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Abstract. In this article, the exact travelling wave solutions for the non-
linear time-fractional Clannish Random Walker’s Parabolic equation are
discussed. This study establishes the new extended direct algebraic method
in which periodic, bright, multiple U-shaped bright and kink-type wave
solitons are obtained with exact solutions offered by the mixed hyperbolic
and trigonometry solutions, mixed periodic and periodic solutions, plane
solutions, shock solutions, mixed trigonometric solutions, mixed singular
solutions, mixed shock single solutions, complex solitary singular solu-
tions, shock solutions and shock wave solutions. The obtained solutions of
the non-linear time-fractional Clannish Random Walker’s Parabolic equa-
tion model are graphically presented for different values of the involved
parameters using Wolfram Mathematica software. The propagating
behaviours are visualised through 3D, contour, and 2D surface plots to
illustrate the influence of key parameters on the solution profiles. The
time-fractional derivative introduces a memory effect into the model, mak-
ing it more suitable for describing real-world physical processes that in-
volve hereditary and nonlocal behaviour. The presence of novel soliton
structures, such as multiple U-shaped solitons and bright-shaped solitons,
further highlights the novelty and complexity of the model’s dynamics.
In this study, a planar dynamical system is constructed from the pro-
posed model to carry out a sensitivity analysis of initial conditions. This
transformation enables the investigation of how small variations in the
initial values influence the system’s long-term behaviour. The proposed
method proves to be efficient, reliable, and broadly applicable for generat-
ing new analytical solutions to both integer and non-integer-order differ-
ential equations arising in mathematical physics and engineering.

Keywords: New extended direct algebraic method; Time-fractional Clannish Random
Walker’s Parabolic equation; Exact solution.
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1. INTRODUCTION

The time-fractional Clannish Random Walker’s Parabolic (CRWP) equation [13, 19]
determine the behaviour of two Random Walker’s species A and B who possess out one-
dimensional and concurrent random walk characterised by a rise in the clannishness of
members of the one species A at point x at time ¢, U(t, z) can be written by the time-
fractional CRWP equation as,

DU + jU,y + kUU, 4 WUy, = 0, 1. 1)

where a1 denotes the order of the fractional time derivatives and 0 < oy < 1.

Exact solutions for travelling waves for the non-linear fractional partial differential equa-
tions (FPDEs) are important in studying physical phenomena. In recent years, partial and
ordinary fractional equations have been used in modelling many chemistry, engineering,
physics and biology problems [14]. In the literature, several definitions of the fractional
derivatives are available, including Riemann Liouville [35, 23], the conformable fractional
derivative [18, 36] and the new truncated M-fractional derivative [20]. The non-linear
(PDEs) are essential for investigating the non-linear physical situation. PDEs) play an
important role in many analyses because of their intermittent appearance, well-designed,
and potential in various non-linear fields. To find the exact solitary wave solution in vari-
ous aspects, several authors have employed different approaches [40, 38, 17, 21, 30]. The
accurate and solitary wave solution of the (PDEs) was obtained by many authors using
various approaches in various contexts. In both pure and applied mathematics, non-linear
(PDEs) have become more significant and useful in recent years. (PDEs) They are crucial
for addressing many technical and physical issues, and no one can afford to ignore them.
The travelling wave hypothesis has evolved into the primary method for analysing and ex-
tracting soliton solutions to the many non-linear evolution equations (NLEEs). Researchers
have paid close attention to closed forms of exact solutions in recent years. Such solutions
are critical in studying the stability and nature of physical systems. The bell and kink-
shaped solitons are commonly used to simulate the non-linear oscillatory events in plasma,
hydrodynamics and fibre optics. In recent years, various types of closed-form solutions of
NLEE:s, such as soliton, rational, coupon, periodic and quasi-periodic solutions, have been
reported. Non-linear PDEs have a very vast range of practical applications in the field of
wave theory, including transportation of heat and mass, plasma physics and hydrodynam-
ics chemical technology [26, 34], ocean waves process may be characterized by non-linear
ordinary differential equation systems [27], population ecology [15], electromagnetic wave
interaction in a plasma [44], non-linear may appear in quantum mechanics in several dif-
ferent ways [8, 6] and so on.

The soliton begins with John Scott Russell’s observation of the translation wave. Before
Russell’s work was proven in the 1870s, prominent philosophers and scientists widely
praised its scientific implications. Nonetheless, Rayleigh and Boussinesq’s work demon-
strates the critical issue of non-linearity and dispersion. It is still rendering to address
Stokes and Airy’s argument against using kink-shaped and bell-shaped solutions to sim-
ulate wave phenomena in the optical fibre, the elastic media and other important fields,
well-known examples include the travelling wave solutions of Korteweg de Vries and the
Boussinesq equation [16, 28, 31, 32].

There are multiple approaches and schemes such as the sine-Gordon expansion scheme
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[11], the Kudryashov method [41], the simply extended equation method [24] and the bi-
linear neural network technique [43], used to obtain exact soliton solutions for non-linear
partial differential equations, [22] variational iteration method [37], extended exponential
function method [25], Hirota bilinear technique [3], power series method [12], F-expansion
technique [42] as well as several others [29, 2,7, 5, 4, 1].

In the literature, there are a few approaches that are commonly used for obtaining exact
solutions to the integrable wave Eq. (1), adapted (G?/G)-expansion scheme [9] and mod-
ified extended auxiliary equation mapping [33]. The proposed method is more reliable,
computationally efficient, and useful for extracting dark, bright, and singular solitons than
the current analytical method.

To our knowledge, the time-fractional CRWP equation model has not yet been studied using
the new extended direct algebraic method. As a result, the new extended direct algebraic
method approach is used to find stable soliton solutions to non-linear (FPDE), especially
the time-fractional CRWP equation also sensitive analysis is ignored in previous studies.
The present methodology has some advantages over the previously studied techniques in
the form of a more generalised solution, and its performance is more efficient and effec-
tive. The solitonic patterns of the time-fractional CRWP equation have been illustrated
via exact solutions offered by travelling wave solutions obtained, including periodic and
singular waves, multiple U-shaped bright and kink-type wave solutions by using a new
extended direct algebraic method. The obtained solutions are represented as mixed hyper-
bolic and trigonometric solutions, periodic and mixed periodic solutions, plane solutions,
shock solutions, mixed trigonometric solutions, mixed singular solutions, mixed shock sin-
gle solutions, complex solitary singular solutions, and shock solutions. Comparisons are
provided diagrammatically for generalised time-fractional CRWP equation solutions, rep-
resented graphically in Mathematica by varying the embedded parameter values. The ap-
plicability of the obtained typical solitary wave solutions of the considered model has been
investigated here by drawing 3-D, contour and 2-D graphs of the obtained solitons. The
New Extended Direct Algebraic Method is powerful for constructing exact solutions, it is
limited by the form of the equation, the need for simplification, and its inability to automat-
ically address broader physical interpretation, stability, or generality. We hope our findings
will help physicists predict new ideas in mathematical physics and its applications.

In section 2, we used the new extended direct algebraic method to develop exact solu-
tions. Section 3 demonstrates the application of the proposed method. In section 4, we
observed different wave appearances in the 3-D, contour and 2-D graphical representations
of the soliton solutions for different values of the wave velocity and discussed the graph-
ical presentation of research findings with comparative analysis. Section 5 demonstrates
a sensitive assessment of the considered model. Section 6 contains the conclusion of our
proposed study.

2. DESCRIPTION OF METHOD

2.1. Ilustration of proposed method. Consider the general (NPDE):

XU, U, Uy, Uy, Uy, ...) = 0. (2.2)
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Eq. (2. 2) can be transformed into ODE of the form given in Eq. ( 2. 3 ),

Y(N,N',N" ..)=0, (2.3)
this result can be achieved by using the approperiate transform given in Eq. ( 2. 4 ),
U(z,t) = N(Q), 2.4

where ¢ = k1x + kot and kq, ko are real constants. Assume N () in the solution of Eq. (
2. 3) and can be written in the series form as follows:

M
() =ao+ Z[ai(S(C))i], 2. 5)

where, )
F(¢) =In(A)(p + BF() + AF°(€), A#0,1, (2. 6)

where, ©,B and ) are real constants and S = B2 — 4p)\. The general solutions with
respect to parameters @, ‘B and A of Eq. (2. 6 ) are:
(Case 1): When B2 — 4p)\ < 0 and \ # 0,

Sl(C)=—%+ gtam(\/; 0), 2.7
5200 = o - LS oy (50 @8
550 =~ o + VS (s (VIO £ VamseeaVTSO), 2.9
5400 =~ o+ ¥ Seot (VI £ Vameses(VSO), .10)
500 =+ VoS ma (20 o201 @

(Case 2): When B2 — 40\ > 0 and A # 0,
50(0) = ~ o = W (L), e.12
5100 = — o — ¥ cothia(L20), @13
5o(0) = 4 Wt (V) £ s a(VEQ), @14
Fo(¢) = % + £A( cotha(V'SC) £ v/uv escha (VSC)), (2.15)
500 =~ - Y (L reoma(L0). @)

(Case 3): When pA > 0and ‘B =0,

§11(0) = |/ 5 tana(V/pA0), 2.17)

F12(0) = \/§ cota(v/pXC), (2. 18)
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F13(0) = ﬂ (tana(2y/pAC) £ Vit seea(2y/pA0)),
F14(0) = \/@— ot (2/PAC) % Vi csea(2v/PAC),
F15(¢) = % %(tanA(@C) - COtA(@O)'

(Case 4): When pA < 0and B =0,

B16(¢) = =/ = tanha(v/=pA0).
§17(Q) = =/ =5 cotha(v/=pAQ),

F1s(C) = ,/fg(ftanhA(%/fp)\C) + /v secha (2¢/—pA0)),

F10(C) = 1/—%(— coth 4 (2v/—pAC) £ vaw escha (2/—pAC)),
VA
2

A /_pA
2

Ba0(¢) = 51/~ % (tanha

(Case 5): When B =0and p = A,
F21(¢) = tana(p(),

T22(¢) = — cota(p(),
F23(¢) = tana (2p¢) £ Vuvseca (2p¢),
T24(C) = — CO’UA(QQC) + Vuv esca(290),

Fas(C) = <tanA<@<> —cota(2¢)).

¢) + cothy(

2 2
(Case 6): When B =0 and p = )\
F26(¢) = —tanha(p(),
§27(¢) = — cotha(p(),

Fas(¢) = —tanh 4 (2p(C) £ tv/uv sech4(2p(),
F29(¢) = — cota(20¢) £ vuv escha (200),

Baol0) = 5 (tanha(50) +cota(£0)).
(Case 7): When B2 = 4p),
—2p(B(1In(A) + 2)

Sa1(C) = B2¢ In(A)
(Case 8): When B = p, p = pq, (¢ #0) and A = 0,
F32(C) = APS —

(Case 9): When®B =\ =0,
§33(¢) = pCIn(A).

Q.
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(Case 10): When p =8 =0,
-1
$34(¢) = N (4]’ (2. 40)
(Case 11): When p = 0, and B # 0,
uB
A(cosh g (BC) — sinh 4 (BC) +u)’

F3s5(¢) = — (2.41)

S36(0) = — B(sinh4 (BC) + cosha (BC)) .
A(sinh 4 (BC) + cosh 4 (BC) + v)
(Case 12): When B = p, A = pq, (¢ # 0) and p = 0,
wAPS
Cu— quAPS

2. 42)

S37(¢) = (2. 43)

AC — pA—C AC 4w A—C
% , cosha(¢) = %,

uAS —pA—¢ uAS +vA—¢
tahal€) = e a—e Ol = e
2 2
T UAC + vA—C escha(C) = uAS —vA-¢’
uAl — A~ uAS + pAC
ARV cosa(g) = AT
uAC — A~ ‘ B uAC +pA~
T uA + A~ cota(¢) = LUAK — A
2 2t
seeal®) = ey oame @l = e

The deformation arbitrary constants parameters w and v are greater than zero.

blnhA(C) =

sech 4(Q)
(2. 44)

sing (¢) =

tana (¢) =

3. EXACT SOLUTIONS FOR CRWP EQUATION

We use the following travelling wave to obtain the solutions of Eq. ( 1. 1), transforma-
tion:

Q
$U(z,t) = U(C) where ¢ =z — é (t + A(lﬂ)) : (3. 45)

where c is constant. On the contrivance of Eq. ( 3. 45) to the Eq. ( 1. 1), we reveal that:
2(j5 — ¢)N + kN? +2IN'" = 0. (3. 46)
According to the homogeneous balancing principle of Eq. ( 3. 46 ) gives M = 1.
Wz, t) = ap + a15(¢), (3. 47)

where,

F(¢) = In(A)(p + BF(C) + AF*(¢)), A#0,1, (3. 48)
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The prognosticate solution Eq. ( 3. 47 ) is plugging in Eq. ( 3. 46 ) and equating the
coefficient of distinct power of F(() prevailed the algebraic system of equations:

(3(0))° :2jag — 2ca + kag + 2la; In(A)p,
(F(O)' :2ja1 — 2cay 4 2kagay + 2lay In(A)B, (3. 49)
(S(C))2 :kzaf + 2lag In(A)A.

system of Eq. ( 3. 49 ) is solved with the help of the modern software Mathematica to
get the required parameters,

ao = “n( ) o 1+ V5), a

_ 2 12(A)A7 ¢=j+M(A)(Bl—B+1VT). (.50

Uz, t) = IIB + TIV'S + 2TA[F:(C)]. (3.51)

Where, T = 2% and § = 82 — 4p\.

Exact solutions for Eq. ( 1. 1) can be obtained by plugging the Eq. ( 3. 50 ) into Eq. ( 3.
47 ), which is given below,

(Case 1): When B2 — 4p)\ < 0 and \ # 0,

U (z,t) =TIVS(1 + LtanA(\/ng)), (3.52)
Yoz, t) = TIVS(1 — LcotA(go), (3.53)
Us(a,t) = IIVS(1 + (tana (vV—=5¢) £ uvseca(vV—5¢))), (3. 54)
Uy (,t) = TIVS(1 4 t(cot 4 (vV=5C¢) £ vuv csea(vV—5¢))), (3. 55)
Us(z,t) = TIVS(1 + (tanA(\/ng) —cotA(\/jS())). (3. 56)

(Case 2): When B2 — 4p\ > 0and \ # 0,
U (z,t) = IIVS(1 — tanA(g(j)), (3.57)
Uy (z,t) = IVS(1 — cotA(gg)), (3. 58)
Ug(z,t) = TIVS(1 — tan (VSC) + tw/uvseca(VSC))), (3.59)
U (z, ) = TIVS(1 — cot 4(V'SC) + Vuw esca(VSC))), (3. 60)
$hyo(z,t) :H\/§(1—|—%(tanA(gC)—i-cotA(@C))). (3. 61)

(Case 3): When p\ > 0and B = 0,

Uy (2, 8) = 2TV (Vg tana (VA + VL), (3. 62)
Uio(,t) = 21V (= /@ cot 4 (VA + /), (3. 63)

Wiz (1) = 2V A (V@ (tan 4 (24/pAC) £ Vv sec4(2v/pAC)) + Vo), (3. 64)
gz, t) = 2IVA(/P(— cot a(2v/pAC) £ Vv csca(2v/ X)) + Vor), (3. 65)

sz, t) = ZH\&(?(tanA(@C — cotA(@()) +\/pL). (3. 66)
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(Case 4): When p\ < 0and B = 0,
ez, t) = ZHﬁ(—ijtanhA(\/—pAC) +/0L),
L[17(.23,t) = QH\/X(_\/TWCOthA( V _pAC) + \/ﬁ”)

@3
@3

. 67)
. 68)

Wig(x, t) = 2TV A(v/—p(— tanh 4 (2/=pAC) + tv/uvsech4(2/—pAC)) + /u),

@3

Wio(x,t) = 2TV A (v/— (= coth 4 (21/—pAE/uw csch 4 (24/— X)) +1/ot), (3

oo (z,t) = QHA(—@(tanhA(%p)\C) + coth( 2 Vou).

(Case 5): WhenB =0and p = A, "
Loy (2, 1) = 20p(tana (pC) + 1),
oo (2, 1) = 20Ip(— cota(pC) +¢),
s (2, t) = 2Mp(tana (2pC) £ Vuvseca(2p() + 1),
HUog(x,t) = 2[Ip(— cot 4 (2pC) £ Vuv csca(2pC) + t),

$hos (2, 1) = an(% tana($¢) = cota(50) +0).
(Case 6): When B =0 and A = —p,
ag(z,t) = 2ITp(1 + tanh 4 (p()),
Uo7 (z,t) = 2IIp(1 + cotha(p()),
Uog(z,t) = 2TTp(1 + tanh 4 (20C) F tv/uvseca(29C€)),
oo (z,t) = 2l p(1 + cot4(2 p ) F Vuvescha(2 p()),

Uso (1) = 2Mp(1 + %(tanhA(gg) —cota(£0))).

2
(Case 7): When B2 = 4pA,
B(In(A) + 2)
B2(1n(A4)

2
Uz (z,t) = TIB + 21T\ (— P

(Case 8): When B = p, p = pq, (¢ #0) and A = 0,
Uso(z,t) = 2Hp.
(Case 9): When B =\ =0,
a3 (x,t) = 0.
(Case 10): When p =8 =0,
-1

ﬂ34($7t) = 2H(<1H(A)

(Case 11): When p = 0, and B # 0,

_ —up
,u35($,t) - QH(COShA(pg) _ Sll’lhA(pC) +u + L\/a)v

—p(sinh 4 (pC) + cosha(pC)
sinh 4 (p¢) + cosha(p¢) + v + L\/pj)

Usg (x’ t) = ZH(
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(Case 12): When B = p, A = pq, (¢ # 0) and p = 0,

—uAP¢

Usr (@, ) = QHP(W

+11/q). (3. 88)

4. GRAPHICALLY DISCUSSION

This section explains numerical and physical simulations of some obtained solutions
to the successive non-linear evolution equations of the time-fractional Clannish Random
Walker’s Parabolic equation by selecting appropriate values for the arbitrary parameters. A
modern software program, Wolfram Mathematica, is utilised to plot graphs for better
presentation.

In Figure 1, graphs for the soliton wave number (£2) of the obtained solution ; (x, t),
at the parametric values p=0.6, 6=0.2, \=0.7, A =2, I=5, k=0.4, u=3, v=2 and c=1, for
different values of wave numbers, in the form of 3-D, contour and 2-D. In Fig. (la) at
0=0.1, continuous bright solitonic behaviour is observed in a 3-D profile by increasing the
value of wave number, we found the same behaviour in Fig. (1d) and (1g) and for more
visualization, the contour was plotted and found the bright soliton in (1b), (1e), (1h), and
2-D shows the bright periodic soliton in (1c), (1f) and (1i) by increasing values of wave
speed.

In Figure 2, we examine the soliton wave number (2) for the derived solution g (z, t)
at specific parameter values: =0.02, B=5, \=7, A=2, [=5, k=0.4, u=3, v=2, and c=1. We
visualise this wave number’s impact through 3-D, 2-D, and contour plots. In Fig. (la),
when (2 is set to 3.09, we observe a continuous bright solitonic behaviour in a 3-D profile.
As we increase the wave number value, this behaviour persists, as shown in Figures 1d and
1g. To provide a more detailed view, we employ contour plots and find the bright soliton in
Figures (1b), (1e), and (1h). The 2-D plots reveal bright periodic solitons in Figures (1c),
(1f), and (11) as we further increase the wave speed. This analysis allows us to understand
how changes in the wave number affect the behaviour of the derived solution g (x,t) at
the specified parameter values.

In Figure 3, graphs for the soliton velocity of the obtained solutions s5(x, t), at the para-
metric values p=5, B=0, \=5, A = 3,1 =5,k =04, u =29,v =6, c = 0.9,
for different values of wave number, in the form of 3-D, 2-D and contour, multiple bright
solitonic behaviours are observed in 3-D, bright solitons in contour and multiple bright sin-
gular solitons can be seen in 2-D for the same values of wave number as we took in Fig.1).
In Figure 4, graphs for Llog (2, t) for parametric values =5, B=0, \=-5, A = 2, = 5,
k=04,u=3,v=2,c=1 at wave speed 2=0.1, shows flat anti-kink structure in 3-D,
contour and 2-D getting bright by increasing the value of the soliton wave number.
Moreover, it is expected that future research on non-linear wave phenomena will further
clarify the challenges addressed in applied sciences through the results and explanations
presented in this study. The novel solutions obtained in this work can contribute to prac-
tical applications in areas such as fluid dynamics, non-linear optics, plasma physics, and
biological wave propagation, where understanding and controlling wave behaviour is of
critical importance.
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FIGURE 1. Visualised impact of travelling wave velocity in 3-D, contour
and 2-D for solution 4y (x, t)
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FIGURE 2. Visualised impact of travelling wave velocity in 3-D, contour
and 2-D for solution g (x, t)
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FIGURE 4. Visualised impact of travelling wave velocity in 3-D, 2-D
and Contour for soliton solution log (2, t)

4.1. Comparison with Existing Study. To highlight the uniqueness of this work, a com-
parison with existing literature is presented. Seadawy et al. [33] obtained singular, peri-
odic, and bright solitons using the modified auxiliary and F-expansion method. Alam et
al. [10] identified singular, bell-shaped, and bright solitons via the (1), ¢)-expansion tech-
nique. Ullah et al. [39] reported a range of soliton types-bright, dark, singular, and combo
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forms-using the extended direct algebraic method.

In contrast, the current study reveals new types of soliton solutions, including kink solitons,
bright solitons, and multiple U-shaped bright solitons, along with periodic forms. This di-
versity of solutions, some aligning with past findings and others entirely novel, underscores
the originality of the work. The applied methods proved effective in generating a wide va-
riety of solution structures.

In addition, a sensitivity analysis has been included to explore the dynamic behaviour of
the model, offering deeper insight into how small changes in initial conditions affect the
system.

Physically, the solutions represent realistic wave behaviours in non-linear media: U-shaped
solitons correspond to stable, localised waveforms; bright-shaped solitons illustrate regions
of high intensity; and multiple U-shaped solitons capture complex, multi-peak structures.
These patterns reflect wave dynamics commonly observed in real-world systems such as
fluid flow, optical fibres, and other non-linear dispersive media.

5. THE SENSITIVITY ASSESSMENT

The plane dynamic system can contribute to the sensitivity of the time-fractional Clan-
nish Random Walkers Parabolic equation. The dynamic system of Eq. ( 3. 46 ) is as
follows:

—2(j—¢)N kN?

21 21

This section discusses the sensitive behaviour of the considered model with parametric val-
uesc = 1.2,k =0.9,5 = 1.5 and [ = 0.5, after transforming it into a dynamical system (
5. 89). The sensitivity of the dynamical system depends on the initial guess. By choosing a
suitable initial guess, the sensitivity of the system can be controlled. If a minor adjustment
in the initial conditions results in a slight change in the system, the system is less sensitive.
We will establish the physical properties of the considered model and discuss the effects
of the frequency and perturbation force. As a result, by using different initial conditions in
the segment, we recognise the sensitivity of the solution of the dynamical system.

In Fig. (4), the main objective of the present investigation is to accurately assess the distur-
bance caused by the changes in the input. The analysis findings show different parametric
values to illustrate how small changes in input can result in large variances in the result.
In Fig. (4a), it can be illustrated that a slight change in the initial condition affects the
solutions that contribute to the disorderly behaviour of the curve. The same experiment is
replicated in Figs. (4b), (4c) and (6d), by retaining the values of the parameters and making
a larger change in the initial conditions, and the same effects are observed; as a result, in
this case, the system is sensitive.

N =

=0. (5. 89)
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FIGURE 5. Sensitivity visualisation at distinct initial conditions
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6. CONCLUSIONS

This work explored the non-linear time-fractional Clannish Random Walker’s Parabolic
equation using the new extended direct algebraic method. The incorporation of time-
fractional derivatives introduces memory and nonlocal effects, making the model more re-
alistic for describing complex physical phenomena. By selecting specific parameter values
under given constraints, several new exact solutions were obtained and illustrated through
3D, 2D, and contour plots using modern computational tools. A planar dynamical system
is derived from the proposed model to perform a sensitivity analysis concerning initial con-
ditions. This approach allows for a detailed examination of how slight changes in initial
values can affect the system’s evolution and long-term dynamics. The results indicate that
wave singularities can be effectively controlled by varying the wave velocity. The method
led to the discovery of novel solitary wave structures, including soliton types not previously
found in the literature. Overall, the study confirms the robustness and applicability of the
proposed analytical approach for addressing a wide range of non-linear partial differential
equations arising in physical and engineering contexts.
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