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Abstract. An important challenge in mathematical modeling is to find
a model that captures the fundamental physics of a system and is sim-
ple enough to allow for mathematical analysis. In the physical sciences,
physiology, ecology, and other practical research domains, fractional de-
lay differential equations (FDDEs) are frequently used. Most fractional
delay differential equations can only be solved numerically because they
lack analytic solutions. In contrast to the Adomian decomposition method,
a new method for solving delay differential equations called the new Frac-
tional Novel Analytical Scheme (FNAS) is presented in this paper. A frac-
tional novel analytical scheme is built on the fractional Taylor series. The
calculation is done using the Caputo derivative. Three well-known physi-
cal models such as advection-dispersion equation of fractional-order, non-
linear gas-dynamics equation of fractional-order and convection-diffusion
equation of fractional-order with proportional time-delay are solved by us-
ing the proposed technique to demonstrate the performance and efficiency
of the FNAS. By graphing absolute error values and contrasting results to
numerous existing solutions, the correctness of the proposed technique is
presented. In addition to being straightforward, the suggested strategy is
accurate and logical in the difficulties it solves.

AMS (MOS) Subject Classification Codes: 26A33; 35R11
Key Words: Fractional Calculus, Fractional Partial Delay Differential Equations, Frac-
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1. INTRODUCTION

Applications for DDEs (Delay Differential Equations) in engineering and research are
numerous. The DDE, which is data-dependent and applied to physical systems, simplifies
the ordinary differential equation. Nowadays, FDDEs are the subject of greater research
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than differential equations since even a slight delay may have a big effect. Fractional deriva-
tives and temporal delays are used in FDDEs. Time-delays reveal the past of a previous
state, although fractional derivatives are non-local and can imitate memory effects. Frac-
tional derivatives and delays can be used to represent real-world circumstances better. Nu-
merous other domains, including population dynamics, bioengineering, electrochemistry
control systems, and physics, also use FDDEs [3| [7, 4} 5, 16, 9]]. There are several perti-
nent studies in the [15} 33} 137, 136 [26} 127} 28] series. The importance of fractional-order
delay models has increased as a result, and in recent years, this field of study has become
increasingly interdisciplinary. Many academics apply numerical and analytical techniques
to analyze the FDDE.

Neutral functional proportional DDEs were solved using the replicating kernel Hilbert
space method by Lv and Gao [16]]. The fractional-order delay model was studied using Ja-
cobi polynomials in [23]. The authors in [21] used Bernoulli wavelets to solve the DDEs.
The Hermite wavelet and Chebyshev wavelet were used to examine the approximate solu-
tion of the fractional delay model in [22] [10], respectively. Haar wavelets were utilized to
solve the delay model system [14]. Ali et al. employed the spectral collocation approach
to solve the fractional delay model [2]]. In [32]], Wang solved the FDDE problem utilizing
the Runge-Kutta type approach. Later, artificial neural networks were employed to address
this issue [39]]. The publications listed in [8} 17,130, 31} [18} [11] provide additional insights
and strategies for solving fractional delay models.

Partial functional differential equations represent a particular category of proportional
delay partial differential equations. Various contexts, including biology, medicine, popula-
tion ecology, control systems, and climate models, use equations of this type [35)]. Their
independent variables are time t and one or more dimensional variables s, which frequently
refer to a cell’s size, position in space, or other characteristics. The answers might be the
substitutes for voltage, temperature, or the densities of other particles, such as chemicals,
cells, and so on. Partial delay differential equations (PDDEs) can be solved numerically
using relatively novel methods. Zubik-Kowal [38]] solved differential-functional parabolic
equations and linear differential equations using the Chebyshev pseudospectral method.
Zubik-Kowal and Jackiewicz [12]] employed waveform relaxation and spectral colloca-
tion methods to solve nonlinear PDDEs. In [1], authors introduced the two-dimensional
differential transform method and its condensed variant as a solution for PDDEs. Tan-
thanuch [29] utilized the group analysis method to resolve the Burgers DDE. Polyanin and
Zhurov [20] proposed employing the functional constraints technique as a means to gener-
ate exact solutions for the reaction-diffusion delay equations.

The current study applies the Fractional Novel Analytical Scheme (FNAS) to obtain ap-
proximate solutions to FDDEs, both linear and nonlinear cases. This approach was first
examined by [34] in her PhD thesis. Wiwatwanich intended to modify the truncated Tay-
lor series to solve ordinary and partial differential equations. Authors of [25| 24] devel-
oped this method for fractional differential equations by using the Fractional Taylor Series,
which is an effective tool for solving nonlinear equations in this technique. The suggested
approach yields Taylor Series solutions by combining the linear and nonlinear parts and
then proceeds using the calculus of many variables. Compared to the Adomian Decompo-
sition Method (ADM), this new variation is believed to be more straightforward to grasp.
The classical ADM splits a function into two parts, linear and nonlinear parts, which can
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be approximated using Adomian polynomials. However, this process often involves com-
plex computations. This study proposes a method to approximate the entire operator if
H[¢(s,t)] is analytical in its arguments. The operator is treated as an implicit function of
t and expanded its Taylor series around ¢ = 0. This approach improves the efficiency of
the ADM process.

On the other hand, a comprehensive survey indicates that the DDEs of fractional-order
has not yet been examined using this approach. FNAS avoids iterative procedures and
matrix computations commonly required in other numerical methods. It significantly re-
duces computation time, offering quick convergence with just a few terms in the series,
even for complex and highly nonlinear systems. These are the motivations for the cur-
rent study to explore solving advection-dispersion equation of fractional-order, nonlinear
gas-dynamics equation of fractional-order and convection-diffusion equation of fractional-
order with proportional time-delay. This research includes a variety of test problems. This
strategy has shown to be incredibly successful because of its great accuracy, convergence,
and adaptability. Notably, it does not require linearization or other type of modification.
However, despite its merits, the approach may have limited utility. It might not be suited for
certain types of nonlinear Fractional Partial Differential Equations (FPDESs), particularly
those with singularities, discontinuities, or specified boundary conditions. It is imperative
to use caution when applying this strategy to different FPDE settings due to its potential
limitations.

The rest of the paper is organized as follows: Section[2|contains preliminary information
and notations about fractional calculus. Section [3]describes a new, revolutionary numerical
approach (FNAS) for FDDEs, and its error analysis is discussed in Section 4] Section 3]
provides several exemplary instances with a discussion of results in Section [f] Finally,
Section[7]concludes the research paper.

2. PRELIMINARIES AND NOTATIONS
In this part, we present fundamental definitions and properties of fractional calculus.

Definition 1. The fractional integral .J,' is defined as, v > 0

1 t
Jl (s, t) = */ (t—=n)""p(s,n)dn; n>0,n—1<y<n,neN. (1)
0

Ly
Definition 2. The Caputo time-fractional derivative of ¢ is defined as:
1 " o(s, n—
L g ZE ) g vprgist), n-1<y<n
DYé(s,t)={ Lln—~ on" ’
L 9" (s,
o T
2
I"¢(s, 1) th : - :
here denotes n'"-order partial derivatives, for further details, see [19].

atn

Attributes of CFD (Caputo Fractional Derivative):
For CFD the following properties exist.
I'l+n)

: Y
M Dye" = L(l+n—7)

T, n> 0
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(i) D} (cp(s,t)) = c (D] P(s,t));

(iii) Dy (ad(s,t) + bip(s, ) = aD é(s, ) + bDJ (s, b);

(vi) Djc=0,
where a, b and c are constants in these equations. Caputo fractional derivative will be used
in this research.

Definition 3. A fractional product rule [19] can be defined as:
D7 fo(s,yits. 0 = 3 (1) 1070t 1070051, ®

n=0

when n > ~, the term D] ™" is called a fractional integral and is also represented by J;" 7.

3. PROPOSED SCHEME FOR FRACTIONAL PARTIAL DELAY DIFFERENTIAL EQUATION

We will discuss the general fractional partial delay differential equation to be written as

13

0 0
¢(q187 klt)? ) 7n¢(qns7 knt)) ) (4)

D} (0l 0) = (520w ko) 5 u

with initial condition
¢(s,0) = do(s). 5
Here D} (4(s,t)) is the Caputo derivative of order v, n—1 < v < n, s is space variable,
t is the time (s and ¢ are independent variables), ¢ is a primary value, g,, k, € (0,1)Vp €
N U 0 indicates delay parameter and .#" is the differential operator. Equation (4] can be
written as
Di(¢(s, 1)) = H[d(s,1)],

where J [¢(s,t)] = A (s, ¢(qos, kot), & d(q1s, kit), ,%qb(qns, knt)). By tak-
ing fractional integral .J;' on both sides of (4], the equation will be

$(s,) = do(s) + J7 H[6(s, 1], (6)
The fractional Taylor series is extended for 2 [¢(s, t)] about the point ¢ = ¢o, which is
B - (t —to)P?
H (s, )] = H[o(s, t0)] + I;D?%[¢(S,to)]m~ (7N
Put to = 0, then (7)) can be written as
_ 2 5 27
H (s, )] = [d(s,0)] + D?f[éﬁ(svo)]m + Dﬂ%w(sao)]m‘k
DY A (65, 0] e 4 DI A (5,0t . (®)
' T3y +1) ' " (py +1) '
Substituting () by (6], we get
¥ 5 27
8(s,0) = 60(s) + I} [ H[6(5,0)] + DI A 005, O oy + DO #1006, Ol gy +
D37%[¢(s 0)]75377 4+ DV [B(s 0)]L 4.
¢ Ty + 1) K T (py +1)
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Taking fractional integration .J;' and solving then we get

2
6(5.8) =00(s) + 605, O s + DA 05,0 s + D A 005,00
(r—1)y pY oy t(p+1)y
+ .-+ D; %[gﬁ(s,o)]erDt Jif[qb(s,o)]r((pﬂwig.)..,
Y +27 +37 P
Oty = a0t gy Y T TR G ) T T Ty D)
t(p+1)y
+a(p+l)m+'” ) (10)
where
ap = ¢o(s) = ¢(s,0),
a1 = H (s, t0)] = DY (s,0),
as = D] A [¢(s,t0)] = D} ¢(s,0),
as = D} A (s, 10)] = D}V ¢(s,0), an

a, = DP A [4(s,t0)] = DI (s, 0)

such that p is the highest derivative of ¢. Hence, the desired solution will be obtained by
substituting these values in (10)).

4. CONVERGENCE ANALYSIS OF PROPOSED TECHNIQUE
To prove the convergence of the resultant series.
P P ;
7
Yodi=D aim—, (12)
i=0 i=0 Py +1)
with exact solution ¢(s, t). The investigated equation written in the form

13

0 0
D;&Y(Qb(‘gvt)) =X <Sa ¢(q037 kot% %Qﬁ(‘hsa klt)a ) @Qb(%rsa knt)> 9 0< vy S 13
(13)

Theorem 4. Let J£ be an operator from x — X, where X is the Hilbert space. Let the exact
solution of (13)) be ¢. The estimated solution (12)) is converging to ¢, when there exists
a constant 8, here 0 < 6 < 1 in which ||¢py1(s,t)|| < 8||dp(s,t)| for all p € NU{0}.

Proof of Theoremlé—_lt To prove that |¢;|;° ; is converging Cauchy sequence,

Gir1 — @ill = lpisall < Ollall < O3 |piall < --- < 8|pall < 6 Hdoll,  (14)
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now for i, m € N,7 > m, we obtain

i — dmll = (Pi — di—1) + (pic1 — bi2) + -+ (Pmr1 — Pl
<|l¢i = gicall + i1 — izl + -+ + [[Pms1 — dml|
< 81 do(s)]| + 0 Hdo(s)]| + -+ + 8™ do ()]

S (8 +0" 8™ [lgo(s)]

| - gimm
= 5m+117_5||¢0(5)||~ (15)

Left hand side of equation ( 15 |) approaches to zero as i, m — co.
oo

Hence |¢;],_, is a convergent Cauchy sequence in x.

5. NUMERICAL APPLICATION OF THE PROPOSED METHOD

In this section, three well-known physical models such as fractional advection-dispersion
equation, nonlinear fractional gas-dynamics equation and fractional convection-diffusion
equation with proportional time-delay are solved by using the proposed technique to demon-
strate the performance and efficiency of the FNAS. Wolfram Mathematica 13 has been used
for numerical calculations and graphics in all examples.

Example 1. The fractional advection-dispersion equation is employed in groundwater hy-
drology and is a reliable method to simulate the transport of passive tracers carried. Con-
sider the following IVP known as proportional time-delay advection-dispersion equation
of fractional-order [|13]]:
Vo(s, kt) | Og(s,t) D*(s,t)

or s o O (16)
with initial condition ¢(s,0) = E4 (—s), where ¢ is the solute concentration, & is a pro-
portional time-delay parameter, the positive constants v and d are the average fluid velocity
and the dispersion coefficient, respectively, F is the Mittag-Leffler function, s represent
the spatial domain, and ¢ is the time. The specific procedure for achieving the objectives
that are wanted is given in Section [3] By thoroughly following these steps, we are able
to acquire a comprehensive series of solutions. Each step builds upon the preceding one,
offering a systematic approach to problem-solving. This technique ensures that every com-
ponent of the process is covered, leading to exact and effective results.

s t(de k™Y +ve *kT7) 27 d?e k27177 2dve kT2
P(s,t) =e " + + ( +
L1 +7) Fl+2y)\ I'(@2-9) I'2-7)
v2e sk 2l 37 Be k373737 ZudPe k333
+
(2 —7) ) L1+ 3y) ( I'(4—3y) I'(4—3y)
3dv2675k73wt373'y U3675k73wt373'y t4'y d4675k74wt676w
+ ) (

I'(4—37) I'(4—37) F1+4y)\  I(7-67)
4vd3€—sk—4'yt6—6—y 6d2v2e—sk—4fyt6—6—y

M7—67) | (- 67)

+

o) (17)
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1.0

(A) 3D-view of obtained solution (B) Absolute error of (I6]) is pre-
by FNAS to solve (16) at k = sented in this figure at v = v =
y=v=1landd = };. k=1landd= 5.

FIGURE 1. Three-dimensional graphical analysis of time-fractional
advection-dispersion equation is depicted here. Also the AE graph is
presented to show the increase in accuracy of FNAS.

It is noteworthy to remark here that in the integer—space that is v — 1 and dismissing the
effect of the time-delay that is & — 1, we obtain the exact solution ¢z (s,t) = e~ s+ +d)t
aty=1.

Example 2. The conservation laws that apply to engineering procedures, such as the con-
servation of mass, the conservation of momentum, the conservation of energy, etc., are
mathematically expressed in the gas-dynamics equation. Three different types of nonlinear
waves, including shock fronts, rarefactions, and contact discontinuities, can be described
using the nonlinear equations of ideal gas dynamics. Consider the following IVP known as
nonlinear proportional time-delay gas-dynamics equation of fractional-order [13]:
Y

TOH 1 5,222 — 5,1y (1~ (5,10 a1s)
with initial condition ¢(s,0) = E; (—s), here E} is the Mittag-Leffler function. To imple-
ment the suggested method, the numerical approximation of FDDE in the form of series, is
as follows.
e kT e Skt e k373
T1+7) TR-0@y+1)  T{@d—39)T1+37)
e—sk—4Vt6—2'y e—sk—57t10—5'y

TTT 614y TAl_109)TA15y) (19

d(s,t) =e° +
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— =00 ——— =02 —— =03 =04 — 7201 —— y=02 —— =03 y=04
=05 =0.6 y=0.7 =08 y=0.5 —— y=06 —— y=0.7 —— =038

7=0.9 y=1.0 e Exact — y=09 y=1.0 e Exact

#(s,2)

0.0 0.5 1.0 15 2.0

s t
(A) 2D-graphical representation (B) 2D-graphical view of frac-
of fractional behaviour of (I6) tional behaviour of (T6) with de-
withdelayatk = 1,t =2,v =1 layat k = s = v = 1 and
_ 1 _ 1
and d = 55- = 105"

5 y=00 & y=09
5 y=02 & y=10
5 =03 © Exact
= y=04
=05
& =06
& =07
5 =08

(c) 3D-view of fractional be-

haviour of (T6]) with delay at k =

s=v=1landd= ﬁ.
FIGURE 2. Two- and three-dimensional graphical analysis of fractional
behavior for fractional advection-dispersion equation with proportional
time-delay in (T6)) at different y values between 0 and 1.

It is important to note that if we do not take into account the time-delay effect by setting
k approach to 1, we obtain the exact solution ¢ (s,t) = e~ 5 withy = 1.

Example 3. The convection-diffusion equation is a mathematical representation of physical
phenomena in which energy,particles, or other physical quantities are transported inside a
physical system due to the combined effects of diffusion and convection. Consider the
following IVP known as nonlinear proportional time-delay convection-diffusion equation
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#s.0)

— k=2 — k= — k=2 =8 — k=2 — k= — k=2 =8
k_4 k_s k= = k_4 k's k'.s =3
k=l — k=8 — k=2 k=l — k=8 — k=2
k=g k=3 k=3 k=3 k=3 k=55
T T T T T T T T T T T
2.0F 1
1.5F 1
B
S 1.0F B
0.5F 1
0.0F, L L L L L J
0.0 0.5 1.0 15 2.0 25 3.0

(A) 2D-graphical representation
of (I6)) with varying delay term
that is for different values of k
between zero and one with t =
2,7:0:1,d:ﬁ,
which clearly shows the variation
in time-delay of the numerical so-

t

(B) 2D-graphical view of (16}
with varying delay term that is
for different values of k between
zero and one at s = 3,7 =
v=1d= ﬁ. This obviously
displays the numerical solution’s
time-delay’s fluctuations.

lution.

FIGURE 3. Two- and three-dimensional graphical analysis of fractional
advection-dispersion equation with varying delay terms is illustrated

here.

(¢) 3D-view of view of (I6]) with
varying delay term i.e., for differ-
ent values of k between 0 and 1

aty = v = 1,d = 155, which
demonstrates the numerical solu-

tion’s fluctuating time-delay.

=3
= k=5
=4
= k=g

s
8 k=2
k=%

" k=

CE
[
(]

Zle ol @ia o
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TABLE 1. Numerical Comparison of 5" iteration ¢5(s,t) and 8" it-
eration ¢g(s,t) of proposed technique with exact solution ¢g(s,t) and
its absolute error ¢4 (s,t) is also calculated to prove the efficiency of
FNASatt =2,y =v=1,d = ﬁ for advection-dispersion equation
of fractional-order with proportional time-delay.

s ¢r(s,t)  ¢s(s,t)  (ds5)ar ™ ¢s(s,t)  (¢s)ar "
0 7.54E+00 7.41E+00 1.30E-01 7.54E+00  1.92E-03
10 3.42E-04 3.36E-04 5.92E-06 3.42E-04 8.73E-08
20 1.55E-08 1.53E-08 2.69E-10 1.55E-08 3.96E-12
30 7.05E-13 6.93E-13 1.22E-14 7.05E-13 1.80E-16
40 3.20E-17 3.15E-17 5.54E-19 3.20E-17 8.17E-21
50 1.45E-21 1.43E-21 251E-23 1.45E-21 3.71E-25
60 6.60E-26 6.49E-26 1.14E-27 6.60E-26 1.68E-29
70  3.00E-30 2.94E-30 5.18E-32 3.00E-30  7.65E-34
80 1.36E-34 1.34E-34 2.35E-36 1.36E-34  3.47E-38
90 6.18E-39 6.07E-39 1.07E-40 6.18E-39 1.58E-42
100 2.80E-43 2.76E-43 4.85E-45 2.80E-43 7.16E-47
* represents the absolute errors of 5" and 8" iterations respectively.

of fractional-order [|13]]:

0v¢(s, kt)  0%4(s,t)  Op(s,t O%p(s,t
lokt) Q000 0000 o 200D sy (1 olt) . @)

with initial condition ¢(s,0) = Ej (s), here E} is the Mittag-Leffler function. By adhering
to these steps in section [3] we obtain subsequent sequence of solution as

e’k eSk—2 eSk—3¢3 eSk~ b=

o(s,t) =€’ +

esk—5'~/t10—5’y

TSI R @D

Without considering the time-delay and memory effects by letting v, k& — 1, the series
solution (2T)) converges to the exact solution ¢ g(s,t) = e5tt.

6. GRAPHICAL ANALYSIS OF OBTAINED NUMERICAL RESULTS AND DISCUSSION

This section presents various graphs illustrating the relationship between all parameters
of the solution, presented in (16]), (18], and (20)) in both two-dimensional and three-
dimensional formats.

6.1. Graphical Analysis of advection-dispersion equation of fractional-order with pro-
portional time-delay.

FNAS solved the advection-dispersion equation of fractional-order with proportional time-
delay numerically and achieved a remarkable solution that is very close to the exact solu-
tion, see Figureat s €0,5],t €[0,1] withy =k =v=1andd = ;. Figure
illustrates the Absolute Error (AE) graph of the obtained numerical result with the exact

solution of (T6) aty = v =k = 1,s € [0,1],¢ € [0,0.1] and d = 155, which validates

T4y T@-vT(1+2y) " T@=3T1+37)  T(7 =601 +47)
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TABLE 2. Numerical results of (16 for different  values is presented

in this table at k = 1. Comparison of numerical results by FNAS and ex-
act solution ¢ p(s,t) atv =1,d = ﬁ is given for advection-dispersion

equation of fractional-order with proportional time-delay.

s t  ¢r(s,t) v=025 =050 =075 ~v=1.0

0.2 0.0 0.818731 0.818731 0.818731 0.818731 0.818731
0.2 1.002000 2.505610 1.482970 1.154130 1.002000

0.4 1.226300 3.530450 2.011100 1.483390 1.226300

0.6 1.500800 4.576270 2.611770 1.869310 1.500800

0.8 1.836750 5.677880 3.320200 2.332700 1.836750

1.0 2.247910 6.845560 4.163720 2.894100 2.247910

0.4 0.0 0.670320 0.670320 0.670320 0.670320 0.670320
0.2 0.820370 2.051420 1.214150 0.944926 0.820370

0.4 1.004010 2.890480 1.646550 1.214500 1.004010

0.6 1.228750 3.746740 2.138340 1.530460 1.228750

0.8 1.503810 4.648650 2.718350 1.909860 1.503810

1.0 1.840430 5.604670 3.408960 2.369490 1.840430

0.6 0.0 0.548812 0.548812 0.548812 0.548812 0.548812
0.2 0.671662 1.679560 0.994063 0.773640 0.671662

0.4 0.822012 2.366530 1.348080 0.994348 0.822012

0.6 1.006020 3.067570 1.750720 1.253030 1.006020

0.8 1.231210 3.806000 2.225600 1.563660 1.231210

1.0 1.506820 4.588720 2.791020 1.939970 1.506820

0.8 0.0 0.449329 0.449329 0.449329 0.449329 0.449329
0.2 0.549910 1.375110 0.813870 0.633403 0.549910

0.4 0.673007 1.937550 1.103710 0.814103 0.673007

0.6 0.823658 2.511510 1.433370 1.025900 0.823658

0.8 1.008030 3.116090 1.822170 1.280220 1.008030

1.0 1.233680 3.756920 2.285100 1.588320 1.233680

1.0 0.0 0.367879 0.367879 0.367879 0.367879 0.367879
0.2 0.450229 1.125840 0.666341 0.518586 0.450229

0.4 0.551011 1.586330 0.903644 0.666531 0.551011

0.6 0.674354 2.056250 1.173550 0.839934 0.674354

0.8 0.825307 2.551230 1.491860 1.048150 0.825307

1.0 1.010050 3.075910 1.870880 1.300400 1.010050

FNAS accuracy. The fractional behavior of fractional advection-dispersion equation with
1

proportional time-delay at different values of s and ¢ with k = v = 1, d = 355 was another
point view to understudy of this work. The fractional behavior of the numerical fractional
solution obtained by FNAS can be seen in Figure 2| with k¥ = v = 1, and d = ﬁ at
different values of s,t and «. For v € (0, 1], the numerical solution has a smaller varia-
tion and appears similar to the exact solution. Another aspect of this work is to study the
change that occurs in the fractional advection-dispersion equation numerical solution due
to the change in the delay term values. In Figure [3|there emerges observation that there is a
smaller variation in the numerical solution for the & between 0 and 1. In Table[I} a compar-

ison of the fifth and eighth iterations of the numerical solution by the proposed technique
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3

(A) Graphical view of obtained (B) Graphical representation of
solution by FNAS for (I8} at absolute error for (18) at v =

FIGURE 4. The FNAS solution for the time-fractional gas-dynamics
problem with proportional time-delay is graphically analyzed in three
dimensions, and the validity of the suggested scheme is demonstrated by
the AE graph.

TABLE 3. Numerical Comparison of 5" iteration ¢5(s,t) and 8" it-
eration ¢g(s,t) of proposed technique with exact solution ¢ (s,t) and
absolute error ¢ 4 is also calculated to prove the efficiency of FNAS
at ¢ = 0.1 for nonlinear gas-dynamics equation of fractional-order with
proportional time-delay.

s ¢n(sit)  ¢s(s,t) (¢s)ap ™  ¢s(s,t)  (¢s)am”

0 1.10517  1.10517 8.47E-08 1.10517 2.89E-15
10 5.02E-05 5.02E-05 3.85E-12 5.02E-05 1.02E-19
20 2.28E-09 228E-09 1.75E-16 2.28E-09 9.51E-24
30 1.03E-13 1.03E-13 7.93E-21 1.03E-13 4.04E-28
40 4.70E-18 4.70E-18 3.60E-25 4.70E-18 1.85E-32
50 2.13E-22 2.13E-22 1.63E-29 2.13E-22 7.99E-37
60 9.68E-27 9.68E-27 7.42E-34 9.68E-27 3.87E-41
70 439E-31 4.39E-31 3.37E-38 4.39E-31 1.49E-45
80 1.99E-35 1.99E-35 1.53E-42 1.99E-35 6.41E-50
90 9.06E-40 9.06E-40 6.94E-47 9.06E-40 2.94E-54
100 4.11E-44 4.11E-44 3.15E-51 4.11E-44 1.29E-58
* represents the absolute errors of 57 and 8" iterations respectively.
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(A) 2D-view of fractional be- (B) 2D-representation of frac-
haviour of (I8 att = 2,k = 1. tional behaviour of (18] at s =
2,k=1.
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(C) 3D graphical representation of (D) 3D graphical view of frac-
fractional behaviour of (I8) at tional behaviour of (I8) at k =
k=1 1.

FIGURE 5. Graphical investigation of fractional behavior in two and
three dimensions for gas-dynamics fractional-order equation is displayed
at various y values between 0 and 1.

with an exact solution at ¢ = 2 is given, which shows clear accuracy. A detailed analysis
of the numerical solution obtained by FNAS for fractional advection-dispersion equation
at different values of v i.e., v = 0.25,0.50, 0.75, 1.0 is given in Table[2}
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i.e., for different k values lie ent values of k lie between 0 and
between 0 and 1 with ¢t = 5, 1 with s = 5, which display the
which shows the variation in variation in the time-delay of the
the time-delay of the obtained solution obtained by FNAS.
solution.
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() 3D-graphical representation
of (I8} with varying delay terms
i.e., for different k values.

FIGURE 6. A visual representation in two and three dimensions of the
fractional gas-dynamics equation with various delay terms (k) is show-
cased.

6.2. Graphical Analysis of nonlinear gas-dynamics equation of fractional-order with
proportional time-delay.
The nonlinear gas-dynamics problem of fractional-order with proportional time-delay in
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TABLE 4. The table shows the numerical results of (18] for various
values at £ = 1. This paper compares numerical results using FNAS
to the precise solution ¢g(s,t) for a nonlinear fractional gas-dynamics
equation.

s t  ¢r(s,t) v=025 =050 =075 ~v=1.0

0.2 0.0 0.818731 0.818731 0.818731 0.818731 0.818731
0.2 1.000000 2.464670 1.472900 1.150050 1.000000

0.4 1.221400 3.450520 1.989200 1.474090 1.221400

0.6 1.491820 4.451290 2.573550 1.852710 1.491820

0.8 1.822120 5.501740 3.259810 2.306020 1.822120

1.0 2.225540 6.612330 4.073870 2.853650 2.225540

0.4 0.0 0.670320 0.670320 0.670320 0.670320 0.670320
0.2 0.818731 2.017900 1.205910 0.941583 0.818731

0.4 1.000000 2.825050 1.628620 1.206880 1.000000

0.6 1.221400 3.644410 2.107050 1.516870 1.221400

0.8 1.491820 4.504440 2.668900 1.888010 1.491820

1.0 1.822120 5.413720 3.335400 2.336370 1.822120

0.6 0.0 0.548812 0.548812 0.548812 0.548812 0.548812
0.2 0.670320 1.652120 0.987312 0.770903 0.670320

0.4 0.818731 2.312950 1.333400 0.988111 0.818731

0.6 1.000000 2.983790 1.725100 1.241910 1.000000

0.8 1.221400 3.687930 2.185110 1.545770 1.221400

1.0 1.491820 4.432380 2.730800 1.912860 1.491820

0.8 0.0 0.449329 0.449329 0.449329 0.449329 0.449329
0.2 0.548812 1.352640 0.808343 0.631162 0.548812

0.4 0.670320 1.893680 1.091700 0.808997 0.670320

0.6 0.818731 2.442920 1.412400 1.016790 0.818731

0.8 1.000000 3.019420 1.789020 1.265570 1.000000

1.0 1.221400 3.628930 2.235790 1.566110 1.221400

1.0 0.0 0.367879 0.367879 0.367879 0.367879 0.367879
0.2 0.449329 1.107450 0.661815 0.516752 0.449329

0.4 0.548812 1.550420 0.893807 0.662350 0.548812

0.6 0.670320 2.000090 1.156370 0.832475 0.670320

0.8 0.818731 2.472090 1.464730 1.036160 0.818731

1.0 1.000000 2971110 1.830510 1.282230 0.999999

equation (I8]) was numerically solved using the FNAS. The solution obtained was re-
markable, as it perfectly matched the precise solution. This can be observed in Figures fa]
which depict the solution for different values of s in the range of 0 to 5, and ¢ in the range
of 0 to 5, with v and k both equal to 1. Figure [4b| shows the absolute error graph of the
numerical result produced using the precise solution of equation (I8]) withy =k =1, s
ranging from O to 3, and ¢ ranging from O to 0.3. This graph confirms the correctness of
FNAS. The Figure 5] displays the fractional behaviour of the numerical fractional solution
derived by FNAS for different values of 7, s and ¢ with £ = 1. The numerical solution has
a reduced level of fluctuation, resembling the precise solution across various y values. The
main component of this solution is the alteration of the delay term values. Figure [6] also
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003 %020
(A) Graphical representation (B) Absolute error graphical rep-
of solution obtained by FNAS resentation of (20 aty = k =
of (20)aty =k =1. 1.

FIGURE 7. Three-dimensional graphical analysis of the FNAS solution
for convection-diffusion equation of fractional-order with proportional
time-delay is depicted here and the AE graph is also display to show the
accuracy of proposed technique.

TABLE 5. Numerical Comparison of 8" iteration ¢g(s,t) and 10" iter-
ation ¢1¢(s, t) of proposed technique with exact solution ¢ (s, t) and its
absolute error ¢ 4 g is also calculated to prove the efficiency of FNAS at
t = 0.01 for nonlinear convection?diffusion equation of fractional-order.

s on(sit)  ds(s,t) (¢8)ap ™  ¢uo(s,t)  (dio)an
0 1.01E+00 1.01E+00 2.22E-16 1.01E+00 2.22E-16
3 2.03E+01 2.03E+01 7.11E-15 2.03E+01 7.11E-15
6 4.07E+02 4.07E+02 5.68E-14 4.07E+02 5.68E-14
9 8.18E+03 8.18E+03 2.73E-12 8.18E+03 1.82E-12
12 1.64E+05 1.64E+05 2.91E-11 1.64E+05 291E-11
15 3.30E+06 3.30E+06 9.31E-10 3.30E+06 9.31E-10
18 6.63E+07 6.63E+07 1.12E-07 6.63E+07 1.12E-07
21 1.33E+09 1.33E+09 2.15E-06 1.33E+09 1.91E-06
24 2.68E+10 2.68E+10 4.20E-05 2.68E+10 4.20E-05
27 5.37E+11 5.37E+11 8.54E-04 5.37E+11 8.54E-04
30 1.08E+13 1.08E+13 1.76E-02 1.08E+13 1.76E-02
* represents the absolute errors of 87 and 10" iterations respectively.

indicates that the numerical solution is affected by the change in time-delay, which varies
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FIGURE 8. Graphical examination of fractional behavior in two and
three dimensions for the fractional-order convection-diffusion equation
is presented.

for different values of k. At ¢ = 0.1, the numerical solution obtained by FNAS is com-
pared to the precise solution in Table for the 5" and 8" iterations. Empirical evidence
demonstrates that as the number of iterations grows, the outcome converges more. Table EI
provides a detailed examination of the numerical solution found by FNAS for different
values of v (0.25,0.50,0.75,1.0) in the fractional gas-dynamics equation. The analysis
focusses on studying the variations in the equation’s numerical results at different values of
fractional derivative.
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FIGURE 9. A graphical analysis of the fractional convection-diffusion
equation in both two and three dimensions, considering various delay
factors represented by the variable k.

6.3. Graphical Analysis of nonlinear convection-diffusion equation of fractional-order
with proportional time-delay.
Nonlinear convection-diffusion equation of fractional-order with proportional time-delay
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TABLE 6. The table displays the numerical outcomes of equation (20])
for various -y values when £ is equal to 1. The numerical results obtained
via FNAS are compared to the precise solution ¢ (s, t) for a nonlinear
convection-diffusion problem of fractional-order.

s t  ¢p(s,t) =025 =050 ~=075 ~v=1.0

0.2 0.0 1.221400 1.221400 1.221400 1.221400 1.221400
0.2 1.491820 2.327290  1.966590 1.683770 1.491820

0.4 1.822120 2.803600  2.487000 2.129690 1.822110

0.6 2.225540 3.313270  3.086760 2.670920 2.225450

0.8 2.718280 3.904150  3.828080 3.360060 2.717780

1.0 3.320120 4.613230 4.773830 4.260660 3.318140

0.4 0.0 1491820 1491820 1.491820 1.491820 1.491820
0.2 1.822120 2.842560  2.402000 2.056560 1.822120

0.4 2.225540 3.424320 3.037630 2.601220 2.225530

0.6 2.718280 4.046830  3.770180 3.262270 2.718180

0.8 3.320120 4.768540  4.675620 4.103980 3.319500

1.0 4.055200 5.634620  5.830770 5.203980 4.052790

0.6 0.0 1.822120 1.822120 1.822120  1.822120 1.822120
0.2 2.225540 3.471910 2933800 2.511890 2.225540

0.4 2718280 4.182470  3.710170 3.177130 2.718270

0.6 3.320120 4.942810  4.604910 3.984550 3.319990

0.8 4.055200 5.824310 5.710820 5.012610 4.054450

1.0 4953030 6.882140  7.121720 6.356150 4.950090

0.8 0.0 2225540 2225540  2.225540 2.225540 2.225540
0.2 2.718280 4.240600  3.583360 3.068030 2.718280

0.4 3.320120 5.108480  4.531610 3.880560 3.320100

0.6 4.055200 6.037160  5.624450 4.866740 4.055040

0.8 4.953030 7.113820  6.975210 6.122420 4.952120

1.0 6.049650 8.405860  8.698490 7.763420 6.046050

1.0 0.0 2.718280 2.718280  2.718280 2.718280 2.718280
0.2 3.320120 5.179480  4.376720 3.747300 3.320120

0.4 4.055200 6.239520  5.534920 4.739720 4.055180

0.6 4.953030 7.373810  6.869720 5.944250 4.952840

0.8 6.049650 8.688840  8.519540 7.477940 6.048530

1.0 7.389060 10.266900 10.624400 9.482270 7.384670

TABLE 7. The table displays the evaluation time of three well-known

physical models.

Example-1 Example-2 Example-3

CPU Time (in seconds)

11.53

3.05

3.59

in solved by FNAS numerically attained an implausible solution that is similar to
the exact solution, this can be observed in Figures (74| at different values of s € [0, 10] and
t € [0,2] with v = k = 1. Figure [7b|illustrates the absolute error graph of the obtained
numerical result with the exact solution of (20 aty = k = 1,5 € [0,4] and ¢ € [0,0.2],
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which validates FNAS accuracy. The fractional behavior of the numerical fractional so-
lution obtained by FNAS can be seen in Figure [8| with & = 1, ¢ € [0,6],s € [0, 1] and
at different values of «. The numerical solution has smaller deviations, and the solution
tends to be close to the exact solution for v € (0, 1]. Table [5|compares the exact solution
with numerical approximation by the proposed method at ¢ = 0.01. We take our numerical
solution on the eighth and tenth iterations to show the accuracy of the method. A detailed
analysis of the numerical solution obtained by FNAS for v = 0.25,0.50, 0.75, 1.0 is given
inTable[6] Table[7)shows the CPU time of a FNAS reflects its computational efficiency and
indicates the speed of convergence.

7. CONCLUDING REMARKS

The suggested approach produces good results when applied to various fractional lin-
ear and nonlinear DDEs. Iterative outcomes are thoroughly explored in both tabular and
graphical formats. For varied fractional-order and delay, the approximate answer varies
continually. Additionally, it is found that only a few numbers of iterations are necessary
to reach the needed precision, proving the method’s excellent efficiency. To demonstrate
the usefulness and simplicity of the FNAS, we presented three numerical experiments and
sketched the solutions for various values of ~. Fractional Taylor series often converge only
in a small neighborhood around the expansion point (typically ¢y = 0). This makes it
difficult to use for global solutions or for large time domains. The approach to solving non-
linear fractional partial differential equations (FPDEs) may have limitations, especially for
singularities, discontinuities, or specific boundary conditions. Future study should focus
on improving this strategy by addressing and overcoming its limitations, hence increasing
its applicability and efficacy. We will extend the given approach and its convergence anal-
ysis for other kinds of fractional delay issues including fractional integral equations and
nonlinear fractional delay integro-differential equations.
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