangements.

[α1, α2, α3] Randić entropy First Zagreb entropy Second Zagreb entropy
[1, 1, 1] 3.4116 3.4482 3.3647
[2, 2, 2] 5.5058 5.5141 5.4457
[3, 3, 3] 6.7319 6.7370 6.6905
[4, 4, 4] 7.6010 7.6047 7.5695
[5, 5, 5] 8.2744 8.2777 8.2500
[6, 6, 6] 8.8242 8.8272 8.8038
[7, 7, 7] 9.2888 9.2901 9.2714
[8, 8, 8] 9.6910 9.6931 9.6764
[9, 9, 9] 10.046 10.048 10.033

[10, 10, 10] 10.363 10.365 10.351
TABLE 1. Comparison of Randić entropy, First Zagreb entropy, and Sec-
ond Zagreb entropy for different α values.

The Randić entropy, First Zagreb entropy, and Second Zagreb entropy are compared
Table 1, and Figure 2 and found to exhibit a consistent increasing trend with [α1, α2, α3]
values. Though similar growth trends are observed in all three entropy measures, First Za-
greb entropy is consistently greater than Randi entropy and Second Zagreb entropy for all
values under examination. This suggests that structural complexity in Mg2Si as described
by the Zagreb indices is more sensitive to vertex degree sums than degree-product-based
descriptors like Randi entropy. The small difference between First and Second Zagreb en-
tropies indicates that both descriptors are efficient in representing molecular connectivity
with minimal variation in weight distribution.

The Geometric-Arithmetic (GA) and Atom-Bond Connectivity (ABC) entropy values
Figure 3, Table 2) follow a similar trend with other entropy values. GA entropy is always
higher than ABC entropy at every point since previously reported in molecular graph theory
where GA indexes overestimate connectivity effects due to their emphasis on geometric
mean relations. The closeness of both entropy values suggests that both indexes are reliable
in representing the electronic properties and stability of Mg2Si.

The Hyper Zagreb entropy, Forgotten entropy, and Augmented Zagreb entropy Table 3
and Figure 4 are seen to exhibit interesting deviations from other entropies. The Hyper
Zagreb entropy values are generally a bit lower than those of Forgotten and Augmented
Zagreb entropies at higher α values. This would suggest that squared-degree-based Hyper



Entropy-Based Topological Characterization of Magnesium Silicide 133

FIGURE 2. Graphical Randić entropy, first Zagreb entropy, and second
Zagreb entropy for different α values

[α1, α2, α3] ABC entropy GA entropy
[1, 1, 1] 3.4533 3.4614
[2, 2, 2] 5.5401 5.5442
[3, 3, 3] 6.7586 6.7611
[4, 4, 4] 7.6225 7.6241
[5, 5, 5] 8.2925 8.2937
[6, 6, 6] 8.8397 8.8407
[7, 7, 7] 9.3024 9.3032
[8, 8, 8] 9.7031 9.7037
[9, 9, 9] 10.057 10.057

[10, 10, 10] 10.373 10.374
TABLE 2. Comparison of ABC entropy and GA entropy for different α values.

Zagreb entropy is underestimating certain features of connectivity in relation to Forgotten
entropy that places more importance on contributions from higher-degree vertices. The
Augmented Zagreb entropy with an additional exponential weighting factor provides higher
values for more complex molecular structures and is more sensitive to increasing molecular
complexity.

The consistently higher values of Augmented Zagreb entropy in comparison to other de-
scriptors reflect its enhanced sensitivity to both high-degree vertices and non-linear bond-
ing configurations. In the context of Mg2Si, which features a cubic antifluorite structure
with varying local environments for magnesium and silicon atoms, this sensitivity becomes
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FIGURE 3. Graphical comparison of ABC entropy and GA entropy for
different α values

[α1, α2, α3] Hyper Zagreb entropy Forgotten entropy Augmented Zagreb entropy
[1, 1, 1] 3.4087 3.4362 3.3021
[2, 2, 2] 5.4322 5.4173 5.4578
[3, 3, 3] 6.6774 6.6625 6.7037
[4, 4, 4] 7.5577 7.5471 7.5831
[5, 5, 5] 8.2406 8.2306 8.2613
[6, 6, 6] 8.7950 8.7866 8.8134
[7, 7, 7] 9.2645 9.2572 9.2809
[8, 8, 8] 9.6691 9.6632 9.6826
[9, 9, 9] 10.027 10.021 10.040

[10, 10, 10] 10.345 10.340 10.356
TABLE 3. Comparison of Hyper Zagreb entropy, Forgotten entropy, and
Augmented Zagreb entropy for different α values.

particularly significant. A higher Augmented Zagreb entropy suggests increased local con-
nectivity complexity, which may correlate with enhanced charge delocalization pathways
and richer electronic density distributions. This, in turn, can influence carrier mobility,
thermoelectric efficiency, and overall electronic conductivity. Furthermore, higher entropy
values can signal the potential for stronger lattice vibrations and phonon scattering, which
are critical in determining thermal conductivity. Thus, the Augmented Zagreb entropy
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FIGURE 4. Graphical comparison of hyper Zagreb entropy, forgotten en-
tropy, and augmented Zagreb entropy for different α values

not only serves as a topological marker but also provides deeper insights into the physic-
ochemical and electronic behavior of the magnesium silicide network, particularly under
high-temperature and thermoelectric conditions.

5. CONCLUSION

The comparative analysis verifies that different entropy measures provide varying yet
complementary information on molecular structure in Mg2Si. Randi, ABC, and GA en-
tropies consider patterns of connectivity, whereas node-degree-based contributions are stressed
by Zagreb and Hyper Zagreb entropies. Forgotten and Augmented Zagreb entropies are
more sensitive to molecular size and connectivity and are hence useful in explaining stabil-
ity and electron behavior in magnesium silicide. These findings verify the significance of
entropy-based descriptors in predicting thermodynamics and electronics in metal silicides
and open new avenues for future material and chemical sciences computation. All mea-
sures of entropy are found to be increasing with scaled-up molecular structure and point
towards higher topological complexity in large-scale magnesium silicide networks. First,
Second, and Hyper Zagreb-based entropies consistently produce higher values than Randi
entropy and substantiate their role in modeling chemical properties based on connectivity.
ABC and GA entropies are comparable and differ by a small margin with GA entropy con-
sistently producing higher values. Forgotten and Augmented Zagreb entropies are more
sensitive to topological features and are highest among all calculated values in the case of
Augmented Zagreb entropy.
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