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Abstract. This study discusses vector-borne plant epidemics through the Atangana-Baleanu type

fractional model, considering the Beddington-DeAngelis functional response. A unique global

solution has been developed through the Picard-Lindelof method. A numerical scheme for ob-

taining the solutions of plant disease model has been developed. Several graphical interpretations

expressing the obtained solutions have been discussed, and many novel results have been ob-

served through the variation of fractional order. This work leads to the idea of application of

fractional derivatives in the field of plant epidemiology. The use of the Atangana-Baleanu deriv-

ative is novelty of this work, which explores many features that are missed by using the ordinary

derivative.
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1. Introduction

The study of numerous diseases in different species of plants is called plant epidemiology. Cellular inborn

immunity only protects plants against infections as they don’t have mobile protection [11]. Vector-borne diseases

of plants called plant viral epidemics insisted that scientists study these diseases through mathematical modeling

because these models arose as the efficient tools for explaining the dynamics of disease transmission among host

plants [27].

Many mathematicians have utilized mathematical models to comprehend the disease transmission among plants.

For instance, Smith and Walker [29] presented a simple mathematical model to study the disease that appears in

the roots of Trifolium subterraneum. Vesicular-arbuscular mycorrhizal fungi cause this infection. Brassett and

Gilligan [8] developed a theoretical model for botanical epidemics by considering two types of infection, primary

and secondary. The basic disease arises from the reservoir of the surviving inoculum, whereas other infections

arise from infected tissue. This model matches the data for damping off the cress caused by the fungus. Jeger

et al. [18] developed the SEIR model for host plants and the SEI model for explaining the transmission process.

Gilligan et al. [13] formulated a mathematical model to analyze a stem canker infection assuming susceptible, in-

fected, and recovered classes. The infection of potatoes and soil-borne fungus are the main causes of this disease.

They fitted the model to field data and analyzed it. Bailey and Gilligan [5] discussed the wheat disease caused

by take-all fungus using experimentation and mathematical modeling. Gubbins et al. [14] developed a theory for

the generic model considering two aspects of plant-parasite interplay: the first is the dual source of inoculum, and
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the second is the infection load appearing due to host species. Venturino et al. [31] formulated a mathematical

model and explored the dynamical features of mosaic virus disease, which appear in Jatropha plants. Buonomo

& Cerasuolo [9] studied a plant-pathogen interaction through a mathematical model. They performed bifurcation

analysis using the threshold value. Cunniffe et al. [10] assumed time-dependent infectivity in the compartmental

model of plant disease. They first time used multiple exposed and infected compartments as an extension of the

SEIR model in the form of the SEmInR and used it for the mathematical study of plant disease. More interested

readers for various diseases modeling can see [15, 20, 30].

Fractional Calculus has become a very popular phenomenon in mathematical modeling. Many researchers have

discussed a lot of theories and applications involving fractional order derivatives [6, 19, 23, 25]. Baleanu et al.

[7] designed a model for the deep analysis of tumor-immune phenomena having fractional order derivative. The

authors studied the interaction among the immune system and various tumor cell populations through differential

equations having fractional order derivative. Owolabi and Atangana [24] used the Atangana-Baleanu fractional

operator to study a nonlinear competition model describing the interaction among three species. Prakasha et al.

[26] analyzed the fractional model, using the Atangana-Baleanu derivative, for analyzing Hepatitis E viral dis-

ease. Jajarmi and Baleanu [16] investigated the relationship among HIV and CD4+ T-cells using the fractional

calculus. Kumar et al. analyzed nonlinear fractional mathematical models of a mosaic epidemic in plants caused

by begomovirus, which is distributed by white flies to plants. Al-Basir et al. studied vector-borne plant disease

through a mathematical model. The authors assumed the resistance factor of plants and the overcrowding effect

by using Beddington-DeAngelis incidence [1]. Recently, Kumar et al. [22] studied the plant disease model having

fractional derivative in Caputo form.

The incorporation of fractional derivatives into the vector-borne disease model introduces an innovative dimension

by accounting for memory and hereditary properties inherent in biological systems. Fractional order equations are

important to elaborate on how fractional dynamics provide a more realistic framework for capturing the long-

term interactionas and latent effects in plant-vector-pathogen systems. Unlike the classical integer order models,

fractional derivatives introduce non-locality, meaning that the current state of the system depends not only on its

present conditions but also on its historical evolution. This is especially relevant for plant-pathogen interactions

where disease progression, vector behavior, and plant immune responses may exhibit delayed effects over time.

In order to gain the more accurate findings about the infections in plants and designing preventive policies, Jan

et al. [17] presented the fractional framework. The impact of illness produced by virus in plants, Farman et al.

[12] designed a system of fractional differential equations through fractal fractional operator. Shukla et al. [28]

proposed a compartmental model of four classes for the dynamics of age-structured pests and plants. The authors

used the fractional derivative by creating the memory effects which made the model more realistic. The impact of

curative and preventive control measures for the epidemic in plants, Ali et al. [2] presented a novel mathematical

model based on fractional differential equations.

The Atangana-Baleanu (AB) fractional derivative offers notable advantages over traditional derivatives when mod-

eling infectious diseases, primarily due to its ability to incorporate memory and non-local effects through its

non-singular Mittag-Leffler kernal. Unlike the power law kernels used in Caputo and Riemann-Liouville (RL)

derivatives, the exponential-type nature of the Mittag-Leffler function results in a smoother and more realistic

memory response [3]. This characteristics allows it to more accurately capture key epidemiological features

such as latency , incubation periods,and immunity waning, which are often oversimplified in classical models.

Additionally, AB-based models tend to fit real epidemic data more effectively, providing improved realism and

flexibility in capturing complex dynamics like multiple outbreak waves or behavioral changes. The smooth nature

of the AB kernel also enhances numerical stability, making simulations more robust. However, these benefits

come with limitations such as the analytical solutions are rare, numerical implementation is more complex, and

fractional parameters can be difficult to interpret biologically. Furthermore, AB models require historical data
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for initial conditions, which can be challenging to obtain, and the method is not yet widely supported by stan-

dardized tools or software. Despite these challenges, the AB derivative remains a powerful tool for advancing

the theoretical understanding of disease spread, particularly in systems where memory and history play a critical

role. Consequently, the AB derivative was found to offer the most appropriate framework for modeling rabies

transmission within a fractional-order system [21].

Motivating from the above ideas, we develop an SEIR plant disease model using the Beddington-DeAngelis in-

cidence function and studied through the Atangana-Baleanu fractional derivative. The remaining sections are

overviewed: Section 2 describes important definitions of said derivative having forms of Caputo and Riemann-

Liouville. Section 3 states qualities of this derivative. Section 4 comprises the complete development of a plant

infection model, and Section 5 contains the proof of existence and uniqueness of the model’s outcomes. Section 6

is devoted for the development of numerical scheme. Graphical results are shown and explained in Section 7, and

the conclusion of the work is given at the end.

2. Basic Definitions

Here, we present the definition of a fractional derivative and analyze its behavior, employing a non-local Mittag-

Leffer kernel that does not exhibit singularity [3, 4].

Definition 2.1. Suppose f ∈ H1(c, d), c < d and 0 ≤ ξ ≤ 1. The Atangana-Baleanu derivative, having Caputo

form, is described as

ABC
c Dξ

t f (t) =
N (ξ)
1 − ξ

∫ t

c
f ′ (θ) Eξ

[
−ξ

(t − θ)ξ

1 − ξ

]
dθ, (2. 1)

where the function N (ξ) is the normalization having unit values at 0 and 1.

Definition 2.2. Assume that f (t) is any non differentiable function belonging to H1(c, d, for d > c and ξ ∈ [0, 1] .

The Atangana-Baleanu derivative of fractional order, having Riemann-Liouville form, is stated as

ABR
c Dξ

t f (t) =
N (ξ)
1 − ξ

d
dt

∫ t

c
f (θ) Eξ

[
−ξ

(t − θ)ξ

1 − ξ

]
dθ. (2. 2)

Definition 2.3. The fractional integral with order ξ, for the above derivative, is defined as

AB
c Iξt f (t) =

1 − ξ
G (ξ) Γ (ξ)

∫ t

c
f (h) (t − h)ξ−1 dh. (2. 3)

For ξ = 0, we get the initial function and ordinary integral is attained for the unit value of ξ.

3. About Atangana-Baleanu Derivative

The definitions defined above is very helpful in designing the models expressing real world problems. The

relationship among Laplace transform and above defined definitions, for n = 1, may be established as:

L
{

ABR
0 Dξ

t f (t)
}

(p) =
G (ξ)
1 − ξ

pξL { f (t)} (p)

pξ +
ξ

1−ξ

, (3. 4)

L
{

ABC
0 Dξ

t f (t)
}

(p) =
G (ξ)
1 − ξ

pξL { f (t)} (p) − pξ−1 f (0)

pξ +
ξ

1−ξ

.

Theorem 3.1. Assuming a function f to be continuous on the closed interval [c, d] , we obtain the following

inequality : ∥∥∥∥ABR
0 Dξ

t f (t)
∥∥∥∥ < G (ξ)

1 − ξ
‖ f (x)‖ . (3. 5)

The norm function of f (x) has values as maxc≤x≤d | f (x)| .



508 Ozair and Alzubadi

Theorem 3.2. Fractional derivative defined by Atangana and Baleanu, in Caputo as well as Riemann-Liouville

form, admits following Lipschitiz condition:∥∥∥∥ABR
0 Dξ

t g(t) −ABR
0 Dξ

t f (t)
∥∥∥∥ ≤ H ‖g(t) − f (t)‖ , (3. 6)

∥∥∥∥ABC
0 Dξ

t g(t) −ABC
0 Dξ

t f (t)
∥∥∥∥ ≤ H ‖g(t) − f (t)‖ .

Theorem 3.3. The fractional ordinary DE, with respect to time, is given below,

ABC
0 Dξ

t g(t) = u (t) . (3. 7)

The application of inverse Laplace transform with utilization of convolution theorem [14], help us to obtain the

unique solution in the following form:

g (t) =
1 − ξ
G (ξ)

u (t) +
ξ

G (ξ) Γ (ξ)

∫ t

c
u (h) (t − h)ξ−1 dh. (3. 8)

The proofs of above theorems can be seen in [3].

4. MathematicalModel

The plant population is represented as S (t) ,E (t) and I (t), representing susceptible plants, exposed plants and

infectious plants, respectively. The vector population is symbolized as V (t) . Susceptible plants grow though logis-

tic growth representing with rate r. The carrying capacity is denoted by K. The incidence function is represented

as λV(t)
1+aS(t)+cV(t) , where λ is the maximum contact rate. The rate at which plants resist to the infection is denoted by

a. The crowding effect of vectors is also assumed and is denoted by c. Exposed plants move to the infectious class

with the rate m and d is death rate of infectious plants. The recruitment of insect vectors is directly proportional

to the plants having infection and increase with the rate b. The mortality rate of the vectors is denoted by the

parameter µ. Keeping in mind the stated assumptions, the fractional model in the form of differential equations

can be described as

dS (t)
dt

= rS(t)
[
1 −

N(t)
K

]
−

λS(t)V(t)
1 + aS(t) + cV(t)

, (4. 9)

dE (t)
dt

=
λS(t)V(t)

1 + aS(t) + cV(t)
− mE(t), (4. 10)

dI (t)
dt

= mE(t) − dI(t),

dV (t)
dt

= bI(t) − µV(t). (4. 11)

5. Solutions of the Plant Disease Problem

This work is aimed to study the non linear problem of plants infection. It is not possible to find the analytical

solution of the problem but, under certain reasonable conditions, the existence of exact solutions is guaranteed. It

is proved as follows:

Suppose L (I) is the Banach space which contains functions, having real values in continuity, on interval I. Fur-

thermore defining Q = L (I) ∗ L (I), the norm can be expressed in the following way

‖S,E, I,V‖ = ‖S‖ + ‖E‖ + ‖I‖ + ‖V‖ . (5. 12)

The norm of S is defined as ‖S‖ =
{
sup {|S (t)|} : t ∈ I

}
.. All remaining variables E, I and V have same norm

functions. The expression of model (4. 11 ), using time fractional derivative with order ξ ∈ [0, 1], has the
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following form

ABC
0 Dξ

t S(t) = rS(t)
[
1 −

N(t)
K

]
−

λS(t)V(t)
1 + aS(t) + cV(t)

,

ABC
0 Dξ

t E(t) =
λS(t)V(t)

1 + aS(t) + cV(t)
− mE(t),

ABC
0 Dξ

t I(t) = mE(t) − dI(t), (5. 13)

ABC
0 Dξ

t V(t) = bI(t) − µV(t),

having initial values

(S(0),E(0), I(0),V(0)) = (S0,E0, I0,V0). (5. 14)

Modified version of the above stated system of equations, as Volterra type integral equations, by using Atangana-

Baleanu fractional integral can be obtained. The application of Theorem (3.3) transform the model as

S (t) − S (0) =
1 − ξ
G(ξ)

{
rS(t)

[
1 −

N(t)
K

]
−

λS(t)V(t)
1 + aS(t) + cV(t)

}

+
ξ

G (ξ) Γ (ξ)

t∫
0

(t − z)−(1−ξ)
[
rS(z)

[
1 −

N(z)
K

]
−

λS(z)V(z)
1 + aS(z) + cV(z)

]
dz,

E (t) − E (0) =
(1 − ξ)
G (ξ)

{
λS(t)V(t)

1 + aS(t) + cV(t)
− mE(t)

}
(5. 15)

+
ξ

G (ξ) Γ (ξ)

t∫
0

(t − z)−(1−ξ)
[

λS(z)V(z)
1 + aS(z) + cV(z)

− mE(z)
]

dz,

I (t) − I (0) = mE(t) − dI(t) +
ξ

G (ξ) Γ (ξ)

t∫
0

(t − z)−(1−ξ) [mE(z) − dI(z)] dz,

V (t) − V (0) = bI(t) − µV(t) +
ξ

G (ξ) Γ (ξ)

t∫
0

(t − z)−(1−ξ) [bI(z) − µV(z)
]
dz,

For the easy calculations, we suppose

L1 (t,S) = rS(t)
[
1 −

N(t)
K

]
−

λS(t)V(t)
1 + aS(t) + cV(t)

,

L2 (t,E) =
λS(t)V(t)

1 + aS(t) + cV(t)
− mE(t),

L3 (t, I) = mE(t) − dI(t),

L4 (t,R) = bI(t) − µV(t). (5. 16)

Theorem 5.1. The kernels, L1, L2, L3, and L4, will satisfy Lipschitz Condition and contraction for the following

inequalities:

0 ≤ δ1 ≤ 1,

0 ≤ δ2 ≤ 1,

0 ≤ δ3 ≤ 1,

0 ≤ δ4 ≤ 1. (5. 17)

Proof. We prove the first inequality by taking the kernel L1 (t,S) = rS(t)
[
1 − N(t)

K

]
−

λS(t)V(t)
1+aS(t)+cV(t) .

Assuming two functions S and S1, we have
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‖L1 (t,S) − L1 (t,S1)‖ =

∥∥∥∥∥∥rS(t)
[
1 −

N(t)
K

]
−

λS(t)V(t)
1 + aS(t) + cV(t)

− rS1(t)
[
1 −

N1(t)
K

]
−

λS1(t)V1(t)
1 + aS1(t) + cV1(t)

∥∥∥∥∥∥
≤ (2r + λ) ‖S − S1‖ . (5. 18)

Taking, δ1 = (2r + λ), and suppose that a1 = maxt∈S ‖S(t)‖, a2 = maxt∈E ‖E(t)‖ , a3 = maxt∈I ‖I(t)‖ , and a4 =

maxt∈V ‖V(t)‖ , are bounded functions. With these assumptions, we get the inequality as

‖L1 (t,S) − L1 (t,S1)‖ ≤ δ1 ‖S − S1‖ . (5. 19)

Thus the kernel L1 meet the criteria of Lipschitz condition. Moreover, the contraction is also obtained by restricting

δ1 as 0 ≤ δ1 ≤ 1,. The same procedure gives the Lipschitz condition for the remaining kernels as:

‖L2 (t,E) − L2 (t,E1)‖ ≤ δ2 ‖E − E1‖ .

‖L3 (t, I) − L3 (t, I1)‖ ≤ δ3 ‖I − I1‖ ,

‖L4 (t,V) − L4 (t,V1)‖ ≤ δ4 ‖V − V1‖ . (5. 20)

By using the kernels given in the equation (5. 19 ) and (5. 20 ), Eq. (5. 15 ) will be of the form

S (t) = S (0) +
(1 − ξ)
G(ξ)

L1 (t,S) +
ξ

G(ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L1 (z,S)] dy,

E (t) = E (0) +
(1 − ξ)
G(ξ)

L2 (t,E) +
ξ

G(ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L2 (z,E)] dy, (5. 21)

I (t) = I (0) +
(1 − ξ)
G(ξ)

L3 (t, I) +
ξ

G(ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L3 (z, I)] dy,

V (t) = V (0) +
(1 − ξ)
G(ξ)

L4 (t,V) +
ξ

G(ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L4 (z,V)] dy.

The recursion relation can be established as follows:

Sn (t) = S (0) +
(1 − ξ)
G (ξ)

L1 (t,Sn−1) +
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)(ξ−1) [L1 (z,Sn−1)] dz,

En (t) = E (0) +
(1 − ξ)
G (ξ)

L2 (t,En−1) +
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L2 (z,En−1)] dz, (5. 22)

In (t) = I (0) +
(1 − ξ)
G (ξ)

L3 (t, In−1) +
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L3 (z, In−1)] dz,

Vn (t) = V (0) +
(1 − ξ)
G (ξ)

L4 (t,Vn−1) +
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L4 (z,Vn−1)] dz.

The initial conditions are also given as

S0 (0) = S0,

E0 (0) = E0,

I0 (0) = I0,

V0 (0) = V0. (5. 23)
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Successive terms may differ in the following way:

γn (t) = Sn (t) − Sn−1 (t) =
(1 − ξ)
G (ξ)

[L1 (t,Sn−1) − L1 (t,Sn−2)]

+
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L1 (z,Sn−1) − L1 (z,Sn−2)] dz,

Φn (t) = En (t) − En−1 (t) =
(1 − ξ)
G (ξ)

[L2 (t,En−1) − L2 (t,En−2)]

+
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L1 (z,En−1) − L1 (z,En−2)] dz,

Ψn (t) = In (t) − In−1 (t) =
(1 − ξ)
G (ξ)

[L3 (t, In−1) − L3 (t, In−2)]

+
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L3 (z, In−1) − L3 (z, In−2)] dz,

εn (t) = Vn (t) − Vn−1 (t) =
(1 − ξ)
G (ξ)

[L4 (t,Vn−1) − L4 (t,Vn−2)]

+
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) [L4 (z,Vn−1) − L4 (z,Vn−2)] dz. (5. 24)

It is worth noticing that

Sn (t) =

n∑
i=1

γi (t) ,

En (t) =

n∑
i=1

Φi (t) ,

In (t) =

n∑
i=1

Ψi (t) ,

Vn (t) =

n∑
i=1

εi (t) . (5. 25)

Considering equality (5. 24 ), applying the norm together with the triangular inequality, we have

‖γn (t)‖ = ‖Sn (t) − Sn−1 (t)‖

≤
(1 − ξ)
G (ξ)

δ1 ‖Sn−1 (t) − Sn−2 (t)‖ (5. 26)

+
ξ

G (ξ) + Γ (ξ)

∥∥∥∥∥∥∥∥
t∫

0

(t − z)−(1−ξ) [L1 (z,Sn−1) − L1 (z,Sn−2)] dz

∥∥∥∥∥∥∥∥ .
As the Kernal satisfy the Lipschitz condition, so

‖Sn − Sn−1‖ ≤
(1 − ξ)
G (ξ)

δ1 ‖Sn−1 (t) − Sn−2 (t)‖ (5. 27)

+
ξ

G (ξ) + Γ (ξ)
δ1

t∫
0

(t − z)−(1−ξ) ‖Sn−1 (t) − Sn−2 (t)‖ dz,

for which we have
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‖γn (t)‖ ≤
(1 − ξ)
G (ξ)

δ1 ‖γn−1 (t)‖ +
ξ

G (ξ) + Γ (ξ)
δ1

t∫
0

(t − z)(ξ−1)
‖γn−1 (z)‖ dz. (5. 28)

The following relations are obtained in similar fashion:

‖Φn (t)‖ ≤
(1 − ξ)
G (ξ)

δ2 ‖Φn−1 (t)‖ +
ξ

G (ξ) + Γ (ξ)
δ2

t∫
0

(t − z)(ξ−1)
‖Φn−1 (z)‖ dz, (5. 29)

‖Ψn (t)‖ ≤
(1 − ξ)
G (ξ)

δ3 ‖Ψn−1 (t)‖ +
ξ

G (ξ) + Γ (ξ)
δ3

t∫
0

(t − z)(ξ−1)
‖Ψn−1 (z)‖ dz,

‖εn (t)‖ ≤
(1 − ξ)
G (ξ)

δ4 ‖εn−1 (t)‖ +
ξ

G (ξ) + Γ (ξ)
δ4

t∫
0

(t − z)(ξ−1)
‖εn−1 (z)‖ dz. (5. 30)

�

With the aid of above results, it is convenient to describe and prove the subsequent result.

Theorem 5.2. Plant infection problem, represented by (5. 13 ), has a solution satisfying the criteria

1 − ξ
G (ξ)

δi +
tξmax

G (ξ) Γ (ξ)
δi < 1, f ori = 1, 2, 3, 4. (5. 31)

Proof. Assuming the boundedness of functions presented in the system (5. 13 ) keeping kernels with the property

of Lipschitz condition, the succeeding terms can be obtained, from (5. 28 ), as

‖γn (t)‖ ≤ ‖S (0)‖
1 − ξ
G (ξ)

δ1 +
tξmax

Γ (ξ) G (ξ)
δ1

n

,

‖Φn (t)‖ ≤ ‖E (0)‖
1 − ξ
G (ξ)

δ3 +
tξmax

G (ξ) Γ (ξ)
δ3

n

,

‖Ψn (t)‖ ≤ ‖I (0)‖
1 − ξ
G (ξ)

δ4 +
tξmax

G (ξ) Γ (ξ)
δ4

n

,

‖εn (t)‖ ≤ ‖R (0)‖
1 − ξ
G (ξ)

δ5 +
tξmax

G (ξ) Γ (ξ)
δ5

n

. (5. 32)

Thus expressions represented in (5. 25 ) exist and defined functions are smooth. After proving the existence of

solutions for model (5. 13 ), we express them in the form of above functions. Let

S (t) = S (0) + Sn (t) − an (t) ,

E (t) = E (0) + En (t) − cn (t) ,

I (t) = I (0) + In (t) − dn (t) ,

V (t) = V (0) + Vn (t) − en (t) . (5. 33)

We have to prove that ‖a∞ (t)‖ → 0 ultimately. It is proceeded as

‖an (t)‖ ≤

∥∥∥∥∥∥∥∥1 − ξ
G (ξ)

L1 (t,S) − L1 (t,Sn−1) +
ξ

G (ξ) Γ (ξ)

t∫
0

(t − z)ξ−1 (L1 (t,S) − L1 (t,Sn−1)) dz

∥∥∥∥∥∥∥∥ , (5. 34)

‖an (t)‖ ≤
1 − ξ
G (ξ)

‖L1 (t,S) − L1 (t,Sn−1)‖ +
ξ

G (ξ) Γ (ξ)

t∫
0

(t − z)ξ−1 ‖(L1 (t,S) − L1 (t,Sn−1))‖ dz

≤
1 − ξ
G (ξ)

δ1 ‖S − Sn−1‖ +
tξ

G (ξ) Γ (ξ)
δ1 ‖S − Sn−1‖ . (5. 35)
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Repeating this process recursively, we obtain

‖an (t)‖ ≤
[
1 − ξ
G (ξ)

+
tξ

G (ξ) Γ (ξ)

]n+1

δn
1M. (5. 36)

Then at tmax we have

‖an (t)‖ ≤
1 − ξ
G (ξ)

+
tξmax

G (ξ) Γ (ξ)

n+1

δn
1M. (5. 37)

Thus ‖a∞ (t)‖ → 0 as n− > ∞, which completes the assertion. �

5.1. Existence of Unique Solution. The Picard-Lindelof theorem tells us that solutions to differential equations

not only exist but are also unique-at least in a small range. But putting this into practice is not always smooth.

These methods can run into trouble, like becoming unstable, taking too long to reach at a result, or being overly

sensitive to where one starts. Things get even trickier with stiff or very nonlinear equations. Often, we have to

take tiny steps to keep things accurate, which means using more time and computer power.

In order to prove the existence of unique solution, another one say (S1,E1, I1,V1), exists. Then we have,

‖S (t) − S1 (t)‖ ≤
1 − ξ
G (ξ)

L1 (t,S) − L1 (t,S1) +
ξ

G (ξ) Γ (ξ)

t∫
0

(t − z)ξ−1 ‖(L1 (t,S) − L1 (t,S1))‖ dz. (5. 38)

The norm help us in obtaining the following result:

‖S (t) − S1 (t)‖ ≤
1 − ξ
G (ξ)

‖L1 (t,S) − L1 (t,S1)‖ +
ξ

G (ξ) Γ (ξ)

t∫
0

(t − z)ξ−1 ‖L1 (t,S) − L1 (t,S1)‖ dz. (5. 39)

The Lipschitz condition help us in getting the following form

‖S (t) − S1 (t)‖ ≤
1 − ξ
G (ξ)

δ1 ‖S (t) − S1 (t)‖ +
δ1tξ

G (ξ) Γ (ξ)
‖S (t) − S1 (t)‖ . (5. 40)

This gives

‖S (t) − S1 (t)‖
(
1 −

1 − ξ
G (ξ)

δ1 −
tξδ1

G (ξ) Γ (ξ)

)
≤ 0. (5. 41)

According to Theorem (5.2),
(
1 − 1−ξ

G(ξ)δ1 + tξδ1
G(ξ)Γ(ξ)

)
> 0, for ξ ∈ [0, 1] and δ1 ∈ [0, 1]. Thus

‖S (t) − S1 (t)‖ = 0.

Thus, we have

S (t) − S1 (t) . (5. 42)

Applying the same procedure, it can be shown that E (t) = E1 (t) , I (t) = I1 (t) ,V (t) = V1 (t). Hence the outcomes

of model (5.2) are unique.

6. Numerical Scheme

Recently explored scheme by Toufik and Atangana [19] is very helpful for solving the problems having the

rate of change with the additional property of non-local kernel in the absence of singularity. This work expresses

two salient features, one is quick convergence and other is almost very accurate results. Method applied by these

authors can be easily understand by assuming the following non linear form of ordinary differential equation

ABC
0 Dξ

t v (t) = f (t, v (t)) (6. 43)

v (0) = v0.
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The equivalency of initial value problem (6. 43 ) with the fractional integral may be expressed as

v (t) − v (0) ≤
1 − ξ
G (ξ)

f (t, v (t)) +
ξ

Γ (ξ) G (ξ)

t∫
0

f (η, v (η)) (t − z)ξ−1 dη. (6. 44)

The integral equation (6. 44 ), for t = tn+1, n = 0, 1, 2..., can be written as

v (tn+1) − v (0) ≤
1 − ξ
G (ξ)

f (tn, v (tn)) +
ξ

G (ξ) Γ (ξ)

tn+1∫
0

f (z, v (z)) (tn+1 − z)ξ−1 dz. (6. 45)

Considering the interval [tk, tk+1] and applying two step Lagrange polynomial interpolation on f (η, v (η)) gives the

following form

pk (z) = f (z, v (z))

=
z − tk−1

tk − tk−1
f (tk, v (tk)) −

z − tk
tk − tk−1

f (tk−1, v (tk−1))

=
f (tk, v (tk))

h
(z − tk−1) −

f (tk−1, v (tk−1))
h

(z − tk)

'
f (tk, vk)

h
(z − tk−1) −

f (tk−1, vk−1)
h

(z − tk) (6. 46)

Again assuming eq. (6. 45 ) for f (η, v (η)) (45) and the Lagrange polynomial interpolation as well, we will

arrive at the following result

vn+1 = v (0) +
1 − ξ
G (ξ)

f (tn, v (tn)) +
ξ

G (ξ) Γ (ξ)

n∑
k=0


f (tk ,vk)

h

tk+1∫
tk

(z − tk−1) (tn+1 − z)ξ−1 dz

−
f (tk−1,vk−1)

h

tk+1∫
tk

(z − tk) (tn+1 − z)ξ−1 dz

 , (6. 47)

The calculation of integral given in (6. 47 ) leads to the following result

vn+1 = v (0) +
1 − ξ
G (ξ)

f (tn, v (tn)) +
ξ

G (ξ)

n∑
k=0

hξ f (tk, vk)
Γ (ξ + 2)

(n + 1 − k)ξ+1 (n − k + 2 + ξ)

−
ξ

G (ξ)

n∑
k=0

hξ f (tk, vk)
Γ (ξ + 2)

(n − k)ξ (n − k + 2 + 2ξ)

−
hξ f (tk−1, vk−1)

Γ (ξ + 2)

(
(n + 1 − k)ξ+1 − (n − k + 1 + ξ) (n − k)ξ

)
+ Rξ

n, (6. 48)

where Rξ
n is remainder term. Its expression has the form

Rξ
n =

ξ

G (ξ) Γ (ξ)

n∑
k=0

tk−1∫
tk

(z − tk−1) (z − tk)
2

.
∂2

∂z2

[
f (z, y (z))

]
z=εz (tn+1 − z)ξ−1 dz. (6. 49)
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Upper bounds for error may be seen in [19] . Taking in consideration the plant disease model (5. 13 ), and applying

Atangana-Baleanu fractional integral, we can express in the form of kernels which is as follows:

S (t) = S (0) +
(1 − ξ)
G (ξ)

L1 (t, S (t)) +
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) L1 (z, S (z)) dz,

E (t) = E (0) +
(1 − ξ)
G (ξ)

L2 (t, E (t)) +
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) L2 (z, E (z)) dz,

I (t) = I (0) +
(1 − ξ)
G (ξ)

L3 (t, I (t)) +
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − z)−(1−ξ) L3 (z, I (z)) dz,

V (t) = V (0) +
(1 − ξ)
G (ξ)

L4 (t,V (t)) +
ξ

G (ξ) + Γ (ξ)

t∫
0

(t − η)−(1−ξ) L4 (η,V (η)) dη. (6. 50)

Also, the initial conditions

S (0) = E (0) = I (0) = V (0) = 0. (6. 51)

S n+1 = S 0 +
1 − ξ
G (ξ)

L1 (tn, S (tn))

+
ξ

G (ξ)

n∑
k=0

(
hξL1 (tk, S k)

Γ (ξ + 2)

(
(n + 1 − k)ξ (n − k + 2 + ξ) − (n − k)ξ (n − k + 2 + 2ξ)

))

−
hξL1 (tk−1, S k−1)

Γ (ξ + 2)

(
(n + 1 − k)ξ+1 − (n − k)ξ (n − k + 1 + ξ)

)
+1 Rξ

n, (6. 52)

En+1 = E0 +
1 − ξ
G (ξ)

L2 (tn, E (tn)) +
ξ

G (ξ)

n∑
k=0

hξL2 (tk, Ek)
Γ (ξ + 2)

 (n − k + 2 + ξ) (n + 1 − k)ξ

− (n − k)ξ (n − k + 2 + 2ξ)




−
hξL2 (tk−1, Ek−1)

Γ (ξ + 2)

(
(n + 1 − k)ξ+1 − (n − k)ξ (n − k + 1 + ξ)

)
+2 Rξ

n, (6. 53)

In+1 = I0 +
1 − ξ
G (ξ)

L3 (tn, I (tn)) +
ξ

G (ξ)

n∑
k=0

hξL3 (tk, Ik)
Γ (ξ + 2)

 (n + 1 − k)ξ (n − k + 2 + ξ)

− (n − k)ξ (n − k + 2 + 2ξ)




−
hξL3 (tk−1, Ik−1)

Γ (ξ + 2)

(
(n + 1 − k)ξ+1 − (n − k)ξ (n − k + 1 + ξ)

)
+3 Rξ

n, (6. 54)

Vn+1 = V0 +
1 − ξ
G (ξ)

L4 (tn,V (tn)) +
ξ

G (ξ)

n∑
k=0

hξL4 (tk,Vk)
Γ (ξ + 2)

 (n + 1 − k)ξ (n − k + 2 + ξ)

− (n − k)ξ (n − k + 2 + 2ξ)




−
hξK4 (tk−1,Vk−1)

Γ (ξ + 2)

(
(n + 1 − k)ξ+1 − (n − k)ξ (n − k + 1 + ξ)

)
+4 Rξ

n, (6. 55)

where iRξ
n, i = 1, 2, 3, 4 are remainders. These have the forms

1Rξ
n =

ξ

G (ξ) Γ (ξ)

n∑
k=0

tk−1∫
tk

(z − tk−1) (z − tk)
2

.
∂2

∂z2 [L1 (z, S (z))]z=εz (tn+1 − z)ξ−1 dz,

2Rξ
n =

ξ

G (ξ) Γ (ξ)

n∑
k=0

tk−1∫
tk

(z − tk−1) (z − tk)
2

.
∂2

∂z2 [L2 (z, E (z))]z=εz (tn+1 − z)ξ−1 dz,

3Rξ
n =

ξ

G (ξ) Γ (ξ)

n∑
k=0

tk−1∫
tk

(z − tk) (z − tk−1)
2

.
∂2

∂z2 [L3 (z, I (z))]z=εz (tn+1 − z)ξ−1 dz,

4Rξ
n =

ξ

G (ξ) Γ (ξ)

n∑
k=0

tk−1∫
tk

(z − tk−1) (z − tk)
2

.
∂2

∂z2 [L4 (z,V (z))]z=εz (tn+1 − z)ξ−1 dz, (6. 56)



516 Ozair and Alzubadi

7. Numerical Simulation

We apply the newly developed numerical scheme to the system of equations (5. 13 ) representing plant disease.

We assume different fractional order values for getting the system’s solution (5. 13 ). Initial values are taken as

S (0) = 500, E(0) = 100, I(0) = 10,V(0) = 300., and parameter values used for the numerical illustration are given

in Table 1. The period for the solutions is ten months. Figure (1) shows the solution of system (5. 13 ) for ξ = 0.1.

It can be observed that the plant population shows oscillatory behavior. The osculations are large initially but re-

duce over time. However, the vector population shows minor oscillation. Similar oscillatory behavior, for ξ = 0.5,

can be observed in the plant population as shown in Figure (2). It is noted that susceptible plants decrease, show-

ing the oscillation, and seem to approach the constant level. In contrast, exposed and infectious plants increase

and approach the constant level in the long run. Vector population decreases exponentially, and the phenomena

of sudden declination and approach to the constant level, as we see in the previous case, disappear for this value

of ξ. Figure (3) shows the solution of plant and vector population taking ξ = 1. We can see that the susceptible

population decreases exponentially, and infectious plants grow where, whereas the exposed plants decrease after

approaching the maximum level. The vector population declines almost linearly. However, oscillation does not

occur in any class of the plant population. Figures (4), (5) and (6) show the plants and vector population for

different initial values taking ξ = 0.1, 0.5 and 1, respectively. Figure (4) shows that all compartments of plants and

vector population approach the constant level irrespective of initial conditions. Solutions of the susceptible and

exposed classes show more oscillations than the infectious class of the plants and vector class. Different behavior

of the solutions can be observed as we take ξ = 0.5 and ξ = 1. All the above graphical results, we conclude

that for smaller value of the fractional order ξ (ξ=1), strong oscillation occurs taking the system longer time to

stabilize. Increasing the value of ξ to 0.5, the oscillations are milder and decay faster showing faster stabilization.

For the integral value of fractional order, all the oscillations vanish and the system show exponential type trends.

When different initial conditions are introduced, the magnitude and shape of the trajectories vary, but the qual-

itative behavior remains consistent for a given ξ. This implies that while initial population size affect outbreak

intensity, the intrinsic system dynamics, particularly oscillatory behavior controlled by ξ. It plays a dominant role

in determining whether the model exhibits oscillatory epidemics or smooth convergence to equilibrium.
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(a) (b)

(c) (d)

Figure 1. Solution of the system (5. 13 ) for ξ = 0.1.
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(a) (b)

(c) (d)

Figure 2. Solution of the system (5. 13 ) for ξ = 0.5.
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(a) (b)

(c) (d)

Figure 3. Solution of the system (5. 13 ) for ξ = 1.
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(a) (b)

(c) (d)

Figure 4. Solution of the system (5. 13 ) for ξ = 0.1 with respect to different initial conditions.
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(a) (b)

(c) (d)

Figure 5. Solution of the system (5. 13 ) for ξ = 0.5 with respect to different initial conditions.
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(a) (b)

(c) (d)

Figure 6. Solution of the system (5. 13 ) for ξ = 1 with respect to different initial conditions.

8. Conclusion

In this work, we studied a vector-borne plant disease model with the Beddington-DeAngelis Incidence func-
tion using the technique of fractional differentiation. This study relies on the non-local kernel without singularity
assumption recently offered by Atangana and Baleanu. The existence of solutions has been proved by using the
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existing method as the fixed-point theorem for solving the nonlinear ordinary differential equations with non-local
fading memory. Furthermore, we developed a numerical scheme developed by Atangana and Toufik. The de-
velopment of a numerical scheme took place while considering the stated assumptions. The effectiveness of the
numerical scheme has been displayed through the numerical simulations. We have shown that the results obtained
through the numerical simulations verify the analytical ones derived in the existence and uniqueness sections. It
can be seen that the variation of the fractional variable ξ or the initial values of the variable show the different
behavior of solutions. Furthermore, the oscillatory behavior of solutions was observed using the fractional de-
rivative, which is missing in the case of ordinary derivatives. The parameter ξ, which influences the oscillatory
behavior of the epidemic model, plays a critical role in determining the stability of the system. Its lower values
represent persistent oscillations in disease compartments, representing delayed behavioral responses, weak health
interventions and time-lagged immunity. Its higher values result in smooth, monotonic trends toward equilibrium
indicating that timely and effective interventions can remove oscillatory behavior of the solutions. These insights
suggest that enhancing ξ through faster detection, efficient quarantine and vector control can significantly reduce
epidemic fluctuations and reduce long-term disease burden.
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