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Abstract. In this paper, we introduce a novel hybrid structure called the
neutrosophic hesitant fuzzy soft set (NHFSS), which integrates the flex-
ibility of hesitant fuzzy information with the expressive capacity of neu-
trosophic and soft set theories. Motivated by the need to handle multi-
ple layers of uncertainty in decision-making problems, we propose a new
framework for modeling such environments. Building upon this structure,
we define two complementary measures: the pessimistic energy and the
optimistic energy of an NHFSS, which capture lower-bound and upper-
bound contributions of the hesitant and neutrosophic elements, respec-
tively. These measures are then synthesized to derive the total energy of
the NHFSS. We develop a decision-making algorithm based on this en-
ergy characterization and apply it to a real-world example to demonstrate
its effectiveness. A comparative analysis is conducted to highlight the
advantages of the proposed approach over existing models. Our findings
suggest that the energy-based treatment of NHFSSs provides a robust and
discriminative framework for multi-criteria decision-making under com-
plex uncertainty.
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1. INTRODUCTION

In the era of artificial intelligence and data-driven decision-making, the need for frame-
works capable of handling uncertainty, vagueness, and imprecision has become increas-
ingly prominent. Classical models, based on binary logic and crisp data, often fall short
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in addressing real-world problems involving ambiguity. To overcome these challenges, re-
searchers have introduced various mathematical structures tailored to better represent and
process such data.

One of the earliest and most influential concepts in this area is the notion of fuzzy
sets, introduced by Zadeh [36], which provides a flexible representation of partial mem-
bership. Recognizing the limitations of fuzzy sets in dealing with parametric uncertainty,
Molodtsov [21] proposed the theory of soft sets as an alternative approach. This theory has
since been further developed by numerous researchers, including Ali et al. [3], Sezgin and
Atagun [25], who defined and analyzed operations on soft sets. A comprehensive overview
of soft set theory, its historical development, and applications can be found in the review
article by Alcantud et al. [2]. Soft sets provided the conceptual foundation for the develop-
ment of hypersoft sets, which extend the original framework by allowing multi-parameter
representations and higher structural flexibility; see, for example, studies [12, 13, 24].

Parallel to the development of soft sets, Atanassov [5] introduced intuitionistic fuzzy
sets, which extend fuzzy sets by incorporating both membership and non-membership de-
grees. The combination of intuitionistic fuzzy sets and soft sets led to hybrid models such
as fuzzy soft sets [16] and intuitionistic fuzzy soft sets [17], which further enhanced the
ability to represent complex uncertain environments. These hybrid models have found
practical applications in various fields, as shown by Alblowi et al. [1]. Recent studies also
demonstrate that matrix-based soft extensions of these models play a crucial role in mod-
ern supervised learning frameworks, particularly in scenarios requiring efficient processing
of large-scale uncertain information. For instance, picture fuzzy soft matrices have been
successfully employed in classification via distance-based learning schemes [18], while in-
tuitionistic fuzzy parameterized soft matrices have shown strong performance in data clas-
sification through refined similarity measures [19]. Moreover, adaptive machine-learning
approaches built upon intuitionistic fuzzy soft matrix structures [20] further highlight the
practical relevance and versatility of such hybrid models in real-world decision-making
environments.

Despite these advancements, many decision-making problems require the explicit mod-
eling of indeterminacy in addition to truth and falsity. This led to the introduction of neutro-
sophic sets by Smarandache [26], which are characterized by three membership functions:
truth, indeterminacy, and falsity. Extensions of this concept, such as interval-valued neutro-
sophic sets [32] and single-valued neutrosophic sets [33], have been proposed to improve
flexibility in modeling. Ye [34] further developed similarity measures and decision-making
methods under simplified and hesitant neutrosophic environments.

The hybridization of neutrosophic sets and soft sets yielded the notion of neutrosophic
soft sets, introduced by Maji [15]. Their extensions and applications in decision-making
have been explored in works by Deli and Broumi [8], Dalkili¢ [6], and others. In particular,
Deli [7] developed a decision-making algorithm based on interval-valued neutrosophic soft
sets, laying the groundwork for energy-based methods in this setting.

The notion of energy, originally introduced in graph theory by Gutman [10], has found
broad applications in applied mathematics and optimization. Nikiforov [22, 23] extended
the study of graph and matrix norms, while the nuclear norm, defined as the sum of singular
values, has been used in matrix optimization problems [11, 14]. Inspired by these devel-
opments, energy-based models were introduced in the soft computing framework. Mudric
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Staniskovski et al. proposed the concept of fuzzy soft set energy, Alcantud et al. defined
the scored-energy of hesitant fuzzy soft sets, and Stojanovic et al. extended the energy
framework to interval-valued hesitant fuzzy soft sets. Additional contributions in this di-
rection include applications of energy-based models in decision-making [9], evaluation of
cloud platforms, and the introduction of Q|[e]-fuzzy sets. Further developments include the
formulation of decision-making algorithms grounded in the scored-energy of neutrosophic
soft sets [27], as well as the analysis of complex decision-making environments through the
energy of bipolar neutrosophic soft sets [28]. These results collectively illustrate the rapid
expansion and versatility of energy-based methodologies within the broader soft computing
paradigm.

Existing decision-making approaches developed for neutrosophic hesitant fuzzy envi-
ronments, such as those proposed by Ye [35] and Wang and Li [31], provide important
tools through aggregation operators and multi-criteria evaluation schemes. More recent
contributions, including the partitioned Maclaurin symmetric mean operator introduced
by Ali et al. [4], further demonstrate the versatility of neutrosophic hesitant fuzzy models.
However, despite their usefulness, these methods often suffer from several limitations: they
typically rely on aggregation procedures that do not fully exploit the structural richness of
hesitant information, lack mechanisms for capturing global interactions among parameters,
and may lead to ranking instability when alternatives exhibit similar evaluation patterns.

In contrast to problem-specific solutions, the objective of this work is to develop a math-
ematically grounded model for determining the optimal alternative in highly uncertain set-
tings. Our goal is not to resolve a particular real-world decision problem, but to construct a
new and more robust methodology capable of improving upon existing approaches. To this
end, we introduce the neutrosophic hesitant fuzzy soft set (NHFSS), a hybrid structure that
integrates hesitant fuzzy and neutrosophic data within a soft parameterization framework.
This integration enables a richer and more coherent representation of uncertainty, capturing
hesitation in truth, indeterminacy, and falsity values across multiple attributes.

To quantify the informational strength of an NHFSS, we draw motivation from the nu-
clear norm, a fundamental matrix norm defined as the sum of singular values and widely
used in optimization and structural characterization. Prior research on energy-based mea-
sures in soft and fuzzy soft structures has demonstrated that singular value—based energy
provides a meaningful way to capture global information patterns. Building on these ideas,
we introduce two complementary numerical characteristics for NHFSSs: the pessimistic
energy, derived from minimal hesitant evaluations, and the optimistic energy, derived from
maximal hesitant evaluations. These measures reflect, respectively, the most conservative
and the most favorable informational scenarios encoded in the data.

By synthesizing these two extremal measures, we define the total energy of an NHFSS,
which serves as a comprehensive scalar indicator of its global informational content. The
purpose of this construction is to establish a mathematically principled criterion for com-
paring alternatives and determining the optimal one. The resulting energy-based model thus
provides a new methodological framework that overcomes several limitations of existing
decision-making techniques and offers improved stability, interpretability, and sensitivity
to structural variations in hesitant neutrosophic data.

The structure of the paper is as follows. Section 2 introduces the neutrosophic hesitant
fuzzy soft set (NHFSS) by recalling the fundamental concepts and definitions on which
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it is based. In Section 3, we develop the notions of pessimistic and optimistic energy for
NHFSSs, which jointly provide a complete energy-based characterization of the proposed
structure. Section 4 describes a novel decision-making algorithm that incorporates these
energy measures to evaluate and rank alternatives. In Section 5, the effectiveness of the
proposed algorithm is demonstrated through its application to a practical problem. Sec-
tion 6 offers a comparative performance analysis against existing approaches. The paper
concludes in Section 7 with a summary of findings and suggestions for future research
directions.

2. FROM SOFT SETS TO NEUTROSOPHIC HESITANT FUzzY SOFT SETS:
FOUNDATIONAL CONCEPTS

In this section, we present the essential concepts that support the construction of the hy-
brid model studied in this paper. Starting from soft sets, introduced as a parameterization
tool for managing uncertainty, we connect this framework with fuzzy sets, intuitionistic
fuzzy sets, and neutrosophic sets, each of which expands the ability to represent vague-
ness by incorporating additional degrees of information. These developments naturally led
to more expressive models such as hesitant fuzzy sets (HFSs) and neutrosophic hesitant
fuzzy sets (NHFSs), which allow multiple possible values to describe membership, inde-
terminacy, and non-membership in situations where experts may hesitate among several
assessments.

While each of these structures provides useful mechanisms for dealing with uncertainty,
combining them within a unified setting offers further expressive power. In this work, we
focus on the integration of NHFSs with soft sets, resulting in the neutrosophic hesitant
fuzzy soft set (NHFSS), a model capable of representing parameterized hesitation in all
three membership dimensions. To prepare the ground for this construction, we briefly recall
the essential properties of HFSs and NHFSs, which play a central role in understanding the
proposed hybrid structure.

Definition 2.1. ([29, 30]) Let X be a fixed universe. A hesitant fuzzy set (HFS) A on X is
defined by a function h 5 : X — P([0,1])\{0} that assigns to each element x € X a finite,
non-empty subset h 4 (x) C [0, 1], representing the set of possible membership degrees of
to the set A. The hesitant fuzzy set A can be written as

A={(z,ha(2)) |z € X},
where each h () is called a hesitant fuzzy element (HFE).

This definition allows multiple membership degrees to coexist for a single element, thus
providing a more flexible framework for representing uncertainty and hesitation in expert
evaluations.

Definition 2.2. Let U be a universal set of elements. A Neutrosophic Hesitant Fuzzy Set
(NHES) § over U is defined as

§ = {(u, T5(u), I3(u), F5(u)) [ u e U},

where Tz (u), Iz(u), and Fz(u) denote the hesitant truth-membership, hesitant indetermi-
nacy-membership, and hesitant falsity-membership functions, respectively. For each u €
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U, these functions assign a finite subset of [0, 1] representing possible degrees of member-
ship, indeterminacy, and non-membership. The following condition holds for all u € U:

0 < sup T5(u) + sup Iz(u) + sup Fz(u) < 3.

Each triplet ©(u) = (T3 (u), Iz(u), F5(u)) is called a Neutrosophic Hesitant Fuzzy Ele-
ment (NHFE).

In this subsection, we define the concept of the neutrosophic hesitant fuzzy soft set
(NHFSS) as a hybrid structure obtained by combining the neutrosophic hesitant fuzzy set
(NHFS) with the soft set (SS). Let U be the initial universal set, let NHFS(U) denote the
collection of all neutrosophic hesitant fuzzy sets on U, and let E be the set of parameters
with A C E.

Definition 2.3. The ordered pair (F, A) is called a neutrosophic hesitant fuzzy soft set
(NHFSS) over U, where § : E — NHFS(U) is a mapping such that for any e € E,

3’(6) = {(uvM(u)vN(u>7L(u)) |ue U} € NH-FS(U)a

where M (u), N(u), and L(u) are finite subsets of [0, 1] representing the hesitant truth-
membership, hesitant indeterminacy-membership, and hesitant falsity-membership degrees
of the element u € U with respect to the parameter e € E.

Instead of the notation (§, A), we also write § a, and the sets M (u), N(u), and L(u)
will often be denoted by Ty ,(u), Iz, (u), and Fy,(u), respectively. The mapping § is
called the neutrosophic hesitant fuzzy approximating function of the NHFSS § .

Fa={(e,F(e) |ec A,F(e) e NHFS(U)}.

The neutrosophic hesitant fuzzy soft set (NHFSS) provides a flexible and comprehensive
framework for modeling decision-making scenarios involving uncertainty, hesitation, and
indeterminacy. Each parameter in an NHFSS corresponds to a neutrosophic hesitant fuzzy
evaluation over the universe of alternatives, making the structure particularly suitable for
environments where traditional approaches fail to capture subtle informational ambiguities.
To demonstrate its practical relevance, we now introduce a real-world decision-making ex-
ample originally discussed by Ye ([35]), in which the attribute weights are not computed
algorithmically but rather assigned subjectively based on expert judgment. This example
illustrates how the NHFSS model accommodates real evaluations and expert-defined pref-
erences within a unified decision-making framework.

Example 2.4. Investment companies are frequently required to select the most suitable
option among several potential investment alternatives, a problem that has been widely
analyzed in the decision-making literature. In this context, identifying the optimal alterna-
tive becomes essential, especially when evaluations are uncertain, imprecise, or based on
multiple expert opinions.

Consider an investment company evaluating four possible choices: uy represents a car
manufacturing company, us a food industry company, us a computer technology company,
and u4 an arms industry company. The decision depends on three key attributes: e; denotes
the level of risk, es reflects expected growth, and e3 measures environmental impact.

To capture the uncertainty and hesitation inherent in expert assessments, these evalua-
tions are represented using a neutrosophic hesitant fuzzy soft set § a, presented in Table 1.
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The goal is to determine which alternative provides the most favorable investment oppor-
tunity under this uncertain environment.

TABLE 1. Neutrosophic hesitant fuzzy soft set § 4 from Example 2.4

5 €1 €2 €

u? ({0.3,0.4,0.5},{0.1},{0.3,0.4}) | ({0.5,0.6},{0.2,0.3},{0.3,0.4}) | ({0.2,0.3}, {0.1,30.2}, {0.5,0.6})
uz | ({0.6,0.7},{0.1,0.2},{0.2,0.3}) ({0.6,0.7},{0.1},{0.3}) ({0.6,0.7},{0.1,0.2},{0.1,0.2})
us | ({0.5,0.6},{0.4},{0.2,0.3}) ({0.6}, {0.3}, {0.41) ({0.5,0.6},{0.1},{0.3})

Uy ({0.7,0.8},{0.1},{0.1,0.2}) ({0.6,0.7},{0.1}, {0.2}) ({0.3,0.5},{0.2},{0.1,0.2,0.3})

This example demonstrates how the NHFSS structure enables the simultaneous handling
of hesitation, indeterminacy, and multiple membership assessments, providing a realistic
foundation for determining the most suitable investment alternative.

3. ON THE NOTION OF ENERGY IN NHFSS THEORY

The main objective of this section is to present a method for representing a neutrosophic
hesitant fuzzy soft set (NHFSS) in matrix form, thereby enabling the definition of quantita-
tive characteristics associated with its structure. Specifically, we focus on the construction
of certain matrices from which the singular values can be computed. The sum of the sin-
gular values of a matrix, plays a central role in this context. This concept has already been
successfully applied in other branches of mathematical modeling, such as graph theory and
optimization problems, which further motivates its application within the framework of
NHFSSs.

To introduce a novel numerical measure that reflects the internal structure and informa-
tional content of a given NHFSS, we define the notion of energy of a neutrosophic hesitant
fuzzy soft set. However, due to the inherent complexity of this structure - where each pair
consisting of a parameter and an element from the universe is assigned hesitant values for
truth, indeterminacy, and falsity - it is necessary to distinguish between two types of energy:
optimistic and pessimistic. These two forms of energy arise from different strategies for
interpreting hesitant information: the optimistic approach emphasizes the most favorable
values, while the pessimistic approach highlights the least favorable ones.

Since an NHFSS is defined by three functions:

e T, which assigns a hesitant set of truth-membership values to each object-parameter
pair,

e [, which assigns hesitant indeterminacy-membership values, and

e [, which assigns hesitant falsity-membership values,

it is possible to construct, from each of these functions, two matrices - one containing the
maximum values from each hesitant set (optimistic interpretation) and the other contain-
ing the minimum values (pessimistic interpretation). In this way, a single NHFSS can be
uniquely represented by a total of six rectangular matrices.

In Subsection 3.1, we formally define the concepts of optimistic and pessimistic energy,
based on the matrices introduced above. Then, in Subsection 3.7, we present the central
construction of this section - the general definition of the energy of a neutrosophic hes-
itant fuzzy soft set, expressed as a unified numerical measure derived from the spectral
characteristics of all relevant matrices.



942 Milica Dabi¢ and Nenad Stojanovi¢

3.1. Spectral Energy Analysis: Pessimistic and Optimistic Perspectives in NHFSSs.
In the context of neutrosophic hesitant fuzzy soft sets (NHFSSs), each of the functions 7',
I, and F assigns a discrete set of possible values to every pair consisting of an alternative
and an attribute. This means that, instead of a single precise value, there may be multi-
ple candidate degrees of truth, indeterminacy, and falsity, which reflects the presence of
hesitation and uncertainty in the assessment process. While this structure allows for flex-
ible modeling, it also requires additional procedures to extract numerical representations
suitable for further analysis.

In this study, we focus on the minimum and maximum values within each hesitant set,
which we consider representative indicators for constructing numerical models. Based on
these values, we introduce six rectangular matrices for each NHFSS, two for each of the
functions 7T, I, and I - one representing the optimistic case and the other the pessimistic
case. These matrices serve as the foundation for defining the optimistic and pessimistic
energies of a NHFSS, which are further used for the analysis and ranking of alternatives
within a multi-criteria decision-making framework.

Definition 3.2. Let U = {uy, ua, ..., un} be a finite universal set (the set of alternatives),
andlet A = {e1,ea,...,em} C E, where E is the set of parameters (the set of attributes).
Let § 4 be a NHFSS over (U, E).

The matrices of the minimum and maximum values of the truth-membership function
T% , are defined as n X m matrices:

min Ty, (e1)(u;) minTy,(e2)(uy) -+ minTg, (em)(u1)
- minT%, (e1)(uz2) minTy,(e2)(uz) -+ minTg,(em)(usz)
o5 = : : . : ’
minT%, (e1)(u,) minTy,(e2)(u,) -+ minTg, (em)(un)
and
maxT5,(e1)(u;) maxTy,(e2)(u1) -+ maxTy,(en)(u)
T max T, (e1)(uz) maxTs,(e2)(u2) --- maxTs,(en)(us)
(I)SA = : .
maxTg,(e1)(u,) maxTy,(e2)(uy) -+ maxTy,(em)(u,)

Analogously, the matrices fl)%’in I fI)%’jXI and Q)?in E @?jXF are defined by replacing
the function Ty , with Iy, and F% ,, respectively, in the expressions above.

Based on the previous definition, every NHFSS can be precisely represented using six
rectangular matrices that contain the minimum and maximum values of the truth, indeter-
minacy, and falsity functions. These matrices enable the transformation of discrete infor-
mation from hesitant values into deterministic forms suitable for further numerical analysis.
For each of the introduced matrices, the singular values can be computed using standard
procedures from linear algebra. The sum of all singular values of a given matrix is known
as the nuclear norm, which is widely used in optimization problems, especially in low-rank
matrix approximation. In graph theory, a similar construction is referred to as graph energy
and is used as a numerical indicator of the structural complexity of a graph. Building on
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these ideas, the main objective of this paper is to formally introduce a new numerical mea-
sure called the energy of a NHFSS. This measure is based on the singular values (SV) of the
matrices that describe the structural characteristics of an NHFSS and provides additional
insight into the distribution of information within the set. Due to the nature of hesitant
structures and the presence of multiple values per component, two perspectives are espe-
cially considered: optimistic and pessimistic. These perspectives allow us to distinguish
between the best-case and worst-case scenarios in interpreting the data.

Definition 3.3. Let § 4 be a NHFSS. The optimistic energy of § a, denoted by E*(F 1), is
defined as

n
E+(SA) _ Z (O.Z;naxT _|_O_Zgnax1 _ 0;n1nF) ’
i=1
where:
o onaxT > gmaxT > .. > gmaxT > () gre the SV of the matrix ®22xT
1 = U9 = = Op = Fa 5
o gnaxl > ghmaxl > ... > a;;“axf > 0 are the SV of the matrix @?j“,

° crininF > og‘inF =2 U{FinF > 0 are the SV of the matrix @?inF.

Definition 3.4. Let §4 be a NHFSS. The pessimistic energy of § 4, denoted by E~(F 4), is
defined as

n
— _ min T min [ max F'
E (SA)—Z(% ot — gt
=1
where:
° o.minT > min T > > min T >0 h SV h . (I)IninT
1 = 0y = z0, > 0 are the of the matrix Ta

° a‘f‘mI > 05““‘1 Z 2 a;;““f > 0 are the SV of the matrix @%Z“I,
° o{n‘“"F > aéna"F > 2> ag"‘“‘F > 0 are the SV of the matrix @g’j"F.

We now utilize Example 2.4, previously introduced in Section 2, as the basis for illustrat-
ing the procedure for calculating the energy of a NHFSS. Using the specific data presented
in that example, Example 3.5 will demonstrate in detail how to compute the optimistic and
pessimistic energy values. These results will then be used to determine the overall energy
of the same set in Subsection 3.7.

Example 3.5. By applying Definition 3.2, this NHFSS can be uniquely represented using
six rectangular matrices:

[0.3 0.5 0.2] 0.5 06 0.3
) 0.6 06 0.6 0.7 07 0.7
(bmmT _ q)maxT _
Sa 0.5 0.6 05|’ 34 06 06 06]°
0.7 0.6 0.3 0.8 0.7 0.5
[0.1 0.2 0.1] 0.1 0.3 0.2
) 0.1 0.1 0.1 0.2 0.1 0.2
(I)mlnl _ (I)maxl _
Sa 04 0.3 01|’ “Sa 04 03 0.1}’
0.1 0.1 0.2 0.1 0.1 0.2
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0.3 0.3 0.5 04 04 0.6

0.2 03 0.1 0.3 0.3 0.2
q)mlnF q)maxF

0.2 04 03|’ 0.3 04 0.3

0.1 0.2 0.1 0.2 0.2 0.3

Furthermore, to determine the singular values of these matrices, we multiply each of
these matrices by their respective transpose, so we form the matrices

(I)rllinT ((I)mmT) , @maxT (q)maxT) ,
(I)?i‘nl ((I)mlnl) , (I)maxI (q)maxl) ,

Sa Sa Sa
q)?;nF ((I)mlnF)T, q)?:xF (q)maxF) )

The singular values are obtained as the square roots of the eigenvalues of the resulting
matrices, yielding

O’ininT =1.7814, O-g’inT = 0.24391, o'émnT 0.16481,
oo T = 21384, o™ T =0.21839, o7 =0.09871,

o' = 0.61099, o5'"! =0.17321, o' = 0.08183,
ai“*”" 0.69246, 03! =0.2175, o™ = 0.15228,
Uian = 0.93026, OéninF = 0.22336, O,gnnF 0.06874,
o™ = 11716, 05" = 0.18644, 0§ = 0.05118.

Using Definition 3.3, we find that the optimistic energy of the observed NHFSS § 4 is
3
EF(Fa) =Y (of™T + o) — o) = 299538,
i=1
and using Definition 3.4, the pessimistic energy is
3
E™(Fa) =) (o7 ol — g F) = 1.64693.
i=1
In the previous example, it was shown that the obtained values of optimistic and pes-
simistic energy are finite real numbers. This observation is not limited to the specific case
but can be generalized. In the following, we present a theorem that defines the general
bounds for the energy values within the NHFSS model.

Theorem 3.6. Let § 4 be a neutrosophic hesitant fuzzy soft set, where U = {uq,ug, ..., un}

is the universe, E = {ey,ea,...,en} is the set of parameters, and A C FE is the set of

considered parameters. Then, the optimistic and pessimistic energies of § 4 satisfy:
—nym < ET(Fa) < 2nvm,

and

—nyvm < E7(Fa) < 2nym.
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Proof. We first establish the bound
—nyvm < ET(Fa) < 2nv/m.

The corresponding inequality for E~ (F 4) can be proven in an analogous way.
Applying the inequality A-G means to the values oPax T gipaxT = gmaxT ywe obtain

Using the basic properties of matrices, their eigenvalues and SV, together with the fact that
T5,(e;)(u;) €[0,1]foralli=1,...,nand j =1,...,m, it follows that
- max 2 max max - - 2
S (P T)? = g (@2T (@2 T)T) = 53 (sup Ty, (e5) (1)) < mn.
i=1 =1 j=1

Therefore,
n

ZU?‘“T < Vn?m = nym.
i=1
By the same reasoning, we obtain -, q?la“ < ny/m.
Since Y, oML > 0and 37 o™i F > 0, we conclude that

E*(§a) =) (of™T o> — oinF) < 2ny/m.
i=1
A similar argument shows that
_nm < E+ ('SA)a
which completes the proof. U

3.7. Energy Analysis of NHFSS. In this paper, we introduce a new numerical measure
called the energy of a NHFSS, defined as the arithmetic mean of its optimistic and pes-
simistic energies. In this way, a balanced value is obtained that takes into account both
the most favorable and the least favorable estimates, allowing for a more comprehensive
assessment of the information contained in the structure of the considered set.

Definition 3.8. The energy of the NHFSS § 4, denoted by E(F ), is defined as

E(SA) — E+(3A) ;E7 (%A)7

where EY(F 4) and B~ (F 4) are the optimistic and pessimistic energies of the NHFSS § 4.

The definition of the total energy as the arithmetic mean of the optimistic and pessimistic
energies is mathematically justified by the complementary nature of these two extremal
measures. While the pessimistic energy captures the most conservative interpretation of
the available hesitant neutrosophic information, the optimistic energy reflects its most fa-
vorable realization. Taking their average provides a balanced scalar characterization that
lies between these two bounds and preserves monotonicity with respect to both compo-
nents. Moreover, this aggregation is consistent with classical energy-based constructions
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motivated by the nuclear norm, where the sum of singular values yields a stable and rep-
resentative global measure of structural information. As a result, the total energy offers
a robust and interpretable criterion for comparing alternatives in the proposed decision-
making framework.

Example 3.9. In Example 3.5, we obtained that the optimistic energy of the observed
neutrosophic hesitant fuzzy soft set is EV(Fa) = 2.29538, while the pessimistic energy
of the same set is E=(Fa) = 1.64693. These values represent the boundary cases in
the evaluation of the set § 4 - the optimistic energy corresponds to the scenario in which
the degrees of truth-membership are maximal, the degrees of indeterminacy-membership
are minimal, and the degrees of falsity-membership are as low as possible, whereas the
pessimistic energy reflects the opposite configuration.

Using the previous Definition 3.8, which defines the energy of the set as the arithmetic
mean of these two extreme values, we find that the overall energy of the observed NHFSS

is
(§4) +E7(Fa)  2.29538 4 1.64693

E+
E(Fa) = 5 >
This value can be interpreted as a moderate estimate of the overall energy potential
of the set § 4, taking into account all aspects of uncertainty and the multiple membership
values that characterize its internal structure.

= 1.971155.

Given the way in which the optimistic and pessimistic energies are constructed, one
might naturally expect the inequality

E~(Fa) <EFa) <E"(3a)

to always hold. However, it turns out that the pessimistic energy does not necessarily have
to be smaller than the optimistic energy. The order of these values depends heavily on the
specific internal structure of the data within the neutrosophic hesitant fuzzy soft set. To
illustrate this, consider the following example.

Example 3.10. Consider the NHFSS § 4 given in Table 2. This example illustrates a sit-
uation in which the usual expectation regarding the ordering of pessimistic, average, and
optimistic energies does not hold.

TABLE 2. The NHFSS § 4 used in Example 3.10

Sa el €2 €3

w | (1027,{0.21,{0.11) | ({0.6},{0.6}, {0.6] (0.1}, {0.2},{0.2])
w ({04}, {045, {021 | ({0.7}, {075, {0.7} ({0.9, {09}, {0.4})
w5 [ ({0.8.{0.8}, {031 | ({051.{0.5}, {0.61) | ({02, 0.4}, {0.4,0.6], {0.4])
ws ({08}, {085, {0.81) | ({0.2}, {0.2}, {03} ({051, {05}, {0.6])

— [ — [ — |~ —

By applying Definition 3.3 and Definition 3.4, we calculate the optimistic energy of the
set Fa as BT (T a) = 3.3938, and the pessimistic energy as B~ (Fa) = 3.427309.
Then, using Definition 3.8, the total energy of § 4 is given by:

E* E- . 427
E(3.) = (§4) +E~(§4) _ 3.3938 +3.42739

=341 .
> 5 3.410595
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Therefore, in this particular case, we observe that the energy of the NHFSS lies between
the optimistic and pessimistic energies, but in reverse order:

EJ'_(SA) < E(%A) < E_(SA).

This confirms that the usual assumption regarding the ordering does not always hold, and
that the structure of the data significantly influences the outcome.

4. DECISION MAKING PROCEDURE BASED ON NHFSS

In real-world situations, we are often confronted with the challenge of selecting the least
or most suitable alternative among a set of options. Making a rational and well-informed
decision in such cases requires identifying the appropriate alternative. However, determin-
ing the optimal option is not a straightforward task; rather, it requires the application of a
clearly defined and efficient algorithm. An algorithm that successfully identifies such alter-
natives can be considered both useful and effective in practice. The aim of this section is
to formulate such an algorithm, specifically adapted for processing data represented in the
form of a neutrosophic hesitant fuzzy soft set (NHFSS). The algorithm is based on the nu-
merical measures introduced in the previous section, including optimistic, pessimistic, and
average energy. It consists of eight consecutive steps, which will be thoroughly explained
and discussed in the following.

Algorithm Based on the Energy of NHFSS:

Input: A NHFSS § 4 defined on the universe of alternatives U = {uy,us, ..., u,} and
the attribute set E = {ey, e, ..., ey}, along with a weight vector w = (wy, wa, ..., Wy,).

Output: The optimal alternative u; that contributes the most to the system composed of
all alternatives in U'.

Step 1: Input the NHFSS § 4 and the weight vector w.
Step 2: Construct the weighted NHFSS § 4 by multiplying each attribute value by the
corresponding weight:

Talui,e5) =wj-Falui,ej)
Step 3: For each u; € U, construct the reduced NHFSS §X) over U \ {u;}.

Step 4: For each reduced NHFSS §(j), form the six corresponding matrices:

(I)Eliin T (bglzz‘x T @Hliin I (I)EI%X I (bgllbn F q)guzx F
0 0 P50 PRm PR B
Step 5: For each matrix obtained in Step 4, calculate its singular values.
Step 6: Compute the optimistic and pessimistic energies for each §(j) using: ET (§S)) =

Z;L:_ll (O.;naxT + U;naxl _ U;_nin F)’

— =@ n— min min max
E~(Fa) =22, (opn? 4 gmind — gimax T _
Step 7: Calculate the energy of each reduced NHFSS §S):
=) — =)
—( ET () +E(F
E(%’;)): (A)2 (84)

Step 8: Identify the alternative u; for which the energy E(@ii)) is minimized:

min E(@X))

1<i<n
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The optimal alternative is the one whose exclusion leads to the greatest decrease in system
energy, indicating its maximal contribution to the full system.

Let U = {uj,us,...,u,} be a finite universal set (the set of alternatives), and let
A = {e1,ea,...,em} C FE, where E is the set of parameters (attributes). Let §4 be a
neutrosophic hesitant fuzzy soft set defined over (U, E), and let w = (w1, wa, ..., w,,) be
the weight vector associated with the attribute set. Under the assumption that Y ;" | wy, =
1 and wy, € [0, 1] for all k, the vector w represents the relative importance of each attribute
in the decision-making process. The algorithm is based on the numerical characteristics
defined in the previous section and consists of eight steps.

In Step 1, we construct the initial neutrosophic hesitant fuzzy soft set § 4 from the input
data. In Step 2, we form a new NHFSS § 4 by applying the weight vector. Specifically,
for each membership, indeterminacy, and non-membership value related to attribute ey, we
multiply the values by the corresponding weight wy, thereby obtaining a weighted version
of the original NHFSS. In Step 3, we generate n new NHFSSs from § 4, where each is
defined over the universal set U \ {u;}. That is, each new set excludes one particular alter-
native, resulting in 7 sets, each having n—1 alternatives. In Step 4, for each of these n NHF-
SSs, we form six rectangular matrices: @gjg;T, @T{ﬁ‘T, @T(ii‘;I , @T{ﬁ‘l , @T(if} F @gg;‘F .

Sa Sa Sa T Sa Sa
These matrices correspond to the minimum and maximum values for the truth, indetermi-
nacy, and falsity membership degrees, respectively.

In Step 5, we determine the singular values of all the matrices constructed in the previ-
ous step using tools from linear algebra. Step 6 involves calculating both the optimistic and
pessimistic energies for each NHFSS, following the definitions given earlier. In Step 7, the
total energy of each NHFSS is obtained by computing the arithmetic mean of its optimistic
and pessimistic energies. This results in n energy values, each corresponding to the system
without one of the alternatives. Finally, in Step 8, we identify the minimum energy among
these values. It is important to emphasize that, within the proposed framework, the alter-
native corresponding to the minimum total energy is interpreted as the optimal one. This
criterion is based on the idea that the energy of an NHFSS quantifies the global informa-
tional contribution of the remaining alternatives through singular value—based characteris-
tics. When a particular alternative u; is removed and the resulting reduced NHFSS exhibits
a significantly lower energy, this indicates that u; had a strong structural influence on the
original system. Consequently, the exclusion of the most influential alternative produces
the greatest decrease in total energy, which justifies selecting the alternative associated

with the minimum value of E@X)) as the optimal one. This interpretation is consistent
with energy-based principles motivated by the nuclear norm, where lower energy reflects a
loss of dominant structural components.

4.1. Computational Complexity of the Proposed Algorithm. The efficiency of the deci-
sion-making procedure described in Algorithm is strongly influenced by the matrix opera-
tions and singular value decompositions (SVDs) performed during the evaluation of each
reduced NHFSS. In this subsection, we analyze the computational complexity of the algo-
rithm in terms of the number of alternatives n and the number of attributes m.

The construction of the weighted NHFSS § 4 in Step 2 requires processing all hesitant
truth, indeterminacy, and falsity values. Since each parameter evaluation appears exactly
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once for each alternative, this step runs in time O(nm). Step 3 generates n reduced NHF-
SSs, each obtained by deleting a single alternative. This operation also has linear cost with
respect to the size of the dataset, amounting to O(nm) for the entire step.

The dominant part of the computation arises in Step 4 and Step 5, where six matrices are
constructed for each reduced NHFSS and their singular values are computed. The matrices
are of size (n — 1) x m, and a full SVD of an ¢ x b matrix requires

O(min(ab®, ab))
floating-point operations. Consequently, computing the SVD for all six matrices of a single
reduced NHFSS requires

6 - O(min((n — 1)m?, (n—1)*>m)) = O(min(nm?, n°m)),

since constant factors do not affect asymptotic growth.
As Algorithm constructs such SVD-based evaluations for each of the n reduced NHF-
SSs, the total time required for Steps 4 and 5 becomes

n - O(min(nm?, n*m)) = O(min(n’*m?, n®m)).

The subsequent computation of optimistic, pessimistic, and total energy values in Steps 6
and 7 involves summations over at most n — 1 singular values, leading to a cost of O(n)
per reduced NHFSS and O(n?) overall, which is negligible in comparison with the SVD
computations. Step 8 requires a simple comparison across the n obtained energy values,
contributing an additional O(n) time.

Combining all steps, the overall computational complexity of the proposed decision-
making procedure is dominated by the SVD computations, yielding

O(min(n*m?, n®m)).

This shows that the algorithm is computationally feasible for moderate values of n and
m, while for large-scale applications one may rely on truncated SVD techniques, random-
ized matrix decompositions, or parallel implementations to significantly reduce the com-
putational burden. Such optimizations are natural directions for future research aimed at
improving scalability.

5. SOLVING A PRACTICAL PROBLEM USING THE DEVELOPED NHFSS ALGORITHM

In this section, we demonstrate the application of the algorithm presented in Section 4 to
a decision-making example with the goal of identifying the most optimal alternative among
the considered options. We employ the same real-world motivated case study examined by
Ye [35] and Wang and Li [31], in which the attribute weights are provided subjectively
(based on expert preference) and are not derived through any additional weighting proce-
dure. Hence, in our setting, the weights are taken as given input parameters rather than
quantities to be computed.

It is also worth noting that the proposed algorithm remains applicable when all attributes
are considered equally important. In such a case, one may simply adopt a uniform weight
distribution, thatis, w; = 1/m forall j = 1, ..., m. Moreover, even without explicitly en-
forcing normalization through equal weights, the computation of singular values in Step 5
depends on the constructed matrices themselves and not on any particular normalization
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scheme; therefore, the use of uniform weights is a convenient and natural choice in the
absence of preference information, but it is not a restrictive requirement for applying the
method. The considered example thus serves to explain each step of the algorithm in detail
and to show how the numerical characteristics of an NHFSS can support the selection of
an optimal decision.

Example 5.1. Let us now revisit Example 2.4, originally described in the aforementioned
study, and apply the decision-making algorithm proposed in this paper. The attribute
weight vector is given as w = (0.35,0.25,0.4), representing the relative importance of
the three criteria under consideration.

Step 1: In this step, we begin with the neutrosophic hesitant fuzzy soft set § 4 defined in
Table 1, which serves as the initial representation of the alternatives and their evaluations
with respect to the selected attributes.

Step 2: Using the given weight vector, we construct a new NHFSS denoted by § 4, in
which the influence of each attribute has been adjusted according to its respective weight.
The resulting structure is shown in Table 3.

TABLE 3. The weighted NHFSS 3 4 from Example 5.1

Sa el €2

w1 | ({0.105,0.14,0.175}, {0.035}, {0.105, 0.14}) | ({0.125,0.15}, {0.05,0.075}, {0.075,0.1})
us | ({0.21,0.245}, {0.035,0.07}, {0.07,0.105}) ({0.15,0.175}, {0.025}, {0.075})

ws | ({0.175,0.21}, {0.14}, {0.07,0.105}) ({0.15}, {0.075}, {0.1})

ws | ({0.245,0.28}, {0.035}, {0.035,0.07}) ({0.15,0.175}, {0.025}, {0.05})

u ({0.08,0.12}, {0.04, 0.08}, {0.2,0.24})

s ({0.24,0.28}, {0.04,0.08}, {0.04,0.08})

us ({0.2,0.24}, {0.04}, {0.12})

” ({0.12,0.2}, {0.08}, {0.04,0.08,0.24})

By applying Definition 3.2, this NHFSS can be uniquely represented using six rectangu-
lar matrices:

[0.105 0.125 0.08] 0.175 0.15 0.12
. 0.21 0.15 0.24 0.245 0.175 0.28
(I)EHHT: max T __
Sa 0.175 0.15 02|’ ~3a 0.21 0.15 0.24|’
0.245 0.15 0.12 0.28 0.175 0.2
[0.035 0.05 0.04] 0.035 0.075 0.08
. 0.035 0.025 0.04 0.07 0.025 0.08
(I)anl — (I)glaxl _
Sa 0.14 0.075 0.04]|° “Ja 0.14 0.075 0.04]°
0.035 0.025 0.08 0.035 0.025 0.08
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0.105 0.075 0.2 0.14 0.1 0.24
i 0.07 0.075 0.04 o F 0.105 0.075 0.08
Sa 0.07 0.1 012" “3a 0.105 0.1 0.12
0.035 0.05 0.04 0.07 0.05 0.12

Step 3: Next, for each alternative u; € U, we construct the corresponding NHFSS over
the reduced universe U \ {u;}, denoted as §S). In what follows, we explicitly derive the
set §E41), while the remaining sets @f), o ,§E43) can be obtained in the same manner. The

resulting neutrosophic hesitant fuzzy soft set §E41) is displayed in Table 4.

TABLE 4. The table for NHFSS §E41) from Example 5.1

=)

Sa er e

us | ({0.21,0.245}, {0.035,0.07}, {0.07,0.105}) | ({0.15,0.175}, {0.025}, {0.075})
ws | ({0.175,0.21}, {0.14}, {0.07,0.105}) ({0.15}, {0.075}, {0.1})

ws | ({0.245,0.28}, {0.035}, {0.035,0.07}) | ({0.15,0.175}, {0.025}, {0.05})
s ({0.24,0.28}, {0.04, 0.08}, {0.04, 0.08})

us ({0.2,0.24}, {0.04}, {0.12})

" ({0.12, 0.2}, {0.08}, {0.04, 0.08, 0.24})

Step 4: In this step, for each neutrosophic hesitant fuzzy soft set §X) obtained in the
previous phase, we construct the associated six matrices. These matrices are generated by
omitting the i-th row from the global matrices 20T ouaxT gminl gmaxl Gmin k' g7

Sa Sa Sa Sa
<I>max F defined in Step 2.

Step 5: For every matrix obtained in Step 4, we compute the singular values using stan-
dard techniques from linear algebra. These values capture essential structural information
from the matrices and will be used in subsequent computations.

Step 6: Based on the singular values determined in Step 5, and using the relevant def-
initions, we evaluate the optimistic and pessimistic energies for each of the NHFSSs. For
the set ?S), we obtain:

E*(Fa)) = 0.76063, E~(3y) = 0.57678.
Applying the same procedure to the remaining sets yields the following results:
=(2)

E+(3Y)) = 0.6304, E~(3)) = 0.43442,
E*(FY) = 0.61303, E-(30) = 0.37794,
E*(F))) = 0406, E(34)) = 0.34772.
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Step 7: We calculate the energy E@S)) as the arithmetic mean of the optimistic en-
ergy ET (§(Al)) and the pessimistic energy ]E_(gi‘l)), so we obtain E(@S)) = 0.668705.
Similarly, we find: E(3)) = 0.53241, E(F%)) = 0.495485, E(34) = 0.37686.

Step 8: Using the values of the energies computed in the previous step, we now rank the
alternatives according to their contribution to the overall system. Since the energy reflects
the amount of information lost when an alternative is removed, the optimal choice corre-
sponds to the alternative whose removal causes the greatest loss, i.e., the one associated
with the lowest energy value. Based on the computed values, we observe the following
strict inequality:

EGY) <EGY) <EFY) <EGY).

This implies that the most significant contributor to the system is the alternative u4, repre-
senting the arms company, since its absence results in the smallest overall system energy.
Conversely, the least impactful alternative is uy, corresponding to the car company, as its
removal results in the highest system energy. Accordingly, the final ranking of the alterna-
tives in descending order of their contribution is given by:

Ug > U3 > Uy > UT. 5.1

In the next section, we will further analyze the obtained results to gain deeper insights
into the implications of the proposed decision-making framework. The numerical example
considered above clearly demonstrates the applicability and effectiveness of the algorithm
based on the energy of neutrosophic hesitant fuzzy soft sets. Through a systematic and
structured approach involving the elimination of each alternative and evaluating its impact
on the total system energy, we were able to determine a complete ranking of the available
options.

The fact that the alternative u,4 exhibits the lowest energy confirms its dominant role in
the decision system, indicating that its removal would result in the most significant loss
of information. On the other hand, the highest energy associated with u; suggests that
this alternative has the least influence on the overall system, and thus represents the least
preferable choice.

This kind of analysis not only enables the identification of the most optimal alternative
but also provides a deeper understanding of the relative importance and influence of each
option in the context of all others. Such insights are crucial in real-world decision-making
scenarios, where multiple criteria and uncertainty factors must be simultaneously consid-
ered. Therefore, the results obtained from this example validate the practical value and
robustness of the proposed energy-based algorithm, setting a strong foundation for further
investigations and applications in the next section.

6. EVALUATION OF THE PROPOSED METHOD AGAINST EXISTING NHFSS
TECHNIQUES

The development of a novel decision-making algorithm requires a careful comparison
with existing methods in order to confirm its importance and contribution. Although previ-
ous algorithms such as those described in [35], [31], and [4] have proven to be effective and
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broadly applicable in neutrosophic hesitant fuzzy environments, they still exhibit certain
shortcomings. In particular, they may fail to provide consistent optimality or to distinguish
clearly among close alternatives in complex decision problems. As will be illustrated in
Subsections 6.1-6.3, these methods are often capable of separating clearly inferior alterna-
tives from better ones, but in some situations they do not yield a unique optimal solution,
which is a serious drawback in practical applications where a clear and definitive choice
is required. To justify the relevance of the proposed energy-based approach, we analyze
the performance of these methods and point out specific cases where they do not produce
satisfactory or interpretable results. In each of the examples considered in Subsections
6.1-6.3, the energy-based method succeeds in providing a complete (linear) ranking of the
alternatives and in selecting a single best option. In contrast, the algorithm we introduce in
Section 4 makes use of both pessimistic and optimistic energy values to establish a stable
and understandable ranking of alternatives. Additionally, it provides insight into the extent
to which each alternative contributes to the overall decision context. Finally, in Subsec-
tion 6.4, we apply all the considered methods to the same numerical example, analyze the
obtained rankings in detail, and complement the comparison with a graphical illustration
of the results, thereby highlighting more clearly the specific advantages of the proposed
energy-based procedure.

6.1. On the Limitations of the Neutrosophic Hesitant Fuzzy Method Proposed by Ye
[35]. In this subsection, we analyze the decision-making algorithm proposed by Jun Ye in
[35], which employs the single-valued neutrosophic hesitant fuzzy weighted average opera-
tor (SVNHFWA) or single-valued neutrosophic hesitant fuzzy weighted geometric operator
(SVNHFWG). The aim is to explore potential limitations of this method and to contrast its
performance with the advantages offered by an energy-based decision-making framework.
As demonstrated in the following example, there are cases in which Ye’s method does not
produce the most suitable ranking of alternatives, highlighting the relevance of the pro-
posed approach.

Example 6.2. Let U = {u,us,ug} be the universal set of alternatives, A = {e1, ea, €3}
the set of parameters, and w = (0.4, 0.3, 0.3) the weight vector. The tabular representation
of the obtained NHFSS § 4 is given in Table 5.

TABLE 5. NHFSS §4 from Example 6.2

Sa el es es

w1 | ({0.5,0.6},{0.1},{0.2,0.3}) | ({0.6},{0.2,0.3},{0.2}) | ({0.7},{0.2},{0.1})
s | ({0.5,0.6},{0.2,0.3},{0.1}) | ({0.6},{0.2},{0.2,0.3}) | ({0.7},{0.1},{0.2})
U3 ({0.5,0.6},{0.3},{0.5}) ({0.7},{0.3},{0.5}) ({0.6},{0.4},{0.6})
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We first apply the algorithm proposed in [35], which uses the SVNHFWA operator. For
alternative uy, we obtain:

ny = SVNHFWA(n11,n12,n13)
={{1-(1-05)"%(1-06)"%1-0.7)°% 1-(1-0.6)"*(1-0.6)"3(1—-0.7)"%},
{0.194.0.293.0.2%3 0.194.0.3%3 . 0.203},
{0.2°4.0.2°%.0.1°%, 0.3°4.0.2°% . 0.1°?} }
= {{0.59882, 0.63307}, {0.15157,0.17118}, {0.16245,0.19106} }.
Similarly, we get:
ns = {{0.59882,0.63307}, {0.16245,0.19106}, {0.15157,0.17118} },
ns = {{0.59882,0.63307}, {0.32704}, {0.52811} }.
The cosine measures with respect to the ideal element n* are:
cos(ny,n*) =0.93211, cos(ng,n*) = 0.93211, cos(ns,n™) = 0.70411.

Thus, uy and us outperform us, but the method cannot distinguish between w1 and us.
Applying the SVNHFWG operator yields:

ny = {{0.5842, 0.6284},{0.16141,0.19434}, {0.17123, 0.21433}},
ng = {{0.5842, 0.6284},{0.17123,0.21433}, {0.16141, 0.19434}},
ng = {{0.5842, 0.6284},{0.33163}, {0.53238}}.
The cosine measures are:
cos(ny,n*) = cos(ng,n*) = 0.91779, cos(ns,n™) = 0.69501,

again failing to select a unique optimal alternative.
In contrast, applying the energy-based algorithm from Section 5 gives:
E(FL)) = 0437922, E(FL)) =0.406523, E(F.) = 0.500295.
This yields the ranking:
=(2) =(1) =3)
E(F4") <E@a) <E@F4),
ie.,
Ug > U1 > U3,

and the optimal solution is us. The obtained rankings and optimal solutions for the con-
sidered algorithms are summarized in Table 6.

TABLE 6. Obtained rankings and optimal solutions for the considered algorithms

Procedure Ranking of alternatives | Optimal solution
Jun Ye SVNHFWA operator [35] UL = U > U3 X
Jun Ye SVNHFWG operator [35] UL = U > U3 X
Method based on energy (this paper) U > Ul > U3 Ug
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Based on Example 6.2, it becomes evident that the main drawback of the decision-
making algorithm proposed in [35] lies in its inability to consistently yield a unique optimal
solution. While the method is capable of distinguishing less favorable alternatives from
better ones, it may produce ties among top-ranked options, leaving the decision-maker
without clear guidance for final selection. This limitation is particularly critical in practical
scenarios where a definitive choice is required. Furthermore, as shown in the example, both
the SVNHFWA and SVNHFWG operators fail to discriminate between the best-performing
alternatives, even when subtle differences exist in their underlying neutrosophic hesitant
fuzzy evaluations.

In contrast, the energy-based approach developed in this paper overcomes this short-
coming by incorporating both optimistic and pessimistic perspectives into a unified nu-
merical measure of performance. This allows for a complete and unambiguous ranking
of alternatives, ensuring that the optimal choice can always be identified. The ability of
the energy-based method to differentiate between alternatives with similar aggregated val-
ues demonstrates its potential as a more reliable and informative decision-making tool in
complex neutrosophic hesitant fuzzy environments.

6.3. Evaluation of the Ali et al. [4] Decision-Making Method. In this subsection, we an-
alyze the decision-making algorithm proposed by Ali et al. [4], which introduces an innova-
tive multiple-criteria decision-making (MCDM) approach based on the NHFWPMSM op-
erator. This method is designed to determine the most suitable alternative from a given set
and demonstrates strong performance when compared with other established algorithms.
Nevertheless, it should be emphasized that the method may not consistently produce the
optimal solution in every scenario. To demonstrate this limitation, we present the follow-
ing example.

Example 6.4. Let U = {uq,ug, us, us} be the universal set of alternatives, A = {e1,ea}
the set of parameters, and w = (0.5, 0.5) the weight vector. Both attributes are categorized
into the same group, and let p = 2. The tabular representation of the obtained NHFSS § 4
is given in Table 7.

TABLE 7. NHFSS §4 from Example 6.4

SA €1 €2

u | ({0.9},{0.1},{0.1}) | ({0.5}, {0.3},{0.4})
uy | ({0.8},{0.2},{0.2}) | ({0.6},{0.2},{0.3})
us | ({0.6},{0.3},{0.3}) | ({0.8},{0.2},{0.2})
ug | ({0.5},{0.3},{0.4}) | ({0.9},{0.1},{0.1})

Using the method from the aforementioned study, the Score values for the alternatives
u; are calculated as:

s(up) = 0.50165, s(uz) = 0.50118, s(us) = 0.48359, s(uy) = 0.50165.
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From these results, we see that uy and uy outperform the remaining two, while usy is
better than us. However, since uy and w4 have identical Score values, the Accuracy func-
tion must be applied to break the tie. It turns out that the Accuracy values for u; and uy
are also equal, meaning that this method fails to produce a unique optimal solution.

If we instead apply the energy-based algorithm, we obtain:

EGY) = 092575, EGFY) =0.97799, EGF) =0.95183, E(F,)) = 0.94763.

This leads to the following linear order of energies:

EGY) <EGY) <EGY) <EGY),

from which we conclude that the optimal solution is alternative uy. The obtained results
are summarized in Table 8.

TABLE 8. Obtained rankings and optimal solutions for the considered algorithms

Procedure Ranking of alternatives | Optimal solution
Ali et al. method [4] UL = Ug > Ug > U3 X
Method based on energy (this paper) UL > Uy = U3 > U Uuq

Based on Example 6.4, it is evident that the method proposed in [4], although effective
in many decision-making scenarios, may fail to produce a unique optimal solution when
multiple alternatives yield identical Score and Accuracy values. In such cases, the decision-
making process remains inconclusive, which can be a significant drawback in applications
where a single best choice is required.

In contrast, the proposed energy-based approach successfully distinguishes between all
alternatives by providing a complete and strict ranking according to their calculated en-
ergy values. This not only resolves situations involving ties but also offers an additional
interpretative advantage, as the energy measure reflects the overall contribution of each al-
ternative to the system. Therefore, the energy-based method represents a more robust and
reliable tool for decision-making in neutrosophic hesitant fuzzy soft set environments.

6.5. Analysis of the Wang and Li Method [31] with Identified Limitations. The fo-
cus of this subsection is the decision-making algorithm proposed by Wang and Li in [31],
which employs two types of aggregation operators: the generalized single-valued neutro-
sophic hesitant fuzzy prioritized weighted average (GSVNHFPWA) and generalized single-
valued neutrosophic hesitant fuzzy prioritized weighted geometric (GSVNHFPWG) oper-
ator. While the method offers a systematic approach to handling complex multi-criteria
decision-making problems, it also presents certain limitations that may affect its ability to
consistently produce an optimal solution. Our objective here is to identify and analyze these
limitations, while at the same time emphasizing the strengths of the proposed energy-based
decision-making algorithm. The following example serves to illustrate these observations.

Example 6.6. Let U = {u1, us, us, ug } be the universal set of alternatives, A = {e1, ea, e3,
eq} the set of parameters, and w = (0.4,0.3,0.2,0.1) the weight vector. The tabular rep-
resentation of the NHFSS § 4 is given in Table 9.
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TABLE 9. NHFSS §4 from Example 6.6

Sa

€1 €2 €3 €4
up | ({0.7},{0.3},{0.2}) | ({0.8},{0.3},{0.3}) | ({0.6},{0.4},{0.3}) | ({0.7},{0.3},{0.2})
ug | ({0.6},{0.3},{0.3}) | ({0.8},{0.4},{0.2}) | ({0.7},{0.3},{0.3}) | ({0.7},{0.3},{0.2})
uz | ({0.7},{0.2},{0.3}) | ({0.8},{0.3},{0.3}) | ({0.6},{0.3},{0.4}) | ({0.7},{0.2},{0.3})
ug | ({0.5},{0.3},{0.4}) | ({0.6},{0.3},{0.5}) | ({0.5},{0.4},{0.4}) | ({0.6},{0.4},{0.5})

Applying the procedure described in [31], we first compute the elements of the matrix
T;; as:
1 0.73333 0.5377 0.3405
1 0.66667 0.4889 0.3424
1 0.73333 0.5377 0.3405
1 0.6 0.36  0.204

Using the GSVNHFPWA operator with A\ = 1, the SVNHFE values corresponding to
the alternatives are obtained as:

fp = {{0.7155},{0.3187},{0.2440}}, 7o = {{0.6983},{0.3242},{0.2551}},

ng = {{0.7155}, {0.2440}, {0.3187}}, 74 = {{0.5396}, {0.3233}, {0.4344}}.
The corresponding score function values are:

s(fiy) = 0.7176, s(fiy) = 0.7063, s(fg) = 0.7176, s(f4) = 0.5940.

This results in the ranking u, = us > us > uy, indicating that the method cannot distin-
guish between uy and ug as the optimal choice. Applying the GSVNHFPWG operator with
A = 1 yields the same ranking.

In contrast, applying the proposed energy-based algorithm gives:

EFY) = 059846, E(FY) =0.58761, EGFL) = 0.62727, E(Fy)) = 0.72177.

This leads to the ranking ugs > us > uj > ugq, clearly identifying us as the unique optimal
alternative. The results are summarized in Table 10.

Ti;

TABLE 10. Obtained rankings and optimal solutions for the considered algorithms

Procedure Ranking of alternatives | Optimal solution
Wang and Li GSVNHFPWA operator [31] UL = U3 > Uy > Uy X
Wang and Li GSVNHFPWG operator [31] | w1 = ug > ug > uy X

Method based on energy (this paper) U > U > U > Ug Uo

Based on Example 6.6, it can be concluded that the algorithm proposed in [31] is not
always capable of identifying a unique optimal solution, as it may assign the same ranking
to different alternatives. This limitation reduces its effectiveness in situations where a clear
and decisive choice is required. In contrast, the proposed energy-based approach not only
differentiates between all alternatives but also provides a consistent linear ranking, thereby
offering a more reliable and precise decision-making outcome.
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6.7. Comparative evaluation of the proposed method and existing approaches. In this
subsection, we conduct a comparative evaluation of the proposed energy-based decision-
making algorithm against several well-known approaches from the literature. To ensure
a fair and consistent assessment, all methods are applied to the same numerical example,
enabling a direct comparison of their decision outputs. This approach allows us to iden-
tify not only the similarities and differences in the obtained rankings, but also to highlight
specific situations in which the proposed method demonstrates advantages in terms of so-
lution uniqueness, interpretability, and the ability to capture subtle distinctions between
alternatives.

Example 6.8. Let us revisit Example 5.1, which has also been examined in [35] and [31].
For consistency, we apply all considered algorithms to the same dataset and record the
values on which each procedure bases its decision. These values are summarized in Ta-
ble 11, while the resulting rankings and identified optimal solutions are given in Table 12.
As established earlier, the proposed energy-based algorithm produces the ranking given in
(5. 1), with uy emerging as the optimal alternative.

TABLE 11. Decision values obtained using the considered algorithms

Procedure Decision values
Jun Ye SVNHFWA operator [35] cos(ny,n*) = 0.6636, cos(na,n*) = 0.9350,
cos(ns,n*) = 0.8353, b(n n*) = 0.9426
Jun Ye SVNHFWG operator [35] cos(ny,n*) = 0.6040, cos(ng,n*) = 0.9259,
cos(ng,n*) = 0.8080, cos(ng,n*) = 0.9232
Ali et al. method [4] S(u1) = 0.2741, S(uz) = 0.3845,
S(uz) = 0.3001, S(uy) = 0.3889
Wang and Li GSVNHFPWA operator [31] | s(f1) = 0.5902, s(ng) = 0.7711,
s(is) = 0.6882, s(fis) = 0.7623
Wang and Li GSVNHFPWG operator [31] | s(f1) = 0.5669, s(n2) = 0.7622,
s(fig) = 0.6663, s(fis) = 0.7358
Method based on energy (this paper) (3541)) = 0.668705, ]E(Sf)) = 0.53241,
EGEY) = 0.495485, E(FY)) = 0.37686

TABLE 12. Obtained rankings and optimal solutions for the considered algorithms

Procedure Ranking of alternatives | Optimal solution
Jun Ye SVNHFWA operator [35] Ug > U > U3 > Up Uy
Jun Ye SVNHFWG operator [35] U > Uy = U3 > Ul Uo
Ali et al. method [4] Ug > Uo > U3 > Up Uy
Wang and Li GSVNHFPWA operator [31] Ug > Ug > U3 > U Ug
Wang and Li GSVNHFPWG operator [31] U > Ug > U3 > Up Uo
Method based on energy (this paper) Ug > U > Uo > Up Uy
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Decision values obtained using the considered algorithms

- SVNHFWA
— SVNHFWG
-l et al.

GSVNHFPWA
0.8| mmm GSVNHFPWG
m— Energy

Decision values

AT Alt2 Alt3 At

FIGURE 1. Comparison of decision values obtained by the considered
algorithms in Example 6.8

Figures 1 and 2 provide a graphical illustration of the numerical results reported in Ta-
bles 11 and 12, further highlighting the differences among the considered decision-making
approaches.

Inverted ranking: best alternative has tallest bar

FIGURE 2. Comparison of rankings and identified optimal alternatives
for the considered methods in Example 6.8

A comparative examination of the results presented in Tables 11 and 12 reveals that the
outcomes generated by the proposed energy-based algorithm are not always identical to
those obtained using other existing approaches. In several cases, the algorithm identifies a
different optimal alternative, which demonstrates its potential to offer new perspectives and
insights in the decision-making process. This adaptability allows for decisions that may be
more closely aligned with the specific characteristics of the problem at hand.

One of the notable strengths of the proposed method, as discussed in Subsections 6.1—
6.5, lies in its ability to consistently produce an optimal solution across all tested scenarios.
This is in contrast to certain existing algorithms which, while effective in specific situations,
do not guarantee an optimal result under all conditions. Consequently, such algorithms may
yield ambiguous or incomplete recommendations.
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Although the energy measure is a newly introduced characteristic in the context of neu-
trosophic hesitant fuzzy soft sets, it is not an unfamiliar notion in mathematics, particularly
in graph theory. Its computation is based on established concepts of linear algebra, en-
suring that the algorithm remains both straightforward to implement and computationally
reliable.

Furthermore, in the case study given in Example 5.1, the SVNHFWA-based approach
proposed in [35], the method developed in [4], and our energy-based method converge to
the same optimal solution, even though the rankings of the alternatives differ. This demon-
strates that the proposed approach is not only capable of validating existing results but
can also refine the decision-making process by providing additional differentiation among
alternatives.

The most significant comparative observations can be summarized as follows:

e The proposed energy-based algorithm is capable of producing a different optimal
alternative from other methods, thereby offering alternative viewpoints and poten-
tially better problem-specific solutions.

e It guarantees the identification of an optimal solution in all tested cases, unlike
several existing algorithms that may fail to do so under certain conditions.

e The method is grounded in well-established mathematical principles, making it
easy to implement while maintaining reliability and computational efficiency.

e In some scenarios (e.g., Example 5.1), it confirms the optimal solution obtained by
other methods, but with a different ranking structure, thereby adding granularity to
the decision-making process.

7. SUMMARY AND CONCLUSION

Advances in the field of uncertainty modeling and multi-criteria decision-making in-
creasingly depend on the development of methods capable of integrating various types of
information while providing a clear basis for ranking alternatives. Among the numerous
extensions of neutrosophic soft sets, the introduction of the neutrosophic hesitant fuzzy soft
set (NHFSS) offers additional flexibility in modeling situations where both hesitation and
multiple parameter values occur simultaneously.

In this paper, we have defined the pessimistic and optimistic energy of an NHFSS as
two complementary numerical characteristics that enable a deeper understanding of the
contribution of each alternative within a decision-making system. Based on these mea-
sures, we have constructed a novel energy-based decision-making algorithm, which allows
an intuitive yet mathematically grounded ranking of alternatives and successfully resolves
situations in which several existing methods produce tied or ambiguous results.

Through a detailed comparison with the algorithms proposed in [35], [31], and [4],
we have shown that the proposed approach consistently produces a unique optimal so-
lution, even in scenarios where other decision-making procedures fail to distinguish be-
tween competing alternatives. These findings confirm that energy, when defined via singu-
lar value-based characteristics, represents a robust and informative aggregate measure for
neutrosophic hesitant fuzzy soft sets.
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Overall, the results indicate that energy-based modeling within the NHFSS framework
has strong potential for further applications in multi-criteria decision-making problems
characterized by multiple sources of uncertainty, hesitation, and incomplete information.

Possible directions for future research include:

e Analytical investigation of NHFSS energy bounds: A systematic study of lower
and upper bounds for pessimistic and optimistic energy values, as well as their de-
pendence on the distribution of truth, indeterminacy, and falsity memberships, may
provide deeper theoretical insight and support the reconstruction of incomplete or
partially known NHFSSs.

e Extension of energy concepts to other fuzzy soft frameworks: Motivated by
the effectiveness of the proposed approach, a natural continuation of this work is
the definition and analysis of energy measures for intuitionistic fuzzy soft sets and
Pythagorean fuzzy soft sets. Such extensions would allow direct comparison be-
tween different uncertainty models within a unified energy-based decision-making
paradigm.

o Algorithm optimization for large-scale problems: For decision-making scenar-
ios involving a large number of alternatives or attributes, it is important to de-
velop optimized implementations that reduce computational complexity, for ex-
ample through truncated singular value decompositions or parallel computation,
while preserving the discriminative power of the energy measure.
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