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Abstract. Industrial pollution is still a major worldwide issue. Strong
decision-making frameworks are required to evaluate and reduce its detri-
mental effects on the environment. An extensive case study assessing dif-
ferent industrial pollution produced by the energy industry, textile indus-
try, chemical industry, manufacturing industry, agriculture industry, and
construction industry and its environmental impact is presented in this pa-
per. We present a structured evaluation of environmental degradation by
analyzing key environmental criteria, including waste generation, noise
pollution, soil contamination, air pollution, and water pollution. In or-
der to accomplish a systematic and objective evaluation, we provide an
advanced multi-criteria decision-making (MCDM) framework that com-
bines the CRITIC-WASPAS and CRITIC-EDAS approaches with intu-
itionistic fuzzy Z-number (IFZN). This integration ensures a more reli-
able, flexible, and data-driven assessment of industrial pollution sources
by addressing uncertainty, imprecision, and inconsistency in the data ef-
fectively. In order to determine the objective weights of environmental
criteria , the CRITIC (Criteria Importance Through Intercriteria Correla-
tion) method is applied here. These weights undergo additional processing
using the WASPAS and EDAS approaches, which combine aggregated
sum product weighting (WASPAS) and positive and negative distance-
based evaluation (EDAS) to check the ranking of given criteria. Addition-
ally, sensitivity analysis is used to assess the robustness and dependabil-
ity of the suggested fuzzy model by altering input parameters, including
weights, membership values, and decision-maker preferences. Moreover,
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a comparison with earlier approaches is carried out to evaluate the consis-
tency and accuracy of the proposed model’s ranking.

AMS (MOS) Subject Classification Codes: 03E72; 90C70; 68T37
Key Words: Intuitionistic fuzzy Z-numbers; weighted arithmetic averaging operator; weighted
geometric averaging operator; MCDM.

1. INTRODUCTION

In the real world, uncertainty in data is prevalent, and a lot of information necessary
for decision-making is often ambiguous, inaccurate, or incomplete. Although humans are
remarkably adept at making logical conclusions in these kinds of situations but formal-
izing this capacity is still quite difficult. Multi-Criteria Decision-Making (MCDM) is a
well-known approach in fields like management, engineering, and economics, where so-
lutions are evaluated based on predefined criteria and weights, often using precise numer-
ical values. However, ambiguity often affects real-world data, making decision-making
more challenging as systems become more complex. This highlights the need for advanced
strategies, such as fuzzy systems, to effectively manage uncertainty and provide more ac-
curate and flexible solutions. In order to deal with the ambiguity in real-world scenarios
fuzzy sets (FS) were first proposed by Lotfi A. Zadeh in 1965 [27]. He indicate the degree
of uncertainty about an event by giving a membership degree between 0 and 1. In 1970,
Bellman and Zadeh [4] extends this work into decision-making and allowing more realistic
handling of uncertainty in complex system. Additionally, the concept of intuitionistic fuzzy
sets (IFS) a generalization of FS by adding opposition and support within the range of [0, 1]
was proposed by Atanassov [3], to improve the modeling of uncertainty even more. For
describing imprecision, especially when there is inadequate data, the idea of IFS offers an
alternate framework to conventional FS. The IFS has garnered more attention ever since
it was first proposed because of its exceptional capacity to manage ambiguity. Since its
inception it has been widely used in a number of fields, such as engineering, optimization
and also been used in a variety of domains by numerous researchers such as Deschrijver
and Kerre [7], who investigated intuitionistic fuzzy relations composition. Szmidt and
Kacprzyk [17] defined the four basic distances between IFS: the Euclidean distance, the
Hamming distance, the normalized Hamming distance, and the normalized Euclidean dis-
tance. Szmidt and Kacprzyk [18] suggested an entropy measure for IFS that is not of
the probabilistic type based on the distance measure of a double sequence of a confined
variation. Khan, Lohani, and Ieee [10] presented a novel similarity measure about IFS.
IVIFS (interval-values intuitionistic fuzzy sets) were used by Wu et al. [22] to present the
VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) method for financing
risk evaluation of rural tourism projects. In the setting of intuitionistic fuzzy logic, Chen
et al. [5] created a unique MCDM method based on similarity measurements and the TOP-
SIS (Technique for Order Preference by Similarity to an Ideal Solution) approach. Wu et
al. [23] proposed some interval-valued intuitionistic fuzzy dombi heronian mean operators
for evaluating the ecological value of forest ecological tourism demonstration sites and t
enhance the modeling of dynamic and uncertain environments, Kamacı et al. [11] proposed
a novel decision-making approach by integrating generalized temporal intuitionistic fuzzy
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sets with soft sets. Further, to improve decision-making under uncertainty, Saeed et al. [16]
proposed an extension of the classical TOPSIS method using linguistic terms within a tri-
angular intuitionistic fuzzy framework.
Moreover, based on previous research, Zadeh developed a new theory named Z-numbers
that is the combination of uncertainty and its reliability to create a pair of hybrid fuzzy
numbers that are used extensively in many different domains. This method allows for more
precise decision-making. For instance, this method has been utilized in risk analysis in
conjunction [14] with the ranking method. Z-numbers are also used in the modified TOP-
SIS approach (Z-TOPSIS) for stock selection [25].Aboutorab et al. [1] used the Best-Worst
Method to address supplier development issues and suggested a Z-number extension. A
Z-number-based group decision-making framework based on the TOPSIS approach com-
bined with power aggregation operators was presented by Wang and Mao [21]. Alam et
al. [9] created an intuitive multiple centroid defuzzification method for intuitionistic Z-
numbers in the area of fuzzy logic and defuzzification. In keeping with the design and
assessment area, Qi et al. [15] evaluated conceptual designs under uncertainty using inter-
val intuitionistic fuzzy Z-numbers. Additionally, Ashraf et al. [2] demonstrated the suit-
ability of Z-number-based models in uncertain and sustainable decision-making contexts
by utilizing Pythagorean fuzzy Z-numbers in a green supplier selection model through an
expanded EDAS technique. These applications demonstrate the versatility of Z-numbers in
managing uncertainty and reliability across various contexts.
By considering intuitionistic fuzziness in terms of both the support and opposition degrees
along with their associated reliabilities, this study introduces the concept of intuitionistic
fuzzy Z-numbers (IFZN). To support decision-making, fundamental properties and aggre-
gation operators of IFZN such as IFZNWA (intuitionistic fuzzy Z-number weighted aver-
aging) and IFZNWG (intuitionistic fuzzy Z-number weighted geometric) are defined. A
novel MCDM approach is proposed to reduce the overall degree of ambiguity in the deci-
sion matrix and enhance the credibility of the findings. The effectiveness of the proposed
model is demonstrated through a practical example. Moreover, to evaluate the robustness
and stability of the suggested method under various circumstances, a sensitivity analysis is
carried out by changing the values of certain parameters and also a comparative analysis
with current approaches is conducted to confirm the model’s efficacy and superiority in
terms of accuracy and consistency. This paper is organized as follows: Section I provides
a comprehensive review of existing literature on IFS and MCDM approaches. Section II
discusses the definitions and related concepts of IFZN and aggregation operators. Section
III illustrates the framework of proposed methods under the IFZN. Section IV presents
a detailed explanation of the case study. Section V shows the empirical example of the
case study. A sensitivity and comparative analysis are presented in sections VI and VII,
respectively. The conclusion of the paper is presented in Section VIII.

1.1. Literature review. The literature on fuzzy data handling strategies, such as CRITIC,
WASPAS, and EDAS are thoroughly reviewed in this section.

1.1.1. A brief overview of CRITIC method. A popular MCDM technique for establishing
objective criterion weights is the CRITIC method, which was first presented by Diakoulaki
et al. (1995) [8]. By examining the interdependencies and variability of criteria, it as-
sesses their relative importance, guaranteeing that criteria that are more independent and
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informative are given greater weight. This approach has been widely used in a number
of disciplines, such as economics, engineering, management, and environmental research,
where weighing several criteria is essential for making decisions [26]. When assigning
weights, the CRITIC technique takes into consideration two important factors: each crite-
rion’s standard deviation, which represents its discriminative ability, and its correlation with
other criteria, which takes redundancy into account. This eliminates the need for subjec-
tive judgment and guarantees a weighting procedure that is both balanced and data-driven.
Because of its efficacy, CRITIC has been used in mini-grid business models, software se-
lection, supply chain risk assessment, and construction equipment selection.CRITIC is a
dependable tool for complicated decision-making scenarios because it integrates statisti-
cal variability and inter-criteria interactions to create an objective and systematic weighing
process.

1.1.2. A brief overview of WASPAS method. The WASPAS method, introduced by Zavad-
skas et al. (2012) [28], is a hybrid MCDM technique that combines the weighted sum model
(WSM) and the weighted product model (WPM).This combination improves decision-
making consistency and accuracy, making WASPAS a robust and adaptable approach in
a variety of domains. Initially, WASPAS gained prominence in engineering applications,
specifically in civil and mechanical engineering, where it was used for material selection,
infrastructure assessment, and mechanical system optimization. Later on, due to its reli-
ability and computational efficiency, the method was extended to environmental sustain-
ability, helping with pollution control, renewable energy ranking, and waste management.
Additionally, it found applications in healthcare, where it was used for pharmaceutical
evaluation and surgical procedure optimization. Fuzzy WASPAS and intuitionistic fuzzy
WASPAS are two developments that arose between 2015 and 2018 to handle imprecision
and uncertainty in production planning, manufacturing procedures, and supplier selection.
This approach is also applicable in the context of website evaluation [19].
WASPAS became more efficient in complicated decision contexts as a result of these im-
provements, which allowed it to manage language factors and subjective assessments.Z-
numbers, interval-valued numbers, and gray systems have also been added recently to im-
prove WASPAS’s processing of ambiguous or partial data. These changes have increased
its applicability to Industry 4.0 technologies, industrial risk assessment, and transportation
systems. Furthermore, WASPAS has been used in mathematical fluid mechanics to ana-
lyze non-Newtonian fluids, in education to assess AI-based learning resources and online
courses, and in agriculture to choose crops and manage water resources. Fuzzy logic and
entropy weighting have been used in studies to optimize the WASPAS framework, guaran-
teeing increased resilience in multi-criteria decision situations. These developments have
further cemented WASPAS position as a flexible and effective decision support tool across
numerous disciplines by making it a competitive alternative to well-known MCDM tech-
niques like TOPSIS, VIKOR, and PROMETHEE.

1.1.3. A brief overview of EDAS method. Keshavarz et al. [12] established the EDAS ap-
proach, which was a game changer in the field of MCDM approaches. This ranking al-
gorithm emphasized other possibilities based on multiple criteria, which made it ideal for
complex decision-making scenarios. EDAS stood out from other approaches due to its
unique norm-establishing methodology. Established techniques like TOPSIS and VIKOR
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aimed to determine the desirable alternatives by evaluating both ideal and anti-ideal al-
ternatives. However, in contemporary decision-making scenarios, preventing proximity to
the ideal alternative and optimizing the separation from the anti-ideal alternative might not
always have led to the most suitable choice. The primary goal of the EDAS approach
was to select the best option by utilizing the average solution-based norm-establishing
methodology. The EDAS approach evaluated alternative performance by calculating both
positive and negative variances from an average solution and ranking them accordingly.
Torkayesh et al. [20] conducted a considerable review of the literature to determine the
current level of EDAS. The investigators identified potential limitations of EDAS in a total
of nine sectors for implementation: business management, crop cultivation, mineral fibers
and electrical power resources, strategic planning, healthcare supervision, manufacturing,
logistics management, advanced technology, and accountability in transportation. The re-
sults of this investigation helped decision-makers handle unclear and unreliable data during
the decision-making stages. Darko & Liang [6] introduced some q-rung orthopair fuzzy
Hamacher aggregation operators and their application. The EDAS approach was used to
evaluate commercial airline services and renewable energy technology for manufacturing
and automation.

TABLE 1. Summary of previous studies on Z-numbers

Authors Year Applications
Sahrom and Dom [14] 2015 A Z-Number-Based Decision Making Procedure for Risk Analysis
Yaakob and Gegov [25] 2016 Modified TOPSIS (Z-TOPSIS) for group decision-making in Stock

Selection
Aboutorab et al. [1] 2018 Z-number extension of Best Worst Method and its application for

Supplier Development
Wang and Mao [21] 2019 Group decision making with Z-numbers based on TOPSIS and

power aggregation operators
Alam et al. [9] 2022 Intuitive multiple centroid defuzzification of intuitionistic Z-

numbers
Qi et al. [15] 2023 Conceptual design evaluation using interval intuitionistic fuzzy Z-

numbers under uncertainty
Ashraf et al. [2] 2023 Green supplier selection using extended EDAS approach under

Pythagorean fuzzy Z-numbers

1.2. Research Gap. Despite comprehensive research on MCDM methods for assessing
environmental pollution, significant gaps still exist, especially in integrating advanced fuzzy
models with objective weighting techniques for evaluating industrial pollution.
1. The limitations of traditional fuzzy models include the inability of intuitionistic and
z-number fuzzy techniques to adequately capture the reliability and hesitation elements
of decision-makers when assessing industrial pollution. Due to their inability to manage
uncertainty and divergent expert viewpoints, conventional models frequently produce less
accurate rankings of polluting businesses. A more sophisticated method is provided by
IFZNs, which incorporate support, opposition, and reliability degrees to ensure a more ac-
curate depiction of uncertainty.
2. The majority of studies assessing industrial pollution do not integrate weight determi-
nation methods and instead rely on stand-alone MCDM techniques like AHP, TOPSIS, or
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VIKOR. By utilizing CRITIC for objective weighting, WASPAS for enhanced ranking sta-
bility, and EDAS for alternative evaluation under uncertainty, a hybrid approach combining
CRITIC-WASPAS and CRITIC-EDAS can offer a more comprehensive ranking of indus-
tries.
3. The current approaches for assessing pollution are frequently inconsistent when used in
various industrial sectors and geographical areas. The link between environmental criteria
is often overlooked by frameworks, which results in inconsistent identification of the most
polluting industries. The use of CRITIC for weight determination guarantees that the in-
terdependencies among pollution criteria are appropriately taken into account.
4. Future laws, emission limitations, and sustainability goals must all be able to be included
in decision-making models as environmental policies change. The effectiveness of current
MCDM models for long-term policy recommendations is diminished by their inability to
adjust to shifting environmental requirements. CRITIC-WASPAS and CRITIC-EDAS in
conjunction with IFZN give policymakers a flexible and dynamic decision-support tool.
5. Numerous studies on pollution assessment rely on theoretical models that have not been
thoroughly empirically validated using data from actual industries. To confirm the effi-
cacy of hybrid MCDM methodologies in ranking sectors according to their environmental
impact, comprehensive case studies and sensitivity analysis are required.

1.3. Motivation. This study is motivated by the urgent need to develop more reliable and
efficient frameworks for industrial pollution decision-making using intuitionistic fuzzy Z-
numbers (IFZN). A strong data-driven method for identifying the most polluting industry is
ensured by the integration of IFZN with CRITIC-WASPAS and CRITIC-EDAS techniques.
1. Determine the main industrial pollutants with accuracy in order to support environmental
sustainability programs and legal frameworks.
2. Create a hybrid decision-making model that can manage conflicting, ambiguous, and
imprecise pollution data.
3. Utilize IFZN to improve decision-maker preference representation and get beyond the
drawbacks of conventional fuzzy and crisp approaches.
4. Use cutting-edge MCDM methods (CRITIC-WASPAS and CRITIC-EDAS) to increase
ranking accuracy, stability, and objectivity.
5. Verify the suggested framework’s practicality for industrial pollution assessment by
conducting sensitivity studies and empirical research.

2. PRELIMINARIES

Here we define some important concept related to our work.

Definition 1. An IFS in the universal set ψ is described by

Q = {⟨ζ, µQ(ζ), νQ(ζ)⟩ | ζ ∈ ψ},

where µQ : ψ → [0, 1] is the membership function and νQ : ψ → [0, 1] is the non-
membership function such that 0 ≤ µQ(ζ) + νQ(ζ) ≤ 1, ∀ζ ∈ ψ.

The value of hesitation (indeterminacy) is given by πQ(ζ) = 1− µQ(ζ)− νQ(ζ).

Definition 2. Z-numbers extend traditional fuzzy models by adding reliability to uncertain
information. A Z-number is expressed in the form of a pair (S,R), where S denotes an
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uncertain information and R shows the confidence or reliability associated with that infor-
mation. This makes Z-numbers useful for modeling real-world situations where both the
estimated and reliable values are important.

Definition 3. An IFZN in the universal set ψ is defined as:

Gz = {(ζ, µ(S,R)(ζ), ν(S,R)(ζ)) | ζ ∈ ψ} = {(ζ, (µS(ζ), µR(ζ)), (νS(ζ), νR(ζ))) | ζ ∈ ψ} ,

where {(µS(ζ), νS(ζ)) : ψ → [0, 1]} indicates the uncertain value of membership and
nonmembership function, while {(µR(ζ), νR(ζ)) : ψ → [0, 1]} indicates the reliability
of the membership and nonmembership function. These functions satisfy the following
conditions for all ζ ∈ ψ:

0 ≤ µS(ζ) + νS(ζ) ≤ 1, 0 ≤ µR(ζ) + νR(ζ) ≤ 1.

Definition 4. Let
Gz1 = (µ1(S,R), ν1(S,R)) = (µS1

, µR1
), (νS1

, νR1
) and Gz2 = (µ2(S,R), ν2(S,R)) =

(µS2
, µR2

), (νS2
, νR2

) are two IFZN and ℶ > 0 which satisfies the following characteris-
tics, then the operation defined on IFZN are given bellow:

(1) Gz1 ⊇ Gz2 if and only if µS1
≥ µS2

, µR1
≥ µR2

, νS1
≤ νS2

, νR1
≤ νR2

(2) Gz1 = Gz2 if and only if Gz1 ⊇ Gz2 and Gz1 ⊆ Gz2

(3) Gz1 ∪Gz2 = {(µS1
∨ µS2

, µR1
∨ µR2

) , (νS1
∧ νS2

, νR1
∧ νR2

)}
(4) Gz1 ∩Gz2 = {(µS1 ∧ µS2 , µR1 ∧ µR2) , (νS1 ∨ νS2 , νR1 ∨ νR2)}
(5) (Gz1)

c = (νS1 , νR1), (µS1 , µR1)
(6) Gz1⊕Gz2 = {(µS1

+ µS2
− µS1

µS2
, µR1

+ µR2
− µR1

µR2
) , (νS1

νS2
, νR1

νR2
)}

(7) Gz1⊗Gz2 = {(µS1
µS2

, µR1
µR2

) , (νS1
+ νS2

− νS1
νS2

, νR1
+ νR2

− νR1
νR2

)}
(8) ℶ⊙Gz1 =

(
1− (1− µS1)

ℶ, 1− (1− µR1)
ℶ) , (νℶS1

, νℶR1
)

(9) Gz1

ℶ = (µℶ
S1
, µℶ

R1
),
(
1− (1− νS1

)ℶ, 1− (1− νR1
)ℶ
)

Definition 5. Let Gzd
= {(µSd

, µRd
), (νSd

, νRd
)} be an IFZN, then the score function is

calculated by given formula

L =
1 + µSd

µRd
− νSd

νRd

2
(2. 1)

2.1. Weighted arithmetic averaging operator of IFZN. Under the IFZN category, this
section presents a few aggregation operations, including IFZNWA and IFZNWG operators.

Definition 6. Let Gzd
= (µSd

, µRd
), (νSd

, νRd
) (d = 1, 2, . . . , n) be a group of IFZN.

Then, the IFZNWA operator is defined as:

IFZNWA(Gz1 ,Gz2 , . . . ,Gzn) =

n⊕
d=1

ℶdGzd
(2. 2)

where ℶd (d = 1, 2, . . . , n) is the weight vector of (Gz1 ,Gz2 , . . . ,Gzn), such that

0 ≤ ℶd ≤ 1,

n∑
d=1

ℶd = 1.
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Then, the IFZNWA operator can be explicitly expressed as:

IFZNWA(Gz1 ,Gz2 , . . . ,Gzn) =

((
1−

n∏
d=1

(1− µSd
)
ℶd , 1−

n∏
d=1

(1− µRd
)
ℶd

)
,

(
n∏

d=1

νℶd

Sd
,

n∏
d=1

νℶd

Rd

))
.

(2. 3)

Theorem 2.2. Let Gzd
(d = 1, 2, . . . , n) be a collection of IFZN. Because of this, the

IFZNWA operator’s aggregated value is still an IFZN, as determined by the following for-
mula:

IFZNWA(Gz1 ,Gz2 , . . . ,Gzn) =

n⊕
d=1

ℶdGzd

= ℶ1Gz1

⊕
ℶ2Gz2

⊕
· · ·
⊕

ℶnGzn

=

((
1−

n∏
d=1

(1− µSd
)
ℶd , 1−

n∏
d=1

(1− µRd
)
ℶd

)
,

(
n∏

d=1

νℶd

Sd
,

n∏
d=1

νℶd

Rd

))
where ℶd (d = 1, 2, . . . , n) is the weight vector of (Gz1 ,Gz2 , . . . ,Gzn), such that

0 ≤ ℶd ≤ 1,

n∑
d=1

ℶd = 1.

Proof. One can verify Eq. ( 2. 3 ) by means of mathematical induction.
(1) Assign n = 2: the outcome is as follows, based on operational laws (6) and (9):

IFZNWA(Gz1 ,Gz2) = ℶ1Gz1

⊕
ℶ2Gz2

=



1− (1− µS1)
ℶ1 + 1− (1− µS2)

ℶ2

−
(
1− (1− µS1

)ℶ1
) (

1− (1− µS2
)ℶ2
)
,

1− (1− µR1)
ℶ1 + 1− (1− µR2)

ℶ2

−
(
1− (1− µR1

)ℶ1
) (

1− (1− µR2
)ℶ2
)
,

(νℶ1

S1
)(νℶ2

S2
), (νℶ1

R1
)(νℶ2

R2
)


(2. 4)

IFZNWA(Gz1 ,Gz2) =

(
1−

2∏
d=1

(1− µSd
)ℶd , 1−

2∏
d=1

(1− µRd
)ℶd ,

2∏
d=1

νℶd

Sd
,

2∏
d=1

νℶd

Rd

)
.

(2. 5)
(2) Set n = m: Equation ( 2. 3 ) holds for n = m:

IFZNWA(Gz1 ,Gz2 , . . . ,Gzm) =

((
1−

m∏
d=1

(1− µSd
)ℶd , 1−

m∏
d=1

(1− µRd
)ℶd

)
,(

m∏
d=1

νℶd

Sd
,

m∏
d=1

νℶd

Rd

))
(2. 6)
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(3) Set n = m+ 1: The outcome is as follows, based on operational laws (6) and (9):

IFZNWA(Gz1 ,Gz2 , . . . ,Gzm+1) =

m+1⊕
d=1

ℶdGzd

=



1−
m∏

d=1

(1− µSd
)ℶd + 1− (1− µSm+1)

ℶm+1

−

(
1−

m∏
d=1

(1− µSd
)ℶd

)(
1− (1− µSm+1)

ℶm+1
)
,

1−
m∏

d=1

(1− µRd
)ℶd + 1− (1− µRm+1

)ℶm+1

−

(
1−

m∏
d=1

(1− µRd
)ℶd

)(
1− (1− µRm+1

)ℶm+1
)
,

m+1∏
d=1

(νSd
)ℶd ,

m+1∏
d=1

(νRd
)ℶd



.

(2. 7)
On simplifying, we get:

IFZNWA(Gz1 ,Gz2 , . . . ,Gzm+1) =

((
1−

m+1∏
d=1

(1− µSd
)ℶd , 1−

m+1∏
d=1

(1− µRd
)ℶd

)
,(

m+1∏
d=1

(νSd
)ℶd ,

m+1∏
d=1

(νRd
)ℶd

))
(2. 8)

□

Theorem . (2.2) is verified. Also, IFZNWA operator of Eq. ( 2. 3 ) satisfies the following
properties:

(1) Idempotency: Let Gzd
(d = 1, 2, . . . , n) be a group of IFZN such that

Gzd
= Gz = ((µS , µR) , (νS , νR)) .

Then, the IFZNWA operator satisfies:

IFZNWA(Gz1 ,Gz2 , . . . ,Gzn) = Gz.

(2) Boundedness: Let Gzd
(d = 1, 2, . . . , n) be a group of IFZN. Define:

Gzmin =

(
min
d

(µSd
),min

d
(µRd

),min
d

(νSd
),min

d
(νRd

)

)
,

Gzmax =

(
max

d
(µSd

),max
d

(µRd
),max

d
(νSd

),max
d

(νRd
)

)
.
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as the minimum IFZN and the maximum IFZN, respectively. Then, the following
inequality holds:

Gzmin ≤ IFZNWA(Gz1 ,Gz2 , . . . ,Gzn) ≤ Gzmax.

(3) Monotonicity: Let Gzd
(d = 1, 2, . . . , n) and Gzd

∗ (d = 1, 2, . . . , n) be two
groups of IFZN such that

Gzd
≤ Gzd

∗.

Then, the following holds:

IFZNWA(Gz1 ,Gz2 , . . . ,Gzn) ≤ IFZNWA(Gz1

∗,Gz2

∗, . . . ,Gzn

∗).

Proof of the properties are omitted for conciseness, see [2] for its further detail.

2.3. Weighted Geometric Averaging Operator of IFZN. This subsection proposes the
IFZNWG operator of IFZN corresponding to the operational laws (7) and (8) and intro-
duces their properties.

Definition 7. Let Gzd
(d = 1, 2, . . . , n) be a group of IFZN. Then, the IFZNWG operator

is defined as:

IFZNWG(Gz1 ,Gz2 , . . . ,Gzn) =

n⊗
d=1

Gzd

ℶd (2. 9)

where ℶd(d = 1, 2, . . . , n) is the weight vector satisfying 0 ≤ ℶd ≤ 1 and
∑n

d=1 ℶd = 1.

IFZNWG(Gz1 ,Gz2 , . . . ,Gzn) =

((
n∏

d=1

µℶd

Sd
,

n∏
d=1

µℶd

Rd

)
,

(
1−

n∏
d=1

(1− νSd
)
ℶd , 1−

n∏
d=1

(1− νRd
)
ℶd

))
.

(2. 10)

Theorem 2.4. Let Gzd
(d = 1, 2, . . . , n) be a group of IFZN. Then, the aggregated value

of the IFZNWG operator is still an IFZN, given by:

IFZNWG(Gz1 ,Gz2 , . . . ,Gzn) =

((
n∏

d=1

µℶd

Sd
,

n∏
d=1

µℶd

Rd

)
,

(
1−

n∏
d=1

(1− νSd
)
ℶd , 1−

n∏
d=1

(1− νRd
)
ℶd

))
.

By following a similar proof process as Theorem. (2.2), one can easily verify Eq. ( 2. 10 ),
and thus, proof of Theorem . (2.4) is omitted. Moreover, the IFZNWG operator also sat-
isfies several important properties similar to those of the IFZNWA operator. The proofs
of these properties follow a similar approach and are therefore omitted here. For detailed
proofs, refer to [2].

3. FRAMEWORK OF CRITIC-WASPAS AND CRITIC-EDAS APPROACHES

In Table 2, we first provide a list of all the variables used in these approach.
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TABLE 2. List of variables
Symbol Description
ψ Universal Set
ζ Element of Universal set
L Score Function
D Set of decision-makers
Pτ Alternatives
Qγ Criteria
Avj Average value(Av)
Z Positive distances from Av
X Negative distances from Av
D Weighted positive distances from Av
E Weighted negative distances from Av
M Weighted normalized positive distances from Av
N Weighted normalized negative distances from Av
J Appraisal score

TABLE 3. Linguistic values for DMs and their corresponding IFZNs.
Linguistic Values IFZNs
Extremely-insignificant (EIs) (⟨0.050, 0.010⟩, ⟨0.900, 0.900⟩)
Very-insignificant (VIs) (⟨0.100, 0.100⟩, ⟨0.800, 0.850⟩)
Insignificant (Is) (⟨0.200, 0.250⟩, ⟨0.700, 0.700⟩)
Moderate-insignificant (MIs) (⟨0.300, 0.350⟩, ⟨0.600, 0.550⟩)
Average (Av) (⟨0.450, 0.500⟩, ⟨0.450, 0.500⟩)
Moderate-significant (MS) (⟨0.600, 0.550⟩, ⟨0.300, 0.350⟩)
Significant (S) (⟨0.700, 0.700⟩, ⟨0.200, 0.250⟩)
Very-significant (VS) (⟨0.800, 0.850⟩, ⟨0.100, 0.100⟩)
Extremely-significant (ES) (⟨0.900, 0.900⟩, ⟨0.050, 0.010⟩)

Assume that n options for alternatives are provided as

Pτ = {Pτ1 , . . . ,Pτi , . . . ,Pτn}

and finite set of m criteria is given as

Qγ = {Qγ1
, . . . ,Qγj

, . . . ,Qγm
}

Moreover,

D = {D1, . . . , Dt, . . . , Ds}

represent the group of decision-makers(DMs), whose linguistic evaluations are used to
construct the decision matrices for analysis (See Table 4).
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TABLE 4. DMs Evaluations
Experts Alternatives Criteria
D1 Qγ1 Qγ2 · · · Qγt

Pτ1

(
⟨µ1

S11
, µ1

R11
⟩, ⟨ν1

S11
, ν1

R11
⟩
) (

⟨µ1
S12

, µ1
R12

⟩, ⟨ν1
S12

, ν1
R12

⟩
)

· · ·
(
⟨µ1

S1m
, µ1

R1m
⟩, ⟨ν1

S1m
, ν1

R1m
⟩
)

Pτ2

(
⟨µ1

S21
, µ1

R21
⟩, ⟨ν1

S21
, ν1

R21
⟩
) (

⟨µ1
S22

, µ1
R22

⟩, ⟨ν1
S22

, ν1
R22

⟩
)

· · ·
(
⟨µ1

S2m
, µ1

R2m
⟩, ⟨ν1

S2m
, ν1

R2m
⟩
)

...
. . .

Pτn

(
⟨µ1

Sn1
, µ1

Rn1
⟩, ⟨ν1

Sn1
, ν1

Rn1
⟩
) (

⟨µ1
Sn2

, µ1
Rn2

⟩, ⟨ν1
Sn2

, ν1
Rn2

⟩
)

· · ·
(
⟨µ1

Snm
, µ1

Rnm
⟩, ⟨ν1

Snm
, ν1

Rnm
⟩
)

D2

Pτ1

(
⟨µ2

S11
, µ2

R11
⟩, ⟨ν2

S11
, ν2

R11
⟩
) (

⟨µ2
S12

, µ2
R12

⟩, ⟨ν2
S12

, ν2
R12

⟩
)

· · ·
(
⟨µ2

S1m
, µ2

R1m
⟩, ⟨ν2

S1m
, ν2

R1m
⟩
)

Pτ2

(
⟨µ2

S21
, µ2

R21
⟩, ⟨ν2

S21
, ν2

R21
⟩
) (

⟨µ2
S22

, µ2
R22

⟩, ⟨ν2
S22

, ν2
R22

⟩
)

· · ·
(
⟨µ2

S2m
, µ2

R2m
⟩, ⟨ν2

S2m
, ν2

R2m
⟩
)

...
. . .

Pτn

(
⟨µ2

Sn1
, µ2

Rn1
⟩, ⟨ν2

Sn1
, ν2

Rn1
⟩
) (

⟨µ2
Sn2

, µ2
Rn2

⟩, ⟨ν2
Sn2

, ν2
Rn2

⟩
)

· · ·
(
⟨µ2

Snm
, µ2

Rnm
⟩, ⟨ν2

Snm
, ν2

Rnm
⟩
)

Dt

Pτ1

(
⟨µt

S11
, µt

R11
⟩, ⟨νt

S11
, νt

R11
⟩
) (

⟨µt
S12

, µt
R12

⟩, ⟨νt
S12

, νt
R12

⟩
)

· · ·
(
⟨µt

S1m
, µt

R1m
⟩, ⟨νt

S1m
, νt

R1m
⟩
)

Pτ2

(
⟨µt

S21
, µt

R21
⟩, ⟨νt

S21
, νt

R21
⟩
) (

⟨µt
S22

, µt
R22

⟩, ⟨νt
S22

, νt
R22

⟩
)

· · ·
(
⟨µt

S2m
, µt

R2m
⟩, ⟨νt

S2m
, νt

R2m
⟩
)

...
. . .

Pτn

(
⟨µt

Sn1
, µt

Rn1
⟩, ⟨νt

Sn1
, νt

Rn1
⟩
) (

⟨µt
Sn2

, µt
Rn2

⟩, ⟨νt
Sn2

, νt
Rn2

⟩
)

· · ·
(
⟨µt

Snm
, µt

Rnm
⟩, ⟨νt

Snm
, νt

Rnm
⟩
)

Step 1: Utilize the linguistic values presented in Table 3 to construct the linguistic
decision matrices based on the evaluations provided by the decision makers.
Step 2: Determining the weights of DMs.

Step 3: Calculate the IFZN aggregated n×m matrix
∼
A by using INZNWA or INFZWG.

Step 4: Normalize the overall IFZN aggregated matrix.

∼
Aij

N

=

{ (
⟨µSij , µRij ⟩, ⟨νSij , νRij ⟩

)
, if Qγ is a benefit criterion,(

⟨νSij , νRij ⟩, ⟨µSij , µRij ⟩
)
, if Qγ is a cost criterion.

The methodology adopted in this study is illustrated in Figure 1.
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DECISION MATRICES
Decision makers give different decision

matrices1

WEIGHT
Weight of decision makers2

AGGREGATE
Aggregate decision matrices by using

aggregation operators3

NORMALIZED
Normalized the aggregated matrix4

APPLY WEIGHT AND
RANKING METHODS5

METHODOLOGY

FIGURE 1. Methodology of the MCDM approach

Further, the methodologies of the CRITIC-WASPAS and CRITIC-EDAS approaches are
presented in detail below.

3.1. CRITIC-WASPAS. Step 5: Apply the CRITIC method to compute the weights of
criteria.
Let

Gzd
= ℑ(δij) =

(
(µSij , µRij ), (νSij , νRij )

)
1. The correlation C between characteristics can be computed as follows, depending on the
normalized IFZN decision matrix.

Cjk =

∑m
i=1(ℑ(δij)− ȳj)(ℑ(δik)− ȳk)√∑m

i=1(ℑ(δij)− ȳj)2 ·
√∑m

i=1(ℑ(δij)− ȳk)2
(3. 11)

where

ȳj =
1

m

m∑
i=1

ℑ(δij), and ȳk =
1

m

m∑
i=1

ℑ(δik)

2. Calculate the standard deviation σj of each criterion.

σj =

√√√√ 1

m

m∑
i=1

(ℑ(δij)− ȳj)2 (3. 12)
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3. Then, the index αj is calculated using 3. 13 .

αj = σj

n∑
t=1

(1− Cjk) , j = 1, . . . , n (3. 13)

4. Finally, the criteria weights are given by equation 3. 14 ..

wj =
αj∑n
j=1 αj

(3. 14)

These criteria weights can now be used to rank the alternatives.
Step 6: In WASPAS approach, the Joint Generalized Criterion function Qi for each alter-
native i is determined by combining the Weighted Sum Model (WSM) and the Weighted
Product Model (WPM) approaches. It is calculated as:

Qi = β · Ci + (1− β) · Pi (3. 15)

where β is a weight perimeter in the range 0 ≤ β ≤ 1, and Ci is the additive relative
importance of alternative i calculated using the WSM:

Ci =

m∑
j=1

(wN
j )(ℑ(δij)), (3. 16)

pi is the multiplicative relative importance of alternative i calculated using the WPM:

Pi =

m∏
j=1

(ℑ(δij))w
N
j (3. 17)

Eventually, the alternativesQ1, Q2, . . . , Qn were ranked and the alternatives with the high-
est Qi was selected as the best.

3.2. CRITIC-EDAS. Step 7: For the EDAS approach, the same criteria weights that were
calculated using the CRITIC method are employed, and the average solution Avj for each
criterion is computed as follows:

Avj =
1

n

n∑
i=1

ℑ(δij) for each j = 1, 2, . . . ,m.

Step 8: Evaluate the score function L of the normalized aggregated matrix, by equation
( 2. 1 ) (See Table 5).

TABLE 5. Score function
Qγ1 Qγ2 · · · Qγm

Pτ1 S(δ11) S(δ12) · · · S(δ1m)
Pτ2 S(δ21) S(δ22) · · · S(δ2m)
Pτ3 S(δ31) S(δ32) · · · S(δ3m)
Pτn S(δn1) S(δn2) · · · S(δnm)
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Step 9: The positive distance from average (PDA) Z and negative distance from average
(NDA) X can be computed as follows, depending on the average results:

Zij = max

(
0,
S(δij)−Avj

Avj

)
, i = 1, . . . ,m, j = 1, . . . , n

Xij = max

(
0,
Avj − S(δij)

Avj

)
, i = 1, . . . ,m, j = 1, . . . , n

Additionally, the following equations are used to compute the Z and X values of the nega-
tive attributes:

Zij = max

(
0,
Avj − S(δij)

Avj

)
, i = 1, . . . ,m, j = 1, . . . , n

Xij = max

(
0,
S(δij)−Avj

Avj

)
, i = 1, . . . ,m, j = 1, . . . , n

Step 10: The weighted positive distances from average (Di) and the weighted negative
distances from average (Ei) is calculated as:

Di =

n∑
j=1

Zij · wj , i = 1, . . . ,m (18)

Ei =

n∑
j=1

Xij · wj , i = 1, . . . ,m (19)

Step 11: Now, use equations (20) and (21) to calculate the weighted normalized positive
distances from average (Mi) and weighted normalized negative distances from average
(Ni), respectively.

Mi =
Di

maxi(Di)
, i = 1, . . . ,m (20)

Ni =
Ei

maxi(Ei)
, i = 1, . . . ,m (21)

Step 12: In the end, the appraisal score for each alternative is determined using equation
(22), on the basis of which we rank the alternatives

Ji =
1

2
(Mi +Ni) , i = 1, . . . ,m (22)

Step 13: Furthermore, by altering the weight perimeter β, a sensitivity analysis was carried
out to check the accuracy of our data.
Step 14: In order to verify the consistency of the alternatives and our best alternatives, a
comparison analysis was conducted between our suggested approach and the preliminary
research.
Figure 2 represents the step-by-step methodology of the CRITIC–WASPAS and CRITIC–EDAS
approaches.
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FIGURE 2. Weight and Ranking Methods

4. CASE STUDY: ENVIRONMENTAL IMPACT OF INDUSTRIAL POLLUTION FOR
QUALITY CONTROL

Six important industries—energy, textiles, chemicals, manufacturing, agriculture, and
construction are the subject of this case study. These industries have been selected because
of their substantial contributions to environmental deterioration. Waste creation, soil con-
tamination, water pollution, air pollution, and noise pollution are the five standard criteria
that will be used in the study to assess their impact. Based on variables including waste
management procedures and the utilization of raw materials, every industry pollutes the
environment differently. Examining the main pollutants these industries create and their
environmental impacts can help us understand how they contribute to different types of
industrial pollution.
Energy Industry: The energy sector destroys land, contaminates water, and pollutes the
air due to greenhouse gas emissions. It generates a lot of waste, including old machinery
and coal byproducts. A lot of land and water resources are needed for energy generation.
Furthermore, noise pollution is a serious issue, particularly when it comes to machinery,
power plant operations, and the transfer of energy resources. The noise produced can have
an adverse effect on wildlife behavior, local ecosystems, and the health and welfare of com-
munities in the vicinity.
Textile industry: The textile business generates trash from synthetic fibers, uses energy
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and water, and contaminates water with chemicals and effluent. It releases volatile organic
compounds and greenhouse gases, and nearby communities are impacted by noise pollu-
tion from vehicles and machinery.
Chemical industry: Through greenhouse gas emissions, dangerous chemical spills, and
soil, water, and air pollution, the chemical industry has a major negative influence on the
environment. The environmental impact is further increased by noise pollution from in-
dustry operations and machinery. These impacts are made worse by excessive energy and
water use.
Manufacturing industry: The manufacturing industry considerably contributes to air, wa-
ter, and soil pollution through greenhouse gas emissions, industrial waste, and chemical
discharges. In addition to its significant energy and water use, it generates noise pollution
from machinery and production operations, hurting adjacent populations.
Agriculture industry: Deforestation, soil erosion, water pollution, greenhouse gas emis-
sions, synthetic fertilizers, and large-scale farming all contribute to the negative environ-
mental effects of the agriculture sector. A major source of methane emissions is livestock
farming. Additionally, nearby towns and the environment are impacted by noise pollution
from machinery and equipment.
Construction industry: By polluting the air, water, soil, and trash, the building sector con-
tributes to environmental deterioration. It creates dust and carbon emissions, contaminates
soil with dangerous substances, and contaminates water sources through runoff. Overflow-
ing landfills are caused by poor waste management and excessive water use.
In Fig. 3, we show the relationships between the alternatives and the criteria.
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Energy Industry

Textile Industry

Chemical Industry

Manufacturing Industry

Agricultural Industry

Construction Industry

Water Pollution

Air Pollution

Noise Pollution

Waste Generation

Soil Contamination

FIGURE 3. Relationship between alternatives and criteria

5. THE COMPARATIVE ANALYSIS AND EMPIRICAL EXAMPLE

Our practical approach involved inviting three decision-makers, D = {D1, D2, D3},
to participate in order to analyze the impact of environmental contamination. Each expert
gave their evaluation data based on one of six alternatives: Pτ1 , which represents the energy
industry; Pτ2 , which represents the textile industry; Pτ3 , which represents the chemicals
industry; Pτ4 , which represents the manufacturing industry; Pτ5 , which represents the agri-
culture industry; and Pτ6 , which represents the construction industry. These alternatives
were assessed based on five criteria: Qγ1 , which takes into account air pollution; Qγ2 ,
which evaluates water pollution; Qγ3

, which measures soil contamination; Qγ4
, which

evaluates waste creation; and Qγ5
, which takes noise pollution into account. All of the

criteria are cost criteria.
The following calculations are made to determine the pollution impact of the aforemen-
tioned industries:
Step 1: The weightage of the three decision makers (D1, D2, D3) are (0.5, 0.3, 0.2).
Step 2: The linguistic variables (LVs) associated with IFZN, as detailed in Table 3, were
used to construct the decision matrices presented in Table 6 and Table 7.
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TABLE 6. Linguistic variables given by Decision makers
Experts Alternatives Criteria
D1 Qγ1 Qγ2 Qγ3 Qγ4 Qγ5

Pτ1 VIS VS MS AV MIs
Pτ2 MIs AV VIs Is Is
Pτ3 AV ES VS ES Is
Pτ4 MS EIs MS AV ES
Pτ5 IS VIs VIs EIs MS
Pτ6 S MIs S Is MS

D2

Pτ1 VS MS EIs VS VIs
Pτ2 ES VIs ES AV AV
Pτ3 MS ES S AV MS
Pτ4 EIs EIs MIs VIs AV
Pτ5 AV VS MS S Is
Pτ6 VIs S Is AV Is

D3

Pτ1 MS EIs VIs ES VIs
Pτ2 VS S AV VS MS
Pτ3 VIs VS MS EIs AV
Pτ4 VIs VIs MS MIs Is
Pτ5 ES AV VIs VIs AV
Pτ6 Is VIs Is AV VIs

TABLE 7. IFZN’s information by Decision makers
Experts Alternatives Criteria
D1 Qγ1 Qγ2 Qγ3 Qγ4 Qγ5

Pτ1 (0.1, 0.1), (0.8, 0.85) (0.8, 0.85), (0.1, 0.1) (0.6, 0.55), (0.3, 0.35) (0.45, 0.5), (0.45, 0.5) (0.3, 0.35), (0.6, 0.55)
Pτ2 (0.3, 0.35), (0.6, 0.55) (0.45, 0.5), (0.45, 0.5) (0.1, 0.1), (0.8, 0.85) (0.2, 0.25), (0.7, 0.7) (0.2, 0.25), (0.7, 0.7)
Pτ3 (0.45, 0.5), (0.45, 0.5) (0.9, 0.9), (0.05, 0.01) (0.8, 0.85), (0.1, 0.1) (0.9, 0.9), (0.05, 0.01) (0.2, 0.25), (0.7, 0.7)
Pτ4 (0.6, 0.55), (0.3, 0.35) (0.05, 0.01), (0.9, 0.9) (0.6, 0.55), (0.3, 0.35) (0.45, 0.5), (0.45, 0.5) (0.9, 0.9), (0.05, 0.01)
Pτ5 (0.2, 0.25), (0.7, 0.7) (0.1, 0.1), (0.8, 0.85) (0.1, 0.1), (0.8, 0.85) (0.05, 0.01), (0.9, 0.9) (0.6, 0.55), (0.3, 0.35)
Pτ6 (0.7, 0.7), (0.2, 0.25) (0.3, 0.35), (0.6, 0.55) (0.7, 0.7), (0.2, 0.25) (0.2, 0.25), (0.7, 0.7) (0.6, 0.55), (0.3, 0.35)

D2

Pτ1 (0.8, 0.85), (0.1, 0.1) (0.6, 0.55), (0.3, 0.35) (0.05, 0.01), (0.9, 0.9) (0.8, 0.85), (0.1, 0.1) (0.1, 0.1), (0.8, 0.85)
Pτ2 (0.9, 0.9), (0.05, 0.01) (0.1, 0.1), (0.8, 0.85) (0.9, 0.9), (0.05, 0.01) (0.45, 0.5), (0.45, 0.5) (0.45, 0.5), (0.45, 0.5)
Pτ3 (0.6, 0.55), (0.3, 0.35) (0.9, 0.9), (0.05, 0.01) (0.7, 0.7), (0.2, 0.25) (0.45, 0.5), (0.45, 0.5) (0.6, 0.55), (0.3, 0.35)
Pτ4 (0.05, 0.01), (0.9, 0.9) (0.05, 0.01), (0.9, 0.9) (0.3, 0.35), (0.6, 0.55) (0.1, 0.1), (0.8, 0.85) (0.45, 0.5), (0.45, 0.5)
Pτ5 (0.45, 0.5), (0.45, 0.5) (0.8, 0.85), (0.1, 0.1) (0.6, 0.55), (0.3, 0.35) (0.7, 0.7), (0.2, 0.25) (0.2, 0.25), (0.7, 0.7)
Pτ6 (0.1, 0.1), (0.8, 0.85) (0.7, 0.7), (0.2, 0.25) (0.2, 0.25), (0.7, 0.7) (0.45, 0.5), (0.45, 0.5) (0.2, 0.25), (0.7, 0.7)

D2

Pτ1 (0.6, 0.55), (0.3, 0.35) (0.05, 0.01), (0.9, 0.9) (0.1, 0.1), (0.8, 0.85) (0.9, 0.9), (0.05, 0.01) (0.1, 0.1), (0.8, 0.85)
Pτ2 (0.8, 0.85), (0.1, 0.1) (0.7, 0.7), (0.2, 0.25) (0.45, 0.5), (0.45, 0.5) (0.8, 0.85), (0.1, 0.1) (0.6, 0.55), (0.3, 0.35)
Pτ3 (0.1, 0.1), (0.8, 0.85) (0.8, 0.85), (0.1, 0.1) (0.6, 0.55), (0.3, 0.35) (0.05, 0.01), (0.9, 0.9) (0.45, 0.5), (0.45, 0.5)
Pτ4 (0.1, 0.1), (0.8, 0.85) (0.1, 0.1), (0.8, 0.85) (0.6, 0.55), (0.3, 0.35) (0.3, 0.35), (0.6, 0.55) (0.2, 0.25), (0.7, 0.7)
Pτ5 (0.9, 0.9), (0.05, 0.01) (0.45, 0.5), (0.45, 0.5) (0.1, 0.1), (0.8, 0.85) (0.1, 0.1), (0.8, 0.85) (0.45, 0.5), (0.45, 0.5)
Pτ6 (0.2, 0.25), (0.7, 0.7) (0.1, 0.1), (0.8, 0.85) (0.2, 0.25), (0.7, 0.7) (0.45, 0.5), (0.45, 0.5) (0.1, 0.1), (0.8, 0.85)

Step 3: By using aggregation operators INZNWA Table 8 presents aggregated n ×m
matrix .
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TABLE 8. Aggregated Decision Matrices by IFWA
Alternatives Criteria

Qγ1 Qγ2 Qγ3 Qγ4 Qγ5

Pτ1 (0.5126, 0.5423), (0.3523, 0.3746) (0.6637, 0.6958), (0.2158, 0.226) (0.3902, 0.3451), (0.5075, 0.5549) (0.7113, 0.7475), (0.1847, 0.1411) (0.2063, 0.2351), (0.6928, 0.6837)
Pτ2 (0.6961, 0.7235), (0.0574, 0.1175) (0.4352, 0.4615), (0.4547, 0.5104) (0.5781, 0.5861), (0.3104, 0.2016) (0.4582, 0.5187), (0.4154, 0.4288) (0.3776, 0.4004), (0.5175, 0.5509)
Pτ3 (0.4484, 0.4551), (0.4471, 0.4996) (0.8851, 0.8916), (0.0574, 0.0158) (0.7405, 0.7699), (0.1534, 0.1691) (0.7384, 0.7437), (0.1723, 0.0795) (0.3971, 0.4067), (0.497, 0.5316)
Pτ4 (0.3902, 0.3451), (0.5075, 0.5549) (0.0602, 0.0287), (0.879, 0.8898) (0.5269, 0.4975), (0.3693, 0.4008) (0.3309, 0.3714), (0.5665, 0.5976) (0.7472, 0.7575), (0.1639, 0.0756)
Pτ5 (0.5283, 0.5562), (0.3617, 0.2705) (0.4806, 0.5325), (0.3821, 0.4023) (0.2944, 0.269), (0.5961, 0.6513) (0.335, 0.3211), (0.5598, 0.6059) (0.4752, 0.4643), (0.4195, 0.4628)
Pτ6 (0.4925, 0.499), (0.3895, 0.4434) (0.4291, 0.4499), (0.4571, 0.4736) (0.5101, 0.5257), (0.3742, 0.4183) (0.3367, 0.3876), (0.5612, 0.5916) (0.4208, 0.3975), (0.4707, 0.5146)

Step 4: The given aggregated matrix is normalized as shown in Table 9.

TABLE 9. Normalized Decision Matrix
Alternatives Qγ1 Qγ2 Qγ3 Qγ4 Qγ5

Pτ1 (0.3523, 0.3746), (0.5126, 0.5423) (0.2158, 0.2260), (0.6637, 0.6958) (0.5075, 0.5549), (0.3902, 0.3451) (0.1847, 0.1411), (0.7113, 0.7475) (0.6928, 0.6837), (0.2063, 0.2351)
Pτ2 (0.0574, 0.1175), (0.6961, 0.7235) (0.4547, 0.5104), (0.4352, 0.4615) (0.3104, 0.2016), (0.5781, 0.5861) (0.4154, 0.4288), (0.4582, 0.5187) (0.5175, 0.5509), (0.3776, 0.4004)
Pτ3 (0.4471, 0.4996), (0.4484, 0.4551) (0.0574, 0.0158), (0.8851, 0.8916) (0.1534, 0.1691), (0.7405, 0.7699) (0.1723, 0.0795), (0.7384, 0.7437) (0.4970, 0.5316), (0.3971, 0.4067)
Pτ4 (0.5075, 0.5549), (0.3902, 0.3451) (0.8790, 0.8898), (0.0602, 0.0287) (0.3693, 0.4008), (0.5269, 0.4975) (0.5665, 0.5976), (0.3309, 0.3714) (0.1639, 0.0756), (0.7472, 0.7575)
Pτ5 (0.3617, 0.2705), (0.5283, 0.5562) (0.3821, 0.4023), (0.4806, 0.5325) (0.5961, 0.6513), (0.2944, 0.2690) (0.5598, 0.6059), (0.3350, 0.3211) (0.4195, 0.4628), (0.4752, 0.4643)
Pτ6 (0.3895, 0.4434), (0.4925, 0.4990) (0.4571, 0.4736), (0.4291, 0.4499) (0.3742, 0.4183), (0.5101, 0.5257) (0.5612, 0.5916), (0.3367, 0.3876) (0.4707, 0.5146), (0.4208, 0.3975)

5.1. CRITIC-WASPAS. Step 5: Apply The CRITIC method to find the criteria weight.
The correlation coefficients and standard deviations of the normalized decision matrix are
calculated, as shown in Table 10 and Table 11, respectively. The final IFZN criteria weights,
obtained using the CRITIC method, are presented in Table 12.

TABLE 10. Correlation Coefficients
Criteria Qγ1 Qγ2 Qγ3 Qγ4 Qγ5

Qγ1 (1.0000, 1.0000, 1.0000, 1.0000) (0.1277, 0.0696, 0.1287, 0.3078) (-0.0066, -0.0170, -0.0979, -0.1068) (0.0489, -0.1042, -0.0171, 0.0996) (-0.4425, -0.4829, -0.4968, -0.5964)
Qγ2 (0.1277, 0.0696, 0.1287, 0.3078) (1.0000, 1.0000, 1.0000, 1.0000) (0.1900, 0.1512, 0.2896, 0.2507) (0.7798, 0.7975, 0.8243, 0.7370) (-0.8053, -0.7951, -0.7625, -0.7987)
Qγ3 (-0.0066, -0.0170, -0.0979, -0.1068) (0.1900, 0.1512, 0.2896, 0.2507) (1.0000, 1.0000, 1.0000, 1.0000) (0.3757, 0.3669, 0.4000, 0.4016) (0.0876, 0.0077, 0.0838, 0.0775)
Qγ4 (0.0489, -0.1042, -0.0171, 0.0996) (0.7798, 0.7975, 0.8243, 0.7370) (0.3757, 0.3669, 0.4000, 0.4016) (1.0000, 1.0000, 1.0000, 1.0000) (-0.6893, -0.5786, -0.6588, -0.6134)
Qγ5 (-0.4425, -0.4829, -0.4968, -0.5964) (-0.8053, -0.7951, -0.7625, -0.7987) (0.0876, 0.0077, 0.0838, 0.0775) (-0.6893, -0.5786, -0.6588, -0.6134) (1.0000, 1.0000, 1.0000, 1.0000)

TABLE 11. Standard Deviations
Criterion
Qγ1

Qγ2
Qγ3

Qγ4
Qγ5

(0.1559, 0.1611) , (0.1034, 0.1253) (0.2782, 0.2943) , (0.2749, 0.2892) (0.1544, 0.1898) , (0.1542, 0.1779) (0.1882, 0.2402) , (0.1920, 0.1901) (0.1722, 0.2067) , (0.1768, 0.1719)

TABLE 12. CRITIC Weights
Criterion w1 w2 w3 w4 w5

Weights (0.1717, 0.1602), (0.1274, 0.1411) (0.2660, 0.2438), (0.2660, 0.2657) (0.1335, 0.1454), (0.1409, 0.1576) (0.1691, 0.1854), (0.1822, 0.1683) (0.2598, 0.2652), (0.2836, 0.2674)

Step 6: Using the WASPAS technique, the Joint generalized criterion function is deter-
mined and presented in Table 13. Moreover, the score function is calculated using Equa-
tion ( 2. 1 ), and the results are presented in Table 14. Finally, the alternatives are ranked
based on these scores.
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TABLE 13. Joint Generalized Criterion (Q)
Alternative Qi

Pτ1 (0.3719, 0.3732), (0.4591, 0.4800)
Pτ2 (0.3427, 0.3732), (0.4714, 0.5064)
Pτ3 (0.2336, 0.1986), (0.6271, 0.6397)
Pτ4 (0.4681, 0.4249), (0.3505, 0.3178)
Pτ5 (0.4429, 0.4623), (0.4280, 0.4332)
Pτ6 (0.4536, 0.4919), (0.4276, 0.4428)

TABLE 14. WASPAS Scores Matrix
Alternative Score Function Rank

Pτ1 0.4592 4
Pτ2 0.4446 5
Pτ3 0.3226 6
Pτ4 0.5437 1
Pτ5 0.5097 3
Pτ6 0.5169 2

5.2. CRITIC-EDAS. Step 7: In this approach, the same criteria weights, as presented in
Table 12, are applied. Based on these weights and the suggested criteria, the average value
(AV) is then determined and shown in Table 15 .

TABLE 15. Average Scores of Criteria

Criteria
Av1 Av2 Av3 Av4 Av5

0.4334 0.4600 0.4505 0.4586 0.5111

Step 8: The score function of the normalized matrix is calculated and given in Table 16.

TABLE 16. Score Function
Alternatives Criteria

Qγ1 Qγ2 Qγ3 Qγ4 Qγ5

Pτ1 0.4270 0.2935 0.5735 0.2472 0.7126
Pτ2 0.2516 0.5156 0.3619 0.4702 0.5670
Pτ3 0.5096 0.1059 0.2279 0.2323 0.5513
Pτ4 0.5735 0.8902 0.4430 0.6078 0.2232
Pτ5 0.4020 0.4489 0.6545 0.6158 0.4868
Pτ6 0.4635 0.5117 0.4442 0.6008 0.5375
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TABLE 17. Score Weights
Criteria
w1 w2 w3 w4 w5

0.2021 0.1990 0.1997 0.2003 0.1988

Step 9, 10: In Table (18, 19 ) the weighted positive and negative distances from the
average solution are determined in this stage.

TABLE 18. Weighted Positive Distance
Alternatives Criteria

Qγ1
Qγ2

Qγ3
Qγ4

Qγ5
Di

Pτ1 0 0 0.0545 0 0.0784 0.1329
Pτ2 0 0.0241 0 0.0051 0.0217 0.0509
Pτ3 0.0355 0 0 0 0.0156 0.0512
Pτ4 0.0653 0.1862 0 0.0652 0 0.3166
Pτ5 0 0 0.0904 0.0687 0 0.1591
Pτ6 0.0140 0.0224 0 0.0621 0.0102 0.1087

TABLE 19. Weighted Negative Distance
Alternatives Criteria

Qγ1
Qγ2

Qγ3
Qγ4

Qγ5
Ei

Pτ1 0.0030 0.0721 0 0.0924 0 0.1674
Pτ2 0.0848 0 0.0393 0 0 0.1241
Pτ3 0 0.1532 0.0987 0.0989 0 0.3508
Pτ4 0 0 0.0033 0 0.1120 0.1154
Pτ5 0.0146 0.0048 0 0 0.0095 0.0289
Pτ6 0 0 0.0028 0 0 0.0028

Step 11: The results of weighted normalized positive and negative distances (WNPD
and WNND) form the average solution are calculated by equation 20 and 21 and shown in
Table 20.

TABLE 20. WNPD & WNND
Mi Ni

Pτ1 0.4196 0.4773
Pτ2 0.1607 0.3538
Pτ3 0.1617 1.0000
Pτ4 1.0000 0.3289
Pτ5 0.5024 0.0825
Pτ6 0.3434 0.0080
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Step 12: Finally, Table 21 presents the appraisal scores computed using Equation (22),
based on which the alternatives are ranked accordingly.

TABLE 21. Appraisal Score
Ji Rank

Pτ1 0.4485 3
Pτ2 0.2572 5
Pτ3 0.5808 2
Pτ4 0.6644 1
Pτ5 0.2925 4
Pτ6 0.1757 6

6. SENSITIVITY ANALYSIS

In our research, the sensitivity analysis of the hybrid WASPAS method (a combination of
WSM and WPM) in Table 22 modifies the weighting parameter β, which balances the con-
tributions of the WSM and the WPM to assess the stability of decision-making outcomes.
This parameter, β, which ranges from 0 to 1, determines which model predominates during
the decision-making process. It evaluates the robustness of the rankings by recalculating
scores for each alternative and systematically altering β. Stable rankings over a broad range
of β values indicate a robust choice and show the stability of the model, whereas notable
variations suggest sensitivity to the parameter selection. This study is particularly useful
in identifying critical parameter values where rankings may shift and in understanding the
impact of additive versus multiplicative aggregation procedures. Since, the manufacturing
sector has a significant influence on environmental pollution, thus Pτ4 emerges the most
suitable alternative. Its consistent dominance is clearly illustrated in the flowchart in Fig. 4.
Furthermore, the rankings remain stable across the entire range of β, indicating that the
method is reliable and capable of producing stable decision outcomes.

TABLE 22. Sensitivity Analysis of WASPAS for varying parameter β
β Q1 Q2 Q3 Q4 Q5 Q6 Ranking

0.0 0.4609 0.4368 0.3230 0.5418 0.5093 0.5168 Pτ4 > Pτ6 > Pτ5 > Pτ1 > Pτ2 > Pτ3

0.2 0.4602 0.4398 0.3226 0.5428 0.5094 0.5168 Pτ4 > Pτ6 > Pτ5 > Pτ1 > Pτ2 > Pτ3

0.4 0.4595 0.4430 0.3225 0.5435 0.5096 0.5169 Pτ4 > Pτ6 > Pτ5 > Pτ1 > Pτ2 > Pτ3

0.6 0.4589 0.4463 0.3228 0.5439 0.5097 0.5169 Pτ4 > Pτ6 > Pτ5 > Pτ1 > Pτ2 > Pτ3

0.8 0.4583 0.4497 0.3235 0.5439 0.5099 0.5170 Pτ4 > Pτ6 > Pτ5 > Pτ1 > Pτ2 > Pτ3

1.0 0.4577 0.4532 0.3244 0.5435 0.5101 0.5170 Pτ4 > Pτ6 > Pτ5 > Pτ1 > Pτ2 > Pτ3
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FIGURE 4. Sensitivity Analysis of WASPAS by varying parameter β

7. COMPARISON ANALYSIS

Through a comparison analysis with well-known IF-based aggregation operators, specif-
ically with IFWG [24], intuitionistic fuzzy Dombi Bonferroni mean operators IFDBM [13],
and intuitionistic fuzzy Einstein hybrid aggregation operators IFEHA [29], the efficacy
of the suggested IFZN-based CRITIC-WASPAS and CRITIC-EDAS approach was eval-
uated. All mentioned aggregation operators, showed good performance by applying the
above approaches and generating reliable ranking patterns. Among them, the CRITIC-
WASPAS technique distinguished itself by producing the most dependable and coherent
results throughout the evaluation. Although the initial results in Table 23 showed changes
in the rankings, while the subsequent outcomes demonstrated accuracy and consistency,
with Pτ4 consistently ranked highest and Pτ3 ranked lowest . It successfully handles the
innate imprecision and uncertainty seen in MCDM problems by incorporating IFZN. This
improves the decision-making process’s overall accuracy and dependability. In conclu-
sion, while the comparison approaches function well, the CRITIC-WASPAS approach is
the most thorough and successful, providing the most assistance for precise and accurate
decision-making in the face of uncertainty.

TABLE 23. Comparison of MCDM Method with Our Proposed Method

Method Final Value Ranking Order

IFWG [24] Pτ3 > Pτ2 > Pτ1 > Pτ5 > Pτ6 > Pτ4 Pτ3

IFDBM [13] Pτ4 > Pτ6 > Pτ5 > Pτ1 > Pτ2 > Pτ3 Pτ4

IFEHA [29] Pτ4 > Pτ6 > Pτ5 > Pτ1 > Pτ2 > Pτ3 Pτ4

Proposed Method Pτ4 > Pτ6 > Pτ5 > Pτ1 > Pτ2 > Pτ3 Pτ4
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8. CONCLUSION

This study presents a comprehensive framework for assessing the effects of six impor-
tant sectors on environmental pollution utilizing IFZN in combination with the CRITIC-
EDAS and CRITIC-WASPAS methodologies. By managing the uncertainty and impreci-
sion present in real-world environmental data, the inclusion of IFZN greatly enhances the
assessment process. The CRITIC technique was used to objectively evaluate the weights
of important environmental criteria, including waste creation, air pollution, soil contamina-
tion, noise pollution, and water pollution. These weights were then added to the WASPAS
and EDAS methodologies to provide a fair and comprehensive assessment. Furthermore,
the accuracy and consistency of the industrial rankings were further improved by modify-
ing parameters in the WASPAS approach. Additionally, in the comparative analysis of our
proposed aggregation techniques, such as IFWG, IFDBM, and IFEHA, we found that those
methods often fail to fully capture the complex and varied nature of environmental data.
However, our proposed method provides more accurate and consistent data. Overall, the
methodology contributes a robust decision-making tool for environmental impact analysis,
particularly in sectors affected by multiple uncertain factors. The suggested framework was
implemented and analyzed using MATLAB software, which facilitated the computation of
fuzzy logic operations and decision-making processes.
This study has some limitations, though. It is limited to only six industries, and the results
might not be applicable to other industrial sectors and the model relies on expert judgment
and linguistic terms, which may introduce subjectivity. Furthermore, it only focused on de-
termining which industries had the highest pollution impact; it made no recommendations
for specific strategies to reduce pollution. In future work, the IFZN-based methodology
will be expanded in further research to provide the most practicable and efficient methods
for reducing pollution in the given sector. The findings may be made even more thorough
and useful by incorporating more topic experts and a larger variety of criteria. The goal
of this extended research is to assist industry policymakers and stakeholders in making
well-informed, ecologically conscious decisions for a more sustainable future.
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