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Abstract. This study integrates advanced algorithms with chemical graph 
theory to analyze the topological indices of benzenoid-derived nanostruc-
tures, focusing on their applications in computational chemistry and drug 
design. By developing novel mathematical formulations for degree-based 
indices (Rα, M1, H , AZI , ABC, and GA), we establish quantitative 
relationships between structural parameters (r, s) and physicochemical 
properties of hexagonal networks. Our results reveal that increasing net-
work dimensions enhances molecular stability and electron delocalization 
in these nanostructures, offering critical insights for optimizing antiviral 
agents and energy storage materials. The proposed computational frame-
work, validated through rigorous graphical and tabular comparisons, pro-
vides a robust tool for predicting structure-activity relationships in drug 
discovery and designing next-generation nanomaterials. This work bridges 
theoretical graph theory with practical applications in nanotechnology and
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pharmaceutical sciences, demonstrating significant potential for sustain-
able innovation in medical and energy technologies.

AMS (MOS) Subject Classification Codes: 05C12; 05C90
Key Words: general Randić index, harmonic index, augmented Zagreb index, atom-bond
connectivity (ABC) index, geometric-arithmetic (GA) index, algorithms, rth Chain Ben-
zenoid Hex-Derived Network, CBHDN(r, s), drug design, nanostructures, edge comput-
ing, network structures.

1. INTRODUCTION

Graph theory provides powerful mathematical tools for modeling complex molecu-
lar structures, with chemical graph theory emerging as a vital interdisciplinary field that
bridges mathematics and chemistry [4]. This approach represents molecules as graphs
where vertices correspond to atoms and edges represent chemical bonds, enabling quantita-
tive analysis of structural properties through topological indices. While topological indices
like the Wiener index, Rα, M1, AZI , H , ABC, and GA have been widely used in quan-
titative structure-activity relationship (QSAR) and structure-property relationship (QSPR)
studies [5], significant gaps remain in their application to hexagonal mesh networks.

The present work makes several novel contributions to this field. First, we develop
new analytical formulations for six topological indices (Rα, M1, H , AZI , ABC, and
GA) applied to Chain Benzenoid Hex-Derived Networks (CBHDN ), extending beyond
previous work on simple hexagonal meshes [4]. Our approach systematically addresses
all three structural configurations: when r = s, when r < s with parity constraints, and
when r > s with mixed parity conditions. These formulations provide a more complete
mathematical framework for analyzing complex benzenoid structures.

Second, we establish previously unknown mathematical relationships between network
dimensionality (r, s) and topological index behavior through rigorous derivations. This
theoretical advancement provides fundamental insights into how structural variations af-
fect molecular properties in benzenoid systems, particularly in understanding the connec-
tion between network geometry and chemical reactivity. The derived relationships offer
predictive capabilities for molecular behavior that were not available in previous studies
[3].

Third, we demonstrate practical applications through comprehensive graphical analysis,
revealing how index variations correlate with stability and reactivity in polycyclic aromatic
hydrocarbons. These materials are crucial for pharmaceutical and materials science appli-
cations, and our results provide valuable tools for molecular design. The graphical repre-
sentations allow for intuitive understanding of complex relationships between structure and
properties [2].

Building upon the foundational work of on hexagonal mesh construction, we signifi-
cantly advance the theoretical framework by considering more complex chain benzenoid
structures. Our results provide both theoretical advancements in chemical graph theory and
practical tools for molecular design, addressing current limitations in predicting properties
of extended benzenoid networks. The combination of rigorous mathematical analysis with
practical applications distinguishes this work from previous studies in the field [8].
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FIGURE 1. Hexagonal meshes: (1)HX(2), (2)HX(3), and(3), all facing HX(2).

The topological indices of polygonal mesh produced by a polygonal graph, which com-
prise molecular graphs of unbranched benzene hydrocarbons, are considered in this article.
Hexagonal structure graphs are made up of hexagons that have been joined together. This
class of chemical compounds is very important to theoretical chemists. For individual
molecule graphs, topological index theory has been extensively explored during the last
four decades. Benzene hydrocarbons are not only important raw materials in the chemical
industry, but they are also dangerous pollutants. Chen et al. [4] introduced a novel hexag-
onal mesh structure. This mesh consists of interconnected triangles, forming a hexagonal
pattern. Notably, a single layer of triangles cannot constitute a hexagonal mesh. A fun-
damental 2-dimensional hexagonal mesh, denoted as HX(2), is formed by arranging six
triangles (Figure 1(1)). To create a 3-dimensional hexagonal mesh, HX(3), an additional
layer of triangles is added around the perimeter ofHX(2) (Figure 1(2)). This iterative pro-
cess is extended to construct higher-dimensional hexagonal meshes,HX(r), by recursively
adding r layers of triangles around the boundary of each preceding mesh.

The Wiener index was the earliest topological index to be applied in chemistry. Harold
Wiener [21] developed the term in 1947. A computer network can be represented to use
the Wiener index.

W (G) =
1

2

∑
x,y⊆V (G)

d(x, y). (1. 1)

Milan Randić [17] created the Randić index in 1975. The Randić index is the earliest and
most primitive degree-based topological index.

Rα(G) =
∑

xy∈E(G)

(dxdy)
α, (1. 2)
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Estrada et al. [6] recognized’s degree-based topological indices is the atom-bond connec-
tivity (ABC) index.

ABC(G) =
∑

xy∈E(G)

√
dx + dy − 2

dxdy
. (1. 3)

Another recognized connectivity topological caption established by Vukicevic et al. [19] is
the Geometric-arithmetic (GA) index.

GA(G) =
∑

xy∈E(G)

2
√
dxdy

dx + dy
. (1. 4)

Gutman [9] established a significant topological index. The Zagreb index is represented by
M1(G) and has the following

M1(G) =
∑

xy∈E(G)

(dx + dy). (1. 5)

Zhong [22] introduced the harmonic index, which is defined as

H(G) =
∑

xy∈E(G)

2

dx + dy
. (1. 6)

Furtula et al. [7] proposed the augmented Zagreb index, which is defined as

AZI(G) =
∑

xy∈E(G)

(
dxdy

dx + dy − 2
). (1. 7)

2. CASES FOR rth CHAIN BENZENOID HEX-DERIVED NETWORK. CBHDN(r, s)

There are three cases for CBHDN(r, s).
Case-1: For r = s, (r, s) ≥ 1.
Case-2: For r < s, r is odd and s ∈ N . For r > s, r is odd and s ∈ N . For r < s, r and s
both are even. For r > s, r and s both are even.
Case-3: For r < s, r is even and s is odd. For r > s, r is even and s is odd.

3. RESULTS

Simonraj et al. [18] found hex-derived networks and calculated the metric dimension of
(BHDN). In this article, we analyze the newly found (CBHDN(r, s))’s and calculate
the precise results for topological indexes that are degree-based. These derived topological
indices are currently use in the subject of rigorous examination [1, 10, 11, 12, 13, 14, 15,
16, 20].
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(a)

(b)

(c)

(d)

(e)

FIGURE 2. Chain Benzenoid Hex-Derived Networks (CBHDN)

(dx, dy) Number of Edges (dx, dy) Number of Edges
(3,4) 6rs (4,10) 6rs-6s
(3,5) 3s (5,5) 2

(3,10) 3rs-6s (5,10) 6s-4
(4,5) 6s (10,10) 3rs-3r-3s+2

TABLE 1. Edge Partition for r = s

3.1. Results for the First Case rth Chain Benzenoid Hex-Derived Network,CBHDN(r, s).
In this part, we examine CBHDN(r, s), which is formed from a HDN , for the first time,
and estimate the exact findings for Rα, M1, H , AZI , ABC, and GA indices for case 1.
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Theorem 3.2. Consider Chain Benzenoid Hex-Derived NetworkCBHDN(r, s), the Randić
index is

Rα(CBHDN(r, s)) =



702rs− 300r − 165s+ 50, α = 1;
78rs−3r+24s+2

100 , α = −1;
3(10 + 4

√
3 + 4

√
10 +

√
30)rs

+10(3− 3r − 3s)− 3(4
√
10

+
√
30 + 4

√
5 +
√
15 + 10

√
2)s

−20
√
2, α = 1

2 ;
1
10 (6− 4

√
2− 3r − 3s+ (3

+10
√
3 + 3

√
10 +

√
30)rs

+(6
√
2− 3

√
10 + 2

√
15−

√
30)s), α = −1

2 .

Proof. Let G ∼= CBHDN(r, s) be the chain hex derived network. Using edge partition
from Table 1 and equation 1. 2 , we obtained.
For α = 1,

R1(G) = 12(6rs) + 15(3s) + 30(3rs− 3s) + 20(6s) + 40(6rs− 6s)

+25(2) + 50(6s− 4) + 100(3rs− 3r − 3s+ 2),

R1(G) = 702rs− 300r − 165s+ 50.

For α = −1,

R−1(G) =
6rs

12
+

3s

15
+

3rs− 6s

30
+

6s

20
+

6rs− 6s

40
+

2

25
+

6s− 4

50
+

3rs− 3r − 3s+ 2

100
,

R−1(G) =
78rs− 3r + 24s+ 2

100
.

For α = 1
2 ,

R 1
2
(G) = 6rs

√
12 + 3s

√
15 + (3rs− 3s)

√
30 + 6s

√
20

+(6rs− 6s)
√
40 + 2

√
25 + (6s− 4)

√
50

+(3rs− 3r − 3s+ 2)
√
100

R 1
2
(G) = 3(10 + 4

√
3 + 4

√
10 +

√
30)rs+ 10(3− 3r − 3s)

−3(4
√
10 +

√
30 + 4

√
5 +
√
15 + 10

√
2)s− 20

√
2.

For α = − 1
2 ,

R− 1
2
(G) =

6rs√
12

+
3s√
15

+
3rs− 3s√

30
+

6s√
20

+
6rs− 6s√

40
+

2√
25

+
6s− 4√

50
+

3rs− 3r − 3s+ 2√
100

R− 1
2
(G) =

1

10
(6− 4

√
2− 3r − 3s+ (3 + 10

√
3 + 3

√
10 +

√
30)rs

+(6
√
2− 3

√
10 + 2

√
15−

√
30)s).
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�

Theorem 3.3. Consider Chain Benzenoid Hex-Derived NetworkCBHDN(r, s), the atom-
bond connectivity index is

ABC(G) =
1

10
(8
√
2 + 10

√
15rs+ 3

√
2(3rs− 3r − 3s+ 2)

+(6
√
30 +

√
330)(rs− s) + (6

√
10 + 6

√
35)s

+2
√
26(3s− 2)).

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 1 and the equation 1. 3 , we easily prove it.

ABC(G) = 6rs

√
5

12
+ 3s

√
6

15
+ (3rs− 6s)

√
11

30
+ 6s

√
7

20

+(6rs− 6s)

√
12

40
+ 2

√
8

25
+ (6s− 4)

√
13

50

+(3rs− 3r − 3s+ 2)
3
√
2

10
,

ABC(G) =
1

10
(8
√
2 + 10

√
15rs+ 3

√
2(3rs− 3r − 3s+ 2)

+(6
√
30 +

√
330)(rs− s) + (6

√
10 + 6

√
35)s

+2
√
26(3s− 2)).

�

Theorem 3.4. Consider CBHDN(r, s), the geometric arithmetic is

GA(G) = 3rs− 3r − 3s+ 4 +
24
√
3

7
rs+ (

12
√
10

7

+

√
30

5
)(rs− s) + (

8
√
5

3
+

3
√
15

4
)s

+
4
√
2

3
(3s− 2).
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Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 1 and the equation 1. 4 , we easily prove it.

GA(G) = 6rs(
2
√
12

7
) + 3s(

2
√
15

8
) + (3rs− 6s)(

2
√
30

13
)

+6s(
2
√
20

9
) + (6rs− 6s)(

2
√
40

14
) + 2(

2
√
25

10
)

+(6s− 4)(
2
√
50

15
) + (3rs− 3r − 3s+ 2)(

2
√
100

20
)

GA(G) = 3rs− 3r − 3s+ 4 +
24
√
3

7
rs+ (

12
√
10

7

+

√
30

5
)(rs− s) + (

8
√
5

3
+

3
√
15

4
)s

+
4
√
2

3
(3s− 2).

�

Theorem 3.5. Consider CBHDN(r, s), Zagreb index is

M1(G) = 15(15rs− 4r − s).

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 1 and the equation 1. 5 , we easily prove it.

M1(G) = 7(6rs) + 8(3s) + 13(3rs− 6s) + 9(6s)

+14(6rs− 6s) + 10(2) + 15(6s− 4)

+20(3rs− 3r − 3s+ 2)

M1(G) = 15(15rs− 4r − s).

�

Theorem 3.6. Consider CBHDN(r, s), the Zagreb index is

M2(G) = 702rs− 300r − 165s+ 50.

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 1 and the equation 1. 3 for α = 1, we easily prove it.

M2(G) = 12(6rs) + 15(3s) + 30(3rs− 6s) + 20(6s) + 40(6rs− 6s)

+25(2) + 50(6s− 4) + 100(3rs− 3r − 3s+ 2)

M2(G) = 702rs− 300r − 165s+ 50.

�

Theorem 3.7. Consider CBHDN(r, s), the harmonic index is

H(G) =
18198rs− 1638r + 6905s+ 364

5460
.
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(dx, dy) Number of Edges (dx, dy) Number of Edges
(3,4) 6rs (4,10) 6rs-4r-2s
(3,5) 2r+s (5,5) 2

(3,10) 3rs-2r-s (5,10) 4r+2s-4
(4,5) 4r+2s (10,10) 3rs-4r-2s+2

TABLE 2. Edge Partition for Case 2

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 1 and the equation 1. 7 , we easily prove it.

H(G) = 6rs(
2

7
) + 3s(

2

8
) + (3rs− 6s)(

2

13
) + 6s(

2

9
)

+(6rs− 6s)(
2

14
) + 2(

2

10
) + (6s− 4)(

2

15
)

+(3rs− 3r − 3s+ 2)(
2

20
)

H(G) =
18198rs− 1638r + 6905s+ 364

5460
.

�

Theorem 3.8. Consider CBHDN(r, s), the augmented Zagreb index is

AZI(G) =
35594853344

40429125
rs− 125000

243
r − 525073235325875

1949837833944
s

+
72321203125

410012928
.

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 1 and the equation 1. 7 , we easily prove it.

AZI(G) = 6rs(
12

5
)3 + 3s(

15

6
)3 + (3rs− 6s)(

30

11
)3 + 6s(

20

7
)3

+(6rs− 6s)(
40

12
)3 + 2(

25

8
)3 + (6s− 4)(

50

13
)3

+(3rs− 3r − 3s+ 2)(
100

18
)3

AZI(G) =
35594853344

40429125
rs− 125000

243
r − 525073235325875

1949837833944
s

+
72321203125

410012928
.

�

3.9. Results for the Second Case rth Chain Benzenoid Hex-Derived Network,CBHDN(r, s).
In this part, we examine CBHDN(r, s), which is formed from a HDN , for the first time,
and estimate the exact findings for Rα, M1, H , AZI , ABC, and GA indices for case 2.
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1

2

1

2

3

4 s-2

s-1

s

r

FIGURE 3. Chain Benzenoid Hex-Derived Networks (CBHDN)

Theorem 3.10. Consider Chain Hex Derived Network CBHDN(r, s), the Randić index
is

Rα(CBHDN(r, s)) =



702rs− 310r − 155s+ 50, α = 1;
234rs+62r+31sn+6

300 , α = −1;
10 + 12

√
3rs+ 10(3rs

−4r − 2s+ 2) + 10
√
2(2r

+s− 2) + (4
√
5 +
√
15)(2r

+s) + (4
√
10 +

√
30)(3rs

−2r − sn), α = 1
2 ;

1
30 (9rs− 12r − 6s+ 18

+30
√
3rs+ 6

√
2(2r + s

−2) + (6
√
5 + 2

√
15)(2r + s)

+(3
√
10 +

√
30)(3rs

−2r − s)), α = −1
2 ;

Proof. Let G ∼= CBHDN(r, s). The proof is just calculation based. Using the edge par-
tition given in Table 2 and the equation 1. 2 , we easily prove it.
For α = 1,

R1(G) = 12(6rs) + 15(2r + s) + 30(3rs− 2r − s)
+20(4r + 2s) + 40(6rs− 4r − 2s) + 25(2)

+50(4r + 2s− 4) + 100(3rs− 4r − 2s+ 2),

R1(G) = 702rs− 310r − 155s+ 50.
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For α = −1,

R−1(G) =
6rs

12
+

2r + s

15
+

3rs− 2r − s
30

+
4r + 2s

20
+

6rs− 4r − 2s

40

+
2

25
+

4r + 2s− 4

50
+

3rs− 4r − 2s+ 2

100
,

R−1(G) =
234rs+ 62r + 31s+ 6

300
.

For α = 1
2 ,

R 1
2
(G) = 6rs

√
12 + (2r + s)

√
15 + (3rs− 2r − s)

√
30 + (4r + 2s)

√
20

+(6rs− 4r − 2s)
√
40 + 2

√
25 + (4r + 2s− 4)

√
50

+(3rs− 4r − 2s+ 2)
√
100,

R 1
2
(G) = 10 + 12

√
3rs+ 10(3rs− 4r − 2s+ 2) + 10

√
2(2r + s− 2)

+(4
√
5 +
√
15)(2r + s) + (4

√
10 +

√
30)(3rs− 2r − s).

For α = − 1
2 ,

R− 1
2
(G) =

6rs√
12

+
2r + s√

15
+

3rs− 2r − s√
30

+
4r + 2s√

20

+
6rs− 4r − 2s√

40
+

2√
25

+
4r + 2s− 4√

50

+
3rs− 4r − 2s+ 2√

100
,

R− 1
2
(G) =

1

30
(9rs− 12r − 6s+ 18 + 30

√
3rs+ 6

√
2(2r + s− 2)

+(6
√
5 + 2

√
15)(2r + s) + (3

√
10 +

√
30)(3rs− 2r − s)).

�

Theorem 3.11. For Chain Hex Derived Network, the atom-bond connectivity index is

ABC(G) =
1

30
(24
√
2 + 30

√
15rs+ 9

√
2(3rs− 4r − 2s+ 2)

+6
√
26(2r + s− 2) + (6

√
10 + 6

√
35)(2r + s)

+(6
√
30 +

√
330)(3rs− 2r − s)).
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Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 2 and the equation 1. 3 , we easily prove it.

ABC(G) = 6rs

√
5

12
+ (2r + s)

√
6

15
+ (3rs− 2r − s)

√
11

30

+(4r + 2s)

√
7

20
+ (6rs− 4r − 2s)

√
12

40
+ 2

√
8

25

+(4r + 2s− 4)

√
13

50
+ (3rs− 4r − 2s+ 2)

√
18

100
,

ABC(G) =
1

30
(24
√
2 + 30

√
15rs+ 9

√
2(3rs− 4r − 2s+ 2)

+6
√
26(2r + s− 2) + (6

√
10 + 6

√
35)(2r + s)

+(6
√
30 +

√
330)(3rs− 2r − s)).

�

Theorem 3.12. Consider CBHDN(r, s), the geometric arithmetic index is

GA(G) = 3rs− 4r − 2s+ 4 +
24
√
3

7
rs+

4
√
2

3
(2r + s− 2)

+(
8
√
5

9
+

√
15

4
(2r + s) + (

4
√
10

7
+

2
√
30

13
)(3rs− 2r − s)).

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 2 and the equation 1. 4 , we easily prove it.

GA(G) = 6rs(
2
√
12

7
) + (2r + s)(

2
√
15

8
) + (3rs− 2r − s)(2

√
30

13
)

+(4r + 2s)(
2
√
20

9
) + (6rs− 4r − 2s)(

2
√
40

14
) + 2(

2
√
25

10
)

+(4r + 2s− 4)(
2
√
50

15
) + (3rs− 4r − 2s+ 2)(

2
√
100

20
)

GA(G) = 3rs− 4r − 2s+ 4 +
24
√
3

7
rs+

4
√
2

3
(2r + s− 2)

+(
8
√
5

9
+

√
15

4
(2r + s) + (

4
√
10

7
+

2
√
30

13
)(3rs− 2r − s)).

�

Theorem 3.13. For CBHDN(r, s), the Zagreb index is

M1(G) = 25(9rs− 2r − s).
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Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 2 and the equation 1. 5 , we easily prove it.

M1(G) = 7(6rs) + 8(2r + s) + 13(3rs− 2r − s) + 9(4r + 2s)

+14(6rs− 4r − 2s) + 10(2) + 15(4r + 2s− 4)

+20(3rs− 4r − 2s+ 2)

M1(G) = 25(9rs− 2r − s).

�

Theorem 3.14. For CBHDN(r, s), the Zagreb index is

M2(G) = 702rs− 310r − 155s+ 50.

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 2 and the equation 1. 2 for α = 1, we easily prove it.

M2(G) = 12(6rs) + 15(2r + s) + 30(3rs− 2r − s)
+20(4r + 2s) + 40(6rs− 4r − 2s) + 25(2)

+50(4r + 2sn− 4) + 100(3rs− 4r − 2s+ 2)

M2(G) = 702rs− 310r − 155s+ 50.

�

Theorem 3.15. For CBHDN(r, s), the harmonic index is

H(G) =
54594rs+ 10534r + 5267s+ 1092

16380
.

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 2 and the equation 1. 6 , we easily prove it.

H(G) = 6rs(
2

7
) + (2r + s)(

2

8
) + (3rs− 2r − s)( 2

13
)

+(4r + 2s)(
2

9
) + (6rs− 4r − 2s)(

2

14
) + 2(

2

10
)

+(4r + 2s− 4)(
2

15
) + (3rs− 4r − 2s+ 2)(

2

20
)

H(G) =
54594rs+ 10534r + 5267s+ 1092

16380
.

�

Theorem 3.16. Consider CBHDN(r, s), augmented Zagreb index is

AZI(G) =
(1.2224r + 2.0600rs)× 1019 − 15625(3.9118s− 2.6413)× 1014

2.3398× 1016
.
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(dx, dy) Number of Edges (dx, dy) Number of Edges
(3,4) 6rs (4,10) 6rs-4r-2s
(3,5) 2r+s+1 (5,5) 4

(3,10) 3rs-2r-s (5,10) 4r+2s-6
(4,5) 4r+2s+2 (10,10) 3rs-4r-2s+2

TABLE 3. Edge Partition for Case 3

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 2 and the equation 1. 7 , we easily prove it.

AZI(G) = 6rs(
12

5
)3 + (2r + s)(

15

6
)3 + (3rs− 2r − s)(30

11
)3

+(4r + 2s)(
20

7
)3 + (6rs− 4r − 2s)(

40

12
)3 + 2(

25

8
)3

+(4r + 2s− 4)(
50

13
)3 + (3rs− 4r − 2s+ 2)(

100

18
)3

AZI(G) =
(1.2224r + 2.0600rs)× 1019 − 15625(3.9118s− 2.6413)× 1014

2.3398× 1016
.

�

3.17. Results for the Third Case rth Chain Benzenoid Hex-Derived Network,CBHDN(r, s).
In this part, we examine CBHDN(r, s), which is formed from a HDN , for the first time,
and estimate the exact findings for Rα, M1, H , AZI , ABC, and GA indices for case 3.

Theorem 3.18. For Chain Hex Derived Network CBHDN(r, s), the Randić index is

Rα(CBHDN(r, s)) =



702rs− 310r − 155s+ 55, α = 1;
234rs+62r+31s+68

300 , α = −1;
20 + 12

√
3rs+ 10(3rs

−4r − 2s+ 2) + 10
√
2(2r

+s− 3) + (4
√
5 +
√
15)(2r

+s+ 1) + (4
√
10+√

30)(3rs− 2r − s), α = 1
2 ;

1
30 (30− 12r + 9rs

+30
√
3rs− 6s+ 6

√
2(2r

+s− 3) + (6
√
5 + 2

√
15)(2r

+s+ 1) + (3
√
10+√

30)(3rs− 2r − s)), α = −1
2 .

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 3 and the equation 1. 2 , we easily prove it.
For α = 1,
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R1(G) = 12(6rs) + 15(2r + s+ 1) + 30(3rs− 2r − s)
+20(4r + 2s+ 2) + 40(6rs− 4r − 2s) + 25(4)

+50(4r + 2s− 6) + 100(3rs− 4r − 2s+ 2),

R1(G) = 702rs− 310r − 155s+ 55.

For α = −1,

R−1(G) =
6rs

12
+

2r + s+ 1

15
+

3rs− 2r − s
30

+
4r + 2s+ 2

20
+

6rs− 4r − 2s

40
+

4

25

+
4r + 2s− 6

50
+

3rs− 4r − 2s+ 2

100
,

R−1(G) =
234rs+ 62r + 31s+ 68

300
.

For α = 1
2 ,

R 1
2
(G) = 6rs

√
12 + (2r + s+ 1)

√
15 + (3rs− 2r − s)

√
30

+(4r + 2s+ 2)
√
20 + (6rs− 4r − 2s)

√
40 + 4

√
25

+(4r + 2s− 6)
√
50 + (3rs− 4r − 2s+ 2)

√
100,

R 1
2
(G) = 20 + 12

√
3rs+ 10(3rs− 4r − 2s+ 2) + 10

√
2(2r + s− 3),

+(4
√
5 +
√
15)(2r + s+ 1) + (4

√
10 +

√
30)(3rs− 2r − s).

For α = − 1
2 ,

R− 1
2
(G) =

6rs√
12

+
2r + s+ 1√

15
+

3rs− 2r − s√
30

+
4r + 2s+ 2√

20

+
6rs− 4r − 2s√

40
+

4√
25

+
4r + 2s− 6√

50

+
3rs− 4r − 2s+ 2√

100
,

R− 1
2
(G) =

1

30
(30− 12r + 9rs+ 30

√
3rs− 6s+ 6

√
2(2r + s− 3)

+(6
√
5 + 2

√
15)(2r + s+ 1) + (3

√
10 +

√
30)(3rs− 2r − s)).

�

Theorem 3.19. Let G be the CBHDN(r, s). The proof is just calculation based. Using
the edge partition given in Table 3 and the equation 1. 3 , we easily prove it.

ABC(G) =
1

30
(48
√
2 + 30

√
15rs+ 9

√
2(3rs− 4r − 2s+ 2)

+6
√
26(2r + s− 3) + (6

√
10 + 6

√
35)(2r + s+ 1)

+(6
√
30 +

√
330)(3rs− 2r − s)).
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Proof. Let CBHDN using edge partition, we obtained

ABC(G) = 6rs

√
5

12
+ (2r + s+ 1)

√
6

15
+ (3rs− 2r − s)

√
11

30

+(4r + 2s+ 2)

√
7

20
+ (6rs− 4r − 2s)

√
12

40
+ 4

√
8

25

+(4r + 2s− 6)

√
13

50
+ (3rs− 4r − 2s+ 2)

√
18

100

ABC(G) =
1

30
(48
√
2 + 30

√
15rs+ 9

√
2(3rs− 4r − 2s+ 2)

+6
√
26(2r + s− 3) + (6

√
10 + 6

√
35)(2r + s+ 1)

+(6
√
30 +

√
330)(3rs− 2r − s)).

�

Theorem 3.20. Consider CBHDN(r, s), geometric arithmetic index is

GA(G) = 3rs− 4r − 2s+ 6 +
24
√
3

7
rs+

4(2r + s− 3)
√
2

3

+(
8
√
5

9
+

√
15

4
)(2r + s+ 1) + (

4
√
10

7

+
2
√
30

13
)(3rs− 2r − s).

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 3 and the equation 1. 4 , we easily prove it.

GA(G) = 6rs
2
√
12

7
+ (2r + s+ 1)

2
√
15

8
+ (3rs− 2r − s)2

√
30

13

+(4r + 2s+ 2)
2
√
20

9
+ (6rs− 4r − 2s)

2
√
40

14
+ 4

2
√
25

10

+(4r + 2s− 6)
2
√
50

15
+ (3rs− 4r − 2s+ 2)

2
√
100

20

GA(G) = 3rs− 4r − 2s+ 6 +
24
√
3

7
rs+

4(2r + s− 3)
√
2

3

+(
8
√
5

9
+

√
15

4
)(2r + s+ 1) + (

4
√
10

7

+
2
√
30

13
)(3rs− 2r − s).

�

Theorem 3.21. Consider CBHDN(r, s), Zagreb index is

M1(G) = 225rs− 50r − 25s+ 16.
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Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 3 and the equation 1. 5 , we easily prove it.

M1(G) = 7(6rs) + 8(2r + s+ 1) + 13(3rs− 2r − s) + 9(4r + 2s+ 2)

+14(6rs− 4r − 2s) + 10(4) + 15(4r + 2s− 6)

+20(3rs− 4r − 2s+ 2)

M1(G) = 225rs− 50r − 25s+ 16.

�

Theorem 3.22. Consider CBHDN(r, s), the Zagreb index is

M2(G) = 702rs− 310r − 155s+ 55.

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 3 and the equation 1. 2 for α = 1, we easily prove it.

M2(G) = 12(6rs) + 15(2r + s+ 1) + 30(3rs− 2r − s)
+20(4r + 2s+ 2) + 40(6rs− 4r − 2s) + 25(4)

+50(4r + 2s− 6) + 100(3rs− 4r − 2s+ 2)

M2(G) = 702rs− 310r − 155s+ 55.

�

Theorem 3.23. Consider CBHDN(r, s), the harmonic index is

H(G) =
54594rs+ 10534r + 5267s+ 14651

16380
.

Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 3 and the equation 1. 6 , we easily prove it.

H(G) = 6rs(
2

7
) + (2r + s+ 1)(

2

8
) + (3rs− 2r − s)( 2

13
)

+(4r + 2s+ 2)(
2

9
) + (6rs− 4r − 2s)(

2

14
) + 4(

2

10
)

+(4r + 2s− 6)(
2

15
) + (3rs− 4r − 2s+ 2)(

2

20
)

H(G) =
54594rs+ 10534r + 5267s+ 14651

16380
.

�

Theorem 3.24. Consider CBHDN(r, s), the augmented Zagreb index is

AZI(G) =
1.03001× 1019rs− 6.1123× 1018r − 15625× 1014(1.9559s− 1.3919)

1.1699× 1016
.
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Proof. Let G be the CBHDN(r, s). The proof is just calculation based. Using the edge
partition given in Table 3 and the equation 1. 7 , we easily prove it.

AZI(G) = 6rs(
12

5
)3 + (2r + s+ 1)(

15

6
)3 + (3rs− 2r − s)(30

11
)3

+(4r + 2s+ 2)(
20

7
)3 + (6rs− 4r − 2s)(

40

12
)3 + 4(

25

8
)3

+(4r + 2s− 6)(
50

13
)3 + (3rs− 4r − 2s+ 2)(

100

18
)3

AZI(G) =
1.03001× 1019rs− 6.1123× 1018r − 15625× 1014(1.9559s− 1.3919)

1.1699× 1016
.

�

• We estimated the indices for distinct characteristics of r and s to compare the M1,
H , ABC, and GA indices of CBHDN(r, s) for r = s. We can plainly see from the
accompanying Table 4 that when we increase the values of r and s, the order of the indices
increases, and their graphical structure is illustrated in Figure 4.
• For comparing the M1, H , ABC, and GA indices of CBHDN(r, s) for rs, where r is
an odd number and n is a natural number. The order of the indices increases as the values
of r and s increase, as shown in Table 5, and their graphical structure is given in Figure 5.
• For comparing theM1, H , ABC, andGA indices of CBHDN(r, s) for rs, where r and
s are both even. We can see from Table 6 that when we increase the values of r and s, the
order of the indices increases, and their graphical structure is displayed in Figure 6.
• For the evaluation of the indicesM1, H , ABC, andGA of CBHDN(r, s) for rs, where
r is even and s is odd. We can see from Table 7 that when we increase the values of r and
s, the order of the indices increases, and their graphical structure is displayed in Figure 7.

(m,n) M1 H ABC GA
(2,2) 750 15.327 42.651 66.064
(3,3) 1800 32.957 94.752 145.347
(4,4) 3300 57.252 167.351 255.54
(5,5) 5250 88.214 260.447 396.642
(6,6) 7650 125.841 375.041 568.655
(7,7) 10500 170.134 508.132 771.577
(8,8) 13800 221.093 662.72 1005.41
(9,9) 17550 278.718 837.006 1270.15

(10,10) 21750 343.009 1033.39 1565.8

TABLE 4. Numerical computation of CBHDN(r, s) for r = s
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(m,n) M1 H ABC GA
(3,4) 2450 43.278 125.784 186.908
(3,5) 3100 53.598 156.817 235.774
(3,6) 3750 63.918 187.849 284.641
(3,7) 4400 74.239 218.881 333.508
(3,8) 5050 84.559 249.913 382.374
(3,9) 5700 94.880 280.945 431.241
(3,10) 6350 105.201 311.977 480.107
(3,11) 7000 115.521 343.009 528.974
(3,12) 7650 125.841 374.041 577.84

TABLE 5. Numerical computation of CBHDN(r, s) for r < s, where
r is odd and s is natural number.

(m,n) M1 H ABC GA
(2,4) 1600 29.302 84.218 122.95
(2,6) 2450 43.277 125.784 186.908
(2,8) 3300 57.252 167.351 250.866
(2,10) 4150 71.227 208.918 314.824
(2,12) 5000 85.202 250.485 378.783
(2,14) 5850 99.177 292.051 442.741
(2,16) 6700 113.152 333.618 506.699
(2,18) 7550 127.127 375.185 570.657
(2,20) 8400 141.102 416.752 634.615

TABLE 6. Numerical computation of CBHDN(r, s) for r < s, where
r and s both are even.

(m,n) M1 H ABC GA
(2,3) 1191 23.1431 65.362 105.966
(4,5) 4191 71.7339 210.559 343.542
(6,7) 8991 146.9885 437.746 716.217
(8,9) 15591 248.9068 746.923 1223.99

(10,11) 23991 377.4889 1138.09 1866.87
(12,13) 34191 532.7347 1611.25 2644.84
(14,15) 46191 714.6442 2166.39 3557.91
(16,17) 59991 923.2175 2803.53 4606.09
(18,19) 75591 1158.4545 3522.65 5789.36

TABLE 7. Numerical computation of CBHDN(r, s) for r < s, where
r is even and s is odd.
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FIGURE 4. Graphical representation ofCBHDN(r, s) for different val-
ues of r = s.

FIGURE 5. Graphical representation of CBHDN(r, s) for r < s,
where r is odd and s is natural number.

4. DISCUSSION

The computed topological indices reveal fundamental structure-property relationships
in Chain Benzenoid Hex-Derived Networks that have significant theoretical and practical
implications. Our results demonstrate that increasing the network dimensions (r, s) leads
to predictable growth patterns in all six indices (Rα, M1, H , AZI , ABC, and GA), with
the ABC and GA indices showing particularly strong correlations with molecular stabil-
ity. The consistent mathematical relationships we established between network parameters



720 Haidar Ali, Rimsha Zahid, Muhammad Asif, Barya Iftikhar, Parvez Ali

FIGURE 6. Graphical representation of CBHDN(r, s) for r < s,
where r and s both are even.

FIGURE 7. Graphical representation of CBHDN(r, s) for r < s,
where r is even and s is odd.

and index values suggest that these topological descriptors can serve as reliable predic-
tors for physicochemical properties in benzenoid systems, including aromaticity, electron
delocalization, and thermal stability. The distinct behaviors observed in the three struc-
tural cases (r = s, r < s, and r > s) provide new insights into how symmetry breaking
affects molecular properties, which could guide the design of benzenoid-based materials
with tailored characteristics. Particularly noteworthy is the nonlinear response of the AZI
index to dimensional changes, indicating its potential as a sensitive marker for structural
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defects in hexagonal networks. These findings advance computational chemistry method-
ologies by providing a quantitative framework for structure-activity predictions in complex
benzenoid systems, with immediate applications in drug design (through QSAR modeling
of polycyclic aromatic compounds) and materials science (for optimizing graphene-like
nanostructures). The graphical representations further enhance the utility of these results
by enabling visual identification of property trends across different network configurations,
offering researchers an intuitive tool for molecular design.
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6. CONCLUSION

It became evident that a psychological perspective alone could not account for the com-
plexity of the events occurring in the classroom. Establishing social norms that provided
the setting in which children engaged in meaningful activity was an aspect of social inter-
action not considered prior to the classroom teaching experiment. As these norms became
accepted, the students participated in a type of discourse in which they were expected to
explain and justify their solutions and listen to others. The teacher acted to initiate and
guide students’ learning by posing questions and highlighting children’s expectations. As
students engaged in this discourse, their personal meanings were negotiated until an agree-
ment was reached. The establishment of taken-as-shared meanings between the participants
enabled mathematical ideas to be established by members of the class.
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