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Abstract. In this work, a new analytical technique recognized as the ho-
motopy perturbation method is utilized to identify the general solutions of
Phi-4 nonlinear partial differential equations of fractional order with re-
spect to time. The first order general solution is determined by HPM and
then compared with the exact result. It can be seen that the result obtained
using HPM shows a large convergence rate for Phi-4 partial differential
equations with time fractal derivative. The exact graphic solutions have
been shown, and their respective errors have also been represented using
tables.
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1. INTRODUCTION

The nonlinear evolution equations have great importance due to their large applications. 
Because nonlinear inequalities play a key role in different fields of s tudies, especially in 
modern technological developments. Moreover, it is an integral part of various fields of 
learning, such as plasma, streaming, and movement of particles, biomedical, chemical ki-
netics, plasticity, optical physics, microchip technology, environmental sciences, and oth-
ers. These are based on fractal systems and consequently on nonlinear inequalities. These 
nonlinear transformations are helpful in describing the behavior of physical systems, like 
the behavior of waves. Therefore, these nonlinear evolution equations are frequently used 
to explain oscillations and ripples. Moreover, there are different types of modeling ap-
pearing in real life problems which generate FPDEs: flexibility, flow of fluid, traffic 
flow, digitization signals and many other fields. Therefore, (Non-Linear Evolution 
Equations)
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NLEEs are very important and frequently used in various technological fields as discussed
above. As we know that NLEEs are helpful to describe the behavior of wavy disturbances
and oscillations in different models, that is why the trend of studying these wavy distur-
bances and oscillations is increasing slowly. Therefore, researchers have developed the
latest techniques to explain the travelling waves by Tariq and Akram [25], Akter and Akber
[1], Razazadeh et al. [22]. A nonlinear partial differential equation known as the Phi-4
equation is defined as

∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
+ a2u+ bu3 = 0. (1.1)

Where a and b represent real numbers and x, t are space and time variables. Recently,
partial differential Phi-4 equations are helpful to describe the fundamentals of high-energy
and nuclear physics.

A Phi-4 partial differential equation of fractional order with respect to time is described
in the following way:

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
+ a2u+ bu3 = 0, (1.2)

x ∈ [0, 1], t > 0, a > 0, b > 0 1 < α ⩽ 2.

Where ∂α

∂tα represents the fractional order derivative operator known as Caputo fractional
order derivative operator, and u(x, t) shows the normalized propagation of distance and 
retracted time t.

Basically, defining the real number powers of the differentiation and integration opera-
tors enhanced calculus and developed a calculus for such operators which generalized the 
classical one known as fractional calculus. L’Hospital was the first who developed the con-
cept of the one-half order derivative. Recently, fractional calculus has made great progress 
due to its appealing applications in the universe. Oldham and Spanier [18] in 1974 studied 
its theoretical explanation briefly and e laborately. Afterward, Ross and Miller [16] in 1993 
and Podlubny [19] in 1999 played their role in expanding fractional calculus. In the last 
decades, several mathematicians and researchers have noticed that fractional calculus has 
a key role in describing the characteristics of natural and physical phenomena. Moreover, 
relative study of classical and fractional representations has been reached to the conclusion 
that fractional models are more authentic than classical representations. Presently, many 
mathematicians have developed new techniques to determine accurate solutions of NLEEs 
like two-dimensional linear voltra integral equations of the first k i nd o f  H PM i n  Eslami 
and Mirzazadeh [6] in 2014, exp function method [11] by Khan and Akbar in 2014, and 
extended trial equation method [4] by Demiray and Bulut in 2015, modified extended tanh 
function method [29] by Zahran and Khater in 2016, the generalized Kudryashov method 
[5] by Tuluce Demiray and Bulut in 2017. Furthermore, a new method named as opti-
mal homotopy asymptotic method was also introduced by Marinca and Herisanu [13]-[15].
Many researchers like Iqbal et al. [7]-[9], Alkhalaf [2], Sawer and Rashidi [23], Sawer
et al. [24] have proved the accuracy of this method.

Here, the procedure of the latest technique called the Homotopy perturbation method 
is discussed. The concept of homotopy and perturbation method has been united to find 
the solution of nonlinear equations. Liao (1992) used the homotopy analysis method [12] 
to his foundation work. He was the first, who gave the idea of the homotopy perturbation
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method in (1998). This technique also plays a pivotal role in many branches of science and
engineering.

Various researchers [26],[3],[10],[30],[17],[27],[21],[20],[28] have delved deeper into
this theory, as well as its applications. Now, the solution of linear and nonlinear fractional
order partial differential equations has been obtained using HPM.

The arrangement of this article contains the following sections. Some basic definitions
of fractional calculus are described in section 2, whereas section 3 is specified for stability
convergence. Moreover, model problems are exhibited in section 4, whereas the residual
and flow rate of Phi-4 Equations with time fractal derivative are described in section 5.
Furthermore, the consequences and analysis with physical understanding are summarized
in section 6, and lastly, section 7 is specified for conclusion.

2. FUNDAMENTAL DEFINITIONS OF FRACTAL DERIVATIVES AND INTEGRAL

A real valued function f(s), where s > 0 belong to a real space Cµ, where µ ∈ ℜ, if
there is at least one real number p > µ to such an extent that f(s) = sph1(s), but then
f1(s) ∈ C(0,∞), and it lies in real space Cm

µ if and only if fm ∈ Cµ, m ∈ N .

2.1. Definition. The Riemann-Liouville fractional integral operator of a function g(t) ∈
Cλ (function space), λ ∈ R of fractional order α > 0 is as follow:

I−α
a,x g(x) =

1

Γ(α)

∫ x

a

(x− µ)α−1 g(µ) dµ, x > α.

k − 1 < α < K, K ∈ Z+

Where Γ denotes gamma function.

2.2. Definition. The fractional order α > 0, Caputo fractional derivative operator of f(x)
is as follows:

Dα
a,sf(x) =

1

Γ(k − α)

∫ s

a

(x− µ)m−α−1f (m)(µ)dµ.

x > α, k − 1 < α < k, m ∈ Z+, s > 0.

2.3. Definition. The Gamma function, which is basically the generalized form of the fac-
torial for all real numbers, is defined as:

Γ(x) =

∫ ∞

0

e−ttx−1 dt, x ∈ R+.

Some important formulae are obtained by using recursion relations, which are some unique
properties of the Gamma function.

Γ(x+ 1) = xΓ(x), x ∈ R+

Γ(x+ 1) = x!, x ∈ N.
For non-integer values:

Γ(1/2) =
√
π
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3. STABILITY ANALYSIS

Considering the stability analysis of the fractional nonlinear partial differential equation:

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
+ a2u+ bu3 = 0, (3.3)

x ∈ [0, 1], t > 0, a > 0, b > 0 1 < α ⩽ 2.

with:
• x ∈ [0, 1],
• t > 0,
• Parameters: a > 0, b > 0,
• Time-fractional derivative of order 1 < α ≤ 2.

This is a nonlinear, time-fractional reaction-diffusion equation. We’ll carry out a linear
stability analysis about the trivial steady state u(x, t) = 0.

Here’s the step-by-step outline:
Step 1: Identify the Steady States

Steady states satisfy:

−∂2u(x, t)

∂x2
+ a2u+ bu3 = 0, (3.4)

Let’s consider small perturbations around the zero steady state, u = 0.
Clearly, u = 0 is a solution.
Step 2: Linearization Around u=0

Neglect the nonlinear term bu3. The equation becomes:

∂αu(x, t)

∂tα
=

∂2u(x, t)

∂x2
− a2u(x, t). (3.5)

This is a linear fractional PDE.
Step 3: Modal (Eigen Function) Expansion

Use separation of variables and assume homogeneous boundary conditions e.g., Dirichlet:
u(0, t) = u(1, t) = 0. Try:

u(x, t) =

∞∑
n=1

Un(t) sin(nπx), (3.6)

Plug into the equation. For each mode:

∂αun(t)

∂tα
= −

[
(nπ)2 + a2

]
un(t). (3.7)

This is a fractional-order ordinary differential equation (FODE) for each mode.
Step 4: Solution to the FODE

The solution to:
∂αy(t)

∂tα
= −λy(t), y(0) = y0, y′(0) = 0, (3.8)

with 1 < α ≤ 2, is given by the Mittag-Leffler function Eα(z).
So, the solution becomes:

un(t) = un(0)Eα

[
−
{
(nπ)2 + a2

}
tα
]
. (3.9)
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Step 5: Stability Criterion
Properties of the Mittag-Leffler function:

• Eα(−λtα) → 0 as t → ∞, and α ∈ (1, 2]
• This implies asymptotic stability of the linearized system.

Since (nπ)2 + a2 > 0, the argument of the Mittag-Leffler function is strictly negative, so
all modes decay.

Step 6: Nonlinear Stability (Energy Method Sketch)
We now consider the nonlinear term bu3, and study Lyapunov-type stability.

Let’s define an energy-like functional:

E(t) =
1

2

∫ 1

0

u2(x, t) dx. (3.10)

Multiply the original equation by u and integrate over [0, 1]:∫ 1

0

u
∂αu

∂tα
dx−

∫ 1

0

u
∂2u

∂x2
dx+ a2

∫ 1

0

u2dx+ b

∫ 1

0

u4dx = 0, (3.11)

Use:

•
∫ 1

0

uuxx dx = −
∫ 1

0

(ux)
2 dx,

• The first term is trickier due to the fractional derivative, but for Caputo derivative,
there’s a result:∫ 1

0

u(x, t)
∂αu(x, t)

∂tα
dx =

1

2

dα

dtα
∥u(x, t)∥2 (3.12)

So we get:
1

2

dα

dtα
∥u∥2 + ∥ux∥2 + a2∥u∥2 + b

∫
u4dx = 0. (3.13)

All terms are non-negative, implying:

dα

dtα
∥u∥2 ≤ 0. (3.14)

This implies energy decay, so u = 0 is nonlinearly stable as well. We conclude that the
zero steady state u = 0 is linearly asymptotically stable for 1 < α ≤ 2, b > 0. Moreover,
energy method suggests nonlinear stability as well and faster decay as α → 2, slower as
α → 1+.

4. APPLICATIONS OF PHI-4 PARTIAL DIFFERENTIAL EQUATION OF FRACTIONAL
ORDER

The following section of presentation will demonstrate the application of HPM to solve
two specific models. This approach helps to showcase the validity, accuracy, and suitability
of the computational scheme in providing solutions to real-world problems and further
reinforces its trustworthiness as a computational method.
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4.1. Application -1. Consider the fractal Phi-four partial differential equation [27]:

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
+ u+ u3 = 0, (4.15)

x ∈ [0, 1.28], t > 0, a > 0, b > 0 1 < α ⩽ 2.

Initial conditions along boundary values of fractal Phi-four partial differential equation are:

u(x, 0) = A

[
1 +

cos(2πx)

1.28

]
, ut(x, 0) = 0. (4.16)

Solution:
Solve this equation using HPM

(1− p)
∂αu(x, t)

∂tα
+ p

[
∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
+ u+ u3

]
= 0, (4.17)

Now comparing the terms with similar powers of p, we obtain the following system of
equations

p0 :
∂αu0(x, t)

∂tα
= 0, (4.18)

p1 :
∂αu1(x, t)

∂tα
− ∂2u0(x, t)

∂x2
+ u0 + u3

0 = 0, (4.19)

...
Approximate Solution Series of 0th order and 1st order

u0(x, t) = A

[
1 +

cos(2πx)

1.28

]
(4.20)

u1(x, t) =
−tαA

[(
2π
1.28

)2
cos
(
2πx
1.28

)
+
(
1 + cos

(
2πx
1.28

))
+A2

(
1 + cos

(
2πx
1.28

))3]
Γ(1 + α)

(4.21)
For

M =
2π

1.28
, N =

2πx

1.28
,

P = cos

(
2πx

1.28

)
, Q = 1 + cos

(
2πx

1.28

)

u2(x, t) =
t2αA

[
M2 (1 +M)

2
P + 3A2M2Q2 (3P − 2) +

(
1 +M2

)
Q+A2Q3

]
Γ(1 + 2α) +A2 [(1 +M2)Q+ 3A2Q3Γ(1 + 4α)]

(4.22)
Therefore

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) (4.23)

The exact solution of the problem-1 in a closed form is:

u(x, t) = A

{
1 + cos

(
2πx

1.28

)}
e(−

t
2 )

{
cos

(√
3t

2

)
+

1√
3
sin

√
3t

2

}
(4.24)
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4.2. Application-2. Consider the fractal Phi-four partial differential equation [27]:

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
− u+ u3 = 0, (4.25)

x ∈ [0, 1], t > 0, 1 < α ⩽ 2.

Initial conditions along boundary conditions of Phi-4 partial differential equation of frac-
tional order are:

u(x, 0) = 0, ut(x, 0) = x.

Solution:
Solve this equation using HPM

(1− p)
∂αu(x, t)

∂tα
+ p

[
∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
− u+ u3

]
= 0 (4.26)

Now comparing the terms with like powers of p, we have the following system of equations

p0 :
∂αu0

∂tα
= 0, (4.27)

p1 :
∂αu1(x, t)

∂tα
− ∂2u0(x, t)

∂x2
− u0 + u3

0 = 0, (4.28)

p2 :
∂αu2(x, t)

∂tα
− ∂2u1(x, t)

∂x2
− u1 + u3

1 = 0. (4.29)

...
Approximate Solution Series of 0th order and 1st order

u0(x, t) = tx, (4.30)

u1(x, t) =
1

Γ(4 + α)
tα+1x

[
(2 + α)(3 + α)− 6t2x2

]
, (4.31)

u(x, t) = u0(x, t) + u1(x, t), (4.32)

u(x, t) = tx+
1

Γ(4 + α)
tα+1x

[
(2 + α)(3 + α)− 6t2x2

]
. (4.33)

5. THE RESIDUAL

5.1. The Residual of Phi-4 Equations with Time Fractal Derivative. In the context of
the governing equations, the residual error computes how the solution successfully regu-
lates these equations. A minor residual error symbolized an appropriate match. To these
equations, showing an effective and powerful analytical technique in solving the problem.

R1 =
∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
+ u+ u3, (5.34)

R2 =
∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
− u+ u3. (5.35)
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5.2. Flow Rate of Phi-4 Equations with Time Fractal Derivative.

Q1 =

∫ 1

0

u1(x, t) dx, Let u1 = u for Application 1. (5.36)

Q2 =

∫ 1

0

u2(x, t) dx, Let u2 = u for Application 2. (5.37)

Q1 = 0.800196 +
252.917

Γ(2 + 2α)
+

2.30784

Γ(2 + α)
+

1592.81Γ(1 + 3α)

Γ(1 + 2α)3Γ(2 + 4α)
(5.38)

Q2 =
1

4
+

9 + α(7 + α)

2Γ(5 + α)
(5.39)

The fractional Phi-4’s average values u1 and v1 are determined by

u1 = Q1 and v1 = Q2

The graphical representation of the above results

FIGURE 1. Fig. A of application 1.
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FIGURE 2. Fig. B of application 2.

6. CONSEQUENCES AND ANALYSIS WITH PHYSICAL UNDERSTANDING

Physical phenomena are exhibited by different types of traveling wave solutions. The
solution of the Phi-4 partial differential equation of fractional order with respect to time ex-
hibits complexity in nature. If the physical parameters vary, the fact | u(x, t) | characterizes
the wave solution becomes explicit when physical parameters take on special values. The
important factor whose presence affects the Phi-4 equation solution is the dispersion term.
The dispersion term wastes the solitary effect of waves if it is linear, while the formulation
of a solitary wave is averted by a nonlinear form of the dispersion term due to transfer-
ring pulse energy to a higher level, which is used in the above equation. Interestingly, the
propagating term uxx and nonlinear term u3 are both present in the Phi-4 time fractional
order equation, which makes the problem effective and attractive when they are associated
with other solutions. Since there are many solutions to model Phi-4 equations which are
discussed in the last section. We determine the solution of our model problems using HPM.
Section 4 explains the formulation in the model examples, which gives the exact solution
without spatial discretization for the problem. When we use HPM, we do not need to find
higher order solutions because the solutions of nonlinear Phi-4 partial differential equations
of fractional order with respect to time are unique and beyond the bounds of this article.

Distinct values of α, α = 1.50, α = 1.75, and α = 2 are shown in the tables table
1 and 2 of application (1) and (2), which show the order of solution whereas estimated
results, exact results and difference between estimated and true solution of application (1)
for distinct substitutions of α at fixed value of A=1, time t=0.001 and errors of application
(1) have shown in table 1. The result obtained by solving the fractal Phi-four equation of
application (2) using the latest HPM are shown is tables 3, 4 and 5 with three other methods
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(Adomian Decomposition Technique, Homotopy Analysis Technique, Optimal Homotopy
Asymptotic Approach) (Ehsaani and Ehsani 2013) side by side, which also shows exactness
authenticity of the method.

Accurate results, 3D and 2D representations of model-1 for a fixed value of α = 2 are
shown by figures 1 and 2, whereas figures 3, 4 show the 3D and 2D representations of the
estimated solution at α = 2. In addition, 3D representations of estimated results for distinct
substitutions of α, α = 1.50, α = 1.75, and α = 2 are shown by figure 5.Moreover, figure
6 shows 2D graphical representation of results for distinct substitutions of α, α = 1.50,
α = 1.75, and α = 2 with corresponding values of A, A = 1.3, A = 1.5, A = 1.8
respectively. Figures 7, 9, 11 show a 3D representation of application-2 for different values
of α, α = 1.50, α = 1.75, and α = 2 respectively, and 3D combine results for different
values of α, α = 1.50, α = 1.75, and α = 2 is shown by figure 13. Moreover, figures
8, 10, 12 show 2D representation of application (2) for distinct values of α, α = 1.50,
α = 1.75, and α = 2 respectively, whereas the 2D combine representation of application-2
for different values of α, α = 1.50, α = 1.75, and α = 2 is shown by figure 14. It is
cleared from all the figures that the results obtained by HPM are more accurate, valid and
consistent. Moreover, the solutions maintain its accuracy and relevance across the entire
domain of interest. In addition, table 2 shows how the approximate solutions and exact
solutions are closed to each other and the remaining tables represent the remaining tables
represent the validity and consistency of HPM.
.
Graphical and Tabular Representation of Application 1

FIGURE 3. 3D graphical behavior of exact solution corresponding to the
value at α = 2.
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FIGURE 4. 2D graphical behavior of exact solution corresponding to the
value at α = 2.

FIGURE 5. 3D graphical behavior of estimated solution corresponding
to the value at α = 2.
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FIGURE 6. 2D graphical behavior of estimated solution corresponding
to the value at α = 2.

FIGURE 7. 3D graph of estimated solution at distinct values of α = 1.5, 1.75, 2.
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FIGURE 8. 2D graph of estimated solution at distinct values of α = 1.5, 1.75, 2.

TABLE 1. Shows the solutions and absolute error of application-1 for
various values of α.
x α = 1.50 α = 1.70 α = 2 Exact Error

0.0 1.9991894 1.9998808 1.9998929 2 0.0008096
0.1 1.8812127 1.8818171 1.8819064 1.8819203 0.0007077
0.2 1.5555125 1.5555084 1.5555699 1.5555695 0.0000443
0.3 1.0979033 1.0980004 1.0980147 1.0980168 0.0001113
0.4 0.6175157 0.6173458 0.6173208 0.6173163 0.0001994
0.5 0.2274252 0.2270538 0.2270047 0.2269969 0.0003475
0.6 0.0197764 0.0192793 0.0192265 0.0192174 0.0005617
0.7 0.04362071 0.0431401 0.0430712 0.0430596 0.0005475
0.8 0.2932910 0.2929517 0.2929016 0.2928931 0.0003979
0.9 0.7098564 0.7097360 0.7097183 0.7097150 0.0001414
1.0 1.1949094 1.1950637 1.1950865 1.1950897 0.0001803

Graphical and Tabular Representation of Application 2
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FIGURE 9. 3D graph of estimated solution for the value of α = 1.50.
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FIGURE 10. 2D graph of estimated solution for the value of α = 1.50.

FIGURE 11. 3D graph of estimated solution for the value of α = 1.75.
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FIGURE 12. 2D graph of estimated solution for the value of α = 1.75.

FIGURE 13. 3D graph of estimated solution for the value of α = 2.
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FIGURE 14. 2D graph of estimated solution for the value of α = 2.

FIGURE 15. 3D graph of estimated solution for various values of α.
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FIGURE 16. 2D graph of estimated solution for various values of α.

TABLE 2. Shows the solutions of application-2 for various values of α.
x α = 1.50 α = 1.70 α = 2

0.0 0 0 0
0.1 1.0003× 10−3 1.0001× 10−3 1.0000× 10−3

0.2 2.0006× 10−3 2.0001× 10−3 2.0000× 10−3

0.3 3.0009× 10−3 3.0002× 10−3 3.0000× 10−3

0.4 4.0012× 10−3 4.0003× 10−3 4.0001× 10−3

0.5 5.0015× 10−3 5.0004× 10−3 5.0001× 10−3

0.6 6.0018× 10−3 6.0004× 10−3 6.0001× 10−3

0.7 7.0021× 10−3 7.0005× 10−3 7.0001× 10−3

0.8 8.0024× 10−3 8.0006× 10−3 8.0001× 10−3

0.9 9.0027× 10−3 9.0006× 10−3 9.0001× 10−3

1.0 1.00030× 10−2 1.00007× 10−2 1.00002× 10−2
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Comparative Tables for Homotopy Perturbation Method (HPM)

TABLE 3. Comparison of HPM solutions with other methods for x =
0.3 at α = 2.

t HPM Solution ADM Solution HAM Solution OHAM Solution
0.006 1.80001× 10−3 1.80001× 10−3 1.80001× 10−3 1.80001× 10−3

0.01 3.00005× 10−3 3.00005× 10−3 3.00004× 10−3 3.00005× 10−3

0.05 1.50063× 10−2 1.50063× 10−2 1.50063× 10−2 1.50063× 10−2

0.1 3.005× 10−2 3.005× 10−2 3.00409× 10−2 3.005× 10−2

0.15 4.51688× 10−2 3.98512× 10−2 4.51378× 10−2 4.5169× 10−2

0.2 6.04003× 10−2 6.04007× 10−2 6.03265× 10−2 6.0400× 10−2

0.25 7.57822× 10−2 7.57823× 10−2 7.576374× 10−2 7.57799× 10−2

TABLE 4. Comparison of HPM solutions with other methods for x =
0.6 at α = 2.

t HPM Solution ADM Solution HAM Solution OHAM Solution
0.006 3.60002× 10−3 3.60002× 10−3 3.60002× 10−3 3.60002× 10−3

0.01 6.0001× 10−3 6.0001× 10−3 6.0008× 10−3 6.0001× 10−3

0.05 3.00125× 10−2 3.00125× 10−2 3.00102× 10−2 3.00125× 10−2

0.1 6.00999× 10−2 6.01× 10−2 6.00816× 10−2 6.00999× 10−2

0.15 9.03371× 10−2 9.03374× 10−2 9.02752× 10−2 9.03370× 10−2

0.2 1.20798× 10−1 1.20799× 10−1 1.20651× 10−1 1.20797× 10−1

0.25 1.51557× 10−1 1.51558× 10−1 1.51268× 10−1 1.51552× 10−1

TABLE 5. Comparison of HPM solutions with other methods for x =
1.3 at α = 2.

t ADM HAM OHAM HPM
0.006 7.80005× 10−3 7.80005× 10−3 7.80004× 10−3 7.80005× 10−3

0.01 1.30002× 10−2 1.30002× 10−2 1.30002× 10−2 1.30002× 10−2

0.05 6.50271× 10−2 6.50271× 10−2 6.50221× 10−2 6.50271× 10−2

0.1 1.30216× 10−1 1.30216× 10−1 1.30176× 10−1 1.30216× 10−1

0.15 1.95724× 10−1 1.95724× 10−1 1.95591× 10−1 1.95722× 10−1

0.2 2.61701× 10−1 2.61703× 10−1 2.61388× 10−1 2.61698× 10−1

0.25 3.28288× 10−1 3.28290× 10−1 3.27679× 10−1 3.28278× 10−1
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7. CONCLUSION

The new progressive wave solution to an important nonlinear chromatic dispersion equa-
tion known as Phi-4 partial differential equation of fractal order with respect to time has 
been determined using a novel technique. The models discussed above have a vital role 
when analyzing different physical phenomena which are applied to various kinds of non-
linear applications in the natural sciences. Moreover, the tedious algebraic calculations 
involved in the above models have been handled using Mathematica. The consequences of 
this technique represent the excellent bond between approximate solutions and exact solu-
tions. Since HPM is promptly focused, it demonstrates strong potential and capability for 
finding solutions to nonlinear real-life problems.
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