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Abstract. The goal of this paper is to extend the classical fractional
derivatives. For this purpose, it is introduced the new extended modified
Bessel function and also given an important relation between this new
function Iυ(q;x) and the confluent hypergeometric function 1F1(α, β, x).
Besides, it is used to generalize the hypergeometric, the confluent hyper-
geometric and the extended beta functions by using the new extended
modified Bessel function. Also, the asymptotic formulae and the gen-
erating function of the extended modified Bessel function are obtained.
The extensions of classical fractional derivatives are defined via extended
modified Bessel function and, first time the fractional derivative of rational
functions is explicitly given via complex partial fraction decomposition.
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1. INTRODUCTION

In the last two decades, several generalizations of the well-known special function have
been introduced by different authors. In 1997, Chaudhry [6] have introduced the extension
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of Euler’s beta function as

Bp(x, y) =

∫ 1

0

tx−1(1− t)y−1e−
p

t(1−t) dt, (1.1)

(Re(p) > 0, Re(x) > 0, Re(y) > 0).

It is clear that the special case p = 0 gives the Euler’s beta function B0(x, y) = B(x, y).
Then, the authors in ([17]) extended beta functions and hypergeometric functions as

B(α,β)
p (x, y) =

∫ 1

0

tx−1(1− t)y−1
1F1(α;β;

−p
t(1− t)

)dt, (1.2)

(Re(p) > 0, Re(x) > 0, Re(y) > 0, Re(α) > 0, Re(β) > 0).

Lee et al. in ([13]) introduced the more generalized Beta type function as follows:

B(α,β;m)
p (x, y) =

∫ 1

0

tx−1(1− t)y−1
1F1(α;β;

−p
tm(1− t)m

)dt, (1.3)

(Re(p) > 0, Re(x) > 0, Re(y) > 0, Re(α) > 0, Re(β) > 0).

Consequently, Luo et. al. in ([14]) generalized extended beta function (1.3) (as well as
(1.1) and (1.2)) by introducing

B
(α,β)
b;ρ;λ (x, y) =

∫ 1

0

tx−1(1− t)y−1
1F1(α;β;

−b
tρ (1− t)λ

)dt, (1.4)

(ρ ≥ 0, λ ≥ 0,min{Re(α), Re(β)} > 0, Re(x) > −Re(ρα), Re(y) > −Re(λα)).

Moreover, Parmar in ([19]) introduced very interesting special function consisting Bessel

function of second kind as

Bv(x, y; p) =

√
2p

π

∫ 1

0

tx−
3
2 (1− t)y− 3

2Kv+ 1
2
(

p

t (1− t)
)dt, (1.5)

(Re(p) > 0).

To improve the readability of the paper, representations of some notations should be men-

tioned. Jv (x) is the Bessel function of the first kind; Γ is Eulerian Gamma function;
B (x, y) is Euler’s beta function; 1F1(b; c; z) is confluent hypergeometric function;Dµ

z f(z)
is Riemann-Liouville fractional derivative. The notation Iv(q;x) will newly be used for
representing new extended of modified Bessel functions. Besides, the notationsB(µ,σ)

v,q (x, y; p)

and F (µ,σ)
v,q;p (a, b; c; z) will be used for representing new extended beta-hypergeometric func-

tion and new extended confluent hypergeometric function respectively.
Finally, we refer the papers ([15]) for more properties of extended Gauss hypergeometric

and extended confluent hypergeometric functions. We also suggest the papers [7]) and ([8])
for some important extensions of special functions.

In this paper, we introduce extended special functions as generalizations of modified
Bessel Functions, Beta functions, hypergeometric functions and confluent hypergeometric
functions. We would like to mention an interesting remark from Qadir [21] that explains
the importance of generalization of the special functions as ”Notice that the generaliza-
tion of the other special functions has proved even more useful than the separate special
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functions themselves”. We refer the paper [21] for more details about generalization of the
special functions. Based on Qadir’s important explanation, the papers [5], [20] and [2] are
suggested as examples of some important applications of special functions.

2. EXTENSION OF SPECIAL FUNCTIONS

In this section, we introduce special functions which will be generalization of the func-
tions (1.1)-(1.5).

2.1. Extended Modified Bessel Function. We here introduce new extended of modified
Bessel functions as follows.

Definition 2.1. The function

Iv(q;x) =

(
x
2

)v
√
πΓ
(
v + 1

2

) ∫ 1

−1

(1− t2)v−
1
2 (1− t)q− 1

2 exp (−x (t− 1)) dt,

(2.6)

(Re(v + q) > 0, Re(v) >
−1

2
).

is called extended modified Bessel function whenever integral exists.

The generalized special function (2.6) introduced in definition 1 provides the most gen-
eral form of many important special functions in the literature. As a result, it will be shown
that the function (2.6) can be applied more easily and effectively in the applications. Conse-
quently, the generalized special function (2.6) will be used in the next subsection to define
another generalized special function for extending Hypergeometric and Beta functions.

It is clear that the function (2.6) reduces to Bessel function when q = 1
2 . Explicitly,

Iv(
1
2 ;x) = exp(x)Iv(x).

Corollary 2.2. We have the following integral representation for Iυ(q;x):

Iυ(q;x) =

(
x
2

)υ
22υ+q− 1

2

√
π Γ

(
υ + 1

2

) ∫ 1

0

tυ+q−1 (1− t)υ−
1
2 exp(2xt)dt, (2.7)

(Re(v + q) > 0, Re(v) >
−1

2
).

Proof. By using the transformation t→ 1− 2t, the statement can be obtain. �

Theorem 2.3. The extended modified Bessel function Iυ(q;x) has power series represen-
tation as follows:

Iυ(q;x) =

(
x
2

)υ
2q+

1
2

∞∑
n=0

Γ(2υ + 2q + 2n)

Γ(υ + q + n+ 1
2 ) Γ(2υ + q + n+ 1

2 ) n!

(x
2

)n
. (2.8)
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Proof. From the representation (2.7), we can write the following relation consisting of the
power series of the function exp(2xt)∫ 1

0

tυ+q−1 (1− t)υ−
1
2 exp(2xt) dt =

∞∑
n=0

(2x)n

n!

∫ 1

0

tυ+q+n−1 (1− t)υ−
1
2 dt

=

∞∑
n=0

B

(
υ + q + n, υ +

1

2

)
(2x)n

n!

=

∞∑
n=0

Γ(υ + q + n) Γ
(
υ + 1

2

)
Γ
(
2υ + q + n+ 1

2

) (2x)n

n!
.

(2.9)

Using the Legendre’s duplication formula, we get

Γ(υ + q + n) = Γ

(
υ + q + n− 1

2
+

1

2

)
=

√
π

22υ+2q+2n−2

Γ(2υ + 2q + 2n− 1)

Γ
(
υ + q + n− 1

2

)
=

√
π

22υ+2q+2n−1

Γ(2υ + 2q + 2n)

Γ
(
υ + q + n+ 1

2

) .
(2.10)

Substituting equations (2.9) and (2.10) into equation (2.7), we obtain

Iυ(q;x) =

(
x
2

)υ
2q+

1
2

∞∑
n=0

Γ(2υ + 2q + 2n)

Γ(υ + q + n+ 1
2 ) Γ(2υ + q + n+ 1

2 ) n!

(x
2

)n
. (2.11)

�

Theorem 2.4. The relation between the extended modified Bessel function Iυ(q;x) and the
confluent hypergeometric function 1F1(α, β, x) is

Iυ(q;x) =

(
x
2

)υ
22υ+q− 1

2 Γ(υ + q)
√
π Γ(2υ + q + 1

2 )
1F1

(
υ + q, 2υ + q +

1

2
, 2x

)
. (2.12)

Proof. Recall that

Iυ(q;x) =

(
x
2

)υ
22υ+q− 1

2

√
π Γ

(
υ + 1

2

) ∫ 1

0

tυ+q−1 (1− t)υ−
1
2 exp(2xt) dt. (2.13)

Consider the representation of the function 1F1(α, β, x) as

1F1(α, β, 2x) =
Γ(β)

Γ(α) Γ(β − α)

∫ 1

0

tα−1 (1− t)β−α−1
exp(2xt) dt. (2.14)

Hence, the special cases α = υ+ q and β = 2υ+ q+ 1
2 give us a new relation between the

extended modified Bessel function and the confluent hypergeometric function as follows:

Iυ(q;x) =

(
x
2

)υ
22υ+q− 3

2 Γ(υ + q)
√
π Γ

(
2υ + q + 1

2

) 1F1

(
υ + q, 2υ + q +

1

2
, 2x

)
(2.15)

which proves the theorem.
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The relation (2.12) provides a wide range of applications of the function (2.7). Since
Iυ(q;x) represents both modified Bessel and confluent hypergeometric functions, the spe-
cial function Iυ(q;x) can effectively used to generalize many special functions.

Example 2.5. The generalized function(2.6) can be reduced to many well known special
function by choosing the values of υ and q together. Some relations can be given as follows

I1/2(1/2;x) = exI1/2(x) =

√
2

πx
ex sinhx.

I0(1/2;x) = exJ0(x), I1(1/2;x) = exJ1(x), I0(3/2;x) = ex(J0(x) + J1(x)).

Iυ(1/2;x) = exJυ(x), Re(υ) > −1

2
.

I0(q;x) =
2q−

1
2

√
π

1F1(q, q +
1

2
, 2x), Re(q) > 0.

I1/2(q;x) = (−x)−q−
1
2

√
x

2π

(
Γ(q +

1

2
)− Γ(q +

1

2
,−2x)

)
, Re(q) > −1

2
.

The next theorem deals with an asymptotic formula of extended modified Bessel func-
tion (2.6).

Theorem 2.6. The special function Iυ(q;x) as x→∞ approaches to

Iυ(q;x) ∼ 2q−1e2x

√
πx

.

Proof. Consider the integral representation of the Iυ(q;x) as

Iυ(q;x) =

(
x
2

)υ
22υ+q− 1

2

√
π Γ

(
υ + 1

2

) ∫ 1

0

tυ+q−1 (1− t)υ−
1
2 exp(2xt) dt.

Let I =
∫ 1

0
tυ+q−1 (1− t)υ−

1
2 exp(2xt) dt. By using the substitution t = 1 − u

u+x , the
integral I will be

I =

∫ ∞
0

xυ+q−1

(u+ x)
υ+q−1

(
u

u+ x

)υ− 1
2

exp(2x(1− u

u+ x
))

(
x

(u+ x)
2

)
du

= exp(2x) ·
∫ ∞

0

uυ−
1
2xv+q

(u+ x)
2v+q+ 1

2

exp(
−2xu

u+ x
) du

=
exp(2x)

xv+ 1
2

∫ ∞
0

uυ−
1
2 exp(−2u)du

where u
x → 0 and 2xu

u−x → −2u for large number x. Since
∫∞

0
uυ−

1
2 exp(−2u)du =

2−v−
1
2 Γ
(
υ + 1

2

)
, we have

Iυ(q;x) =

(
x
2

)υ
22υ+q− 1

2

√
π Γ

(
υ + 1

2

) exp(2x)2−v−
1
2 Γ
(
υ + 1

2

)
xv+ 1

2

,

which proves the theorem. �
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Remark 2.7. If we consider the relation

Iv(
1

2
;x) = exIv(x),

the corresponding asymptotic formula of modified Bessel function of first kind can easily
be derived as

Iv(x)→ ex√
2πx

, x→∞.

Theorem 2.8. For
∣∣ 2
z

∣∣ < 1, the following generating function holds true:
∞∑

n=−∞
In+ 1

2
(−n+

1

2
;x)zn =

√
2

πx

(
zexz

z − 2

)
.

Proof. By using Legendre’s duplication formula, the series representation of Iv(q;x) can
be given as

Iυ(q;x) =

∞∑
n=0

2v+q+n− 1
2 Γ(υ + q + n)

√
πΓ(2υ + q + n+ 1

2 ) n!
xn+v.

Consequently,
∞∑

n=−∞
In+ 1

2
(−n+

1

2
;x)zn =

∞∑
n=−∞

( ∞∑
k=0

Γ (k + 1) 2k+ 1
2

√
πk!Γ (n+ k + 2)

xn+k+ 1
2

)
zn

=

∞∑
n=−∞

( ∞∑
m=n+k+1

2k+ 1
2

√
πΓ (m+ 1)

xm−
1
2

)
zn

=

√
2

πx

( ∞∑
m=0

(xz)
m

m!
.

∞∑
k=0

2kz−k

)
.

Since
∣∣ 2
z

∣∣ < 1, the geometric series
∞∑
k=0

2kz−k =
1

1− 2
z

.

Hence,
∞∑

n=−∞
In+ 1

2
(−n+

1

2
;x)zn =

√
2

πx
exz

z

z − 2
.

�

Next, we attempt to find generating functions involving the special function Iv(q;x),mainly
motivated by the paper of Agarwal et al. ([4]).

Theorem 2.9. For v, q ∈ C, the following generating function holds true:
∞∑
k=0

1

Γ (k + 1)
Iv−k(q + 2k;x)tk =

(
1− 2t

x

)−v−q
Iv(q;

x2

x− 2t
). (2.16)
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Proof. By using Legendre’s duplication formula, the series representation of Iv(q;x) can
be given as

Iυ(q;x) =

∞∑
n=0

2v+q+n− 1
2 Γ(υ + q + n)

√
πΓ(2υ + q + n+ 1

2 ) n!
xn+v.

Consequently, by a little simplifications,
∞∑
k=0

1

Γ (k + 1)
Iv−k(q+2k;x)tk =

∞∑
n=0

2v+q+n− 1
2xn+v

√
πΓ(2υ + q + n+ 1

2 ) n!
·
∞∑
k=0

Γ(υ + q + n+ k)2ktk

k!xk
.

(2.17)
Since

∑∞
k=0

Γ(λ+k)tk

k!Γ(λ) = (1− t)λ for λ ∈ C,

∞∑
k=0

Γ(υ + q + n+ k)2ktk

k!xk
= Γ(υ + q + n)

∞∑
k=0

Γ(υ + q + n+ k)
(

2t
x

)k
Γ(υ + q + n) k!

.

Therefore the infinite sum (2.17) becomes

∞∑
k=0

1

Γ (k + 1)
Iv−k(q + 2k;x)tk =

∞∑
n=0

2v+q+n− 1
2xn+vΓ(υ + q + n)

√
πΓ(2υ + q + n+ 1

2 ) n!
·

[(
1− 2t

x

)−(v+q+n)
]

=

∞∑
n=0

2v+q+n− 1
2xv

(
x

1− 2t
x

)n
Γ(υ + q + n)

√
πΓ(2υ + q + n+ 1

2 ) n!
·

[(
1− 2t

x

)−(v+q)
]
,

which gives the generating function given in (2.16). �

We aim to continue to generate a new generating function involving confluent hyperge-
ometric function 1F1(α, β, x) via generating function(2.16).

Theorem 2.10. For α, β ∈ C, the following generating function holds true:
∞∑
k=0

Γ (k + α)

Γ (k + 1)
1F1 (α+ k, β, x) zk = (1− z)−α Γ (α) 1F1

(
α, β,

x

1− z

)
. (2.18)

Proof. Use the generating function (2.16) together with relation (2.12) and set α → υ +
q, β → 2υ + q + 1

2 , z →
2t
x . �

For one interesting reference from generating functions of special functions, we refer
the paper Cohl. et al. ([9]).

2.2. Extended Hypergeometric, Confluent Hypergeometric and Beta Functions via
extended modified Bessel Function. In this subsection, newly introduced function (2.6)
will be used for introducing another extended special function to generalize the hyperge-
ometric, confluent hypergeometric and extended beta functions. The following definition
consists a new and generalized special function based on the function (2.6).

Definition 2.11. The extended beta-hypergeometric function
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B(µ,σ)
v,q (x, y; p) =

√
2

π

∫ 1

0

tx(1− t)yIv+ 1
2
(q;

−p
tµ (1− t)σ

)dt, (2.19)

(Re(p) > 0, µ, σ ≥ 0,min{Re
(
v + q +

1

2

)
, Re

(
2v + q +

3

2

)
} > 0,

Re(x+ µq) > −1, Re(y + σq) > −1).

is defined.

Remark 2.12. The necessary conditions for existence of integral given in (2.19) can also
be derived by using the relation (2.12) and the paper ([14], pp. 633, theorem 2.1).

It is clear that the new extension (2.19) reduces to many defined special functions as

Case 2.13. function (1.1) in the paper when v = 0, q = 1
2 and µ, σ = 1, precisely,

B
(1,1)

0, 12
(x, y; p) = Bp(x, y),

Case 2.14. function (1.3) when v = 0, q = 1
2 and µ, σ = m,precisely, B(m,m)

0, 12
(x, y; p) =

B
(α,β;m)
p (x, y),

Case 2.15. function (1.4) when q = 2α− β + 1
2 , v = β − α− 1

2 and µ = ρ;σ = λ,

Case 2.16. function (1.5) in the paper by using the relationKv(x) = π exp(−x)
2 sin vπ

(
I−v(

1
2 ;x)− Iv( 1

2 ;x)
)

where v /∈ Z.

Consequently, we use the function (2.19) to extend the hypergeometric functions and
beta functions as follows:

F (µ,σ)
v,q;p (a, b; c; z) =

∞∑
n=0

(a)n
B

(µ,σ)
v,q (b+ n, c− b; p)

B(b, c− b)
zn

n!
, (2.20)

(Re(p) > 0, |z| < 1, min{Re
(
v + q +

1

2

)
, Re

(
2v + q +

3

2

)
},

Re(µ), Re(σ) ≥ 0, Re(c) > Re(b) > 0, Re(a) > 0),

and

Φ(µ,σ)
v,q;p (b; c; z) =

∞∑
n=0

B
(µ,σ))
v,q (b+ n, c− b; p)

B(b, c− b)
zn

n!
, (2.21)

(Re(p) > 0, min{Re
(
v + q +

1

2

)
, Re

(
2v + q +

3

2

)
},

Re(µ), Re(σ) ≥ 0, Re(c) > Re(b) > 0, Re(a) > 0).
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Theorem 2.17. The special functions (2.20) and (2.21) , respectively, has the following
integral representation

F (µ,σ)
v,q;p (a, b; c; z) =

√
2
π

B(b, c− b)

∫ 1

0

tb(1− t)c−b(1− zt)−aIv+ 1
2
(q;

−p
tµ (1− t)σ

)dt,

(Re(p) > 0, |arg(1− z)| < π, Re(µ), Re(σ) ≥ 0, Re(c) > Re(b) > 0,

Re(v + q) > 0, Re(v) >
−1

2
, Re(a) > 0),

and

Φ(µ,σ)
v,q;p (b; c; z) =

√
2
π

B(b, c− b)

∫ 1

0

tb(1− t)c−beztIv+ 1
2
(q;

−p
tµ (1− t)σ

)dt, (2.22)

(Re(p) > 0, Re(µ), Re(σ) ≥ 0, Re(c) > Re(b) > 0,

Re(v + q) > 0, Re(v) >
−1

2
, Re(a) > 0).

Proof. Substituting the function (2.19) with x→ b+n, y → c− b into function (2.20), we
have after interchanging the order of summation and integration which is guaranteed

F (µ,σ)
v,q;p (a, b; c; z) =

√
2
π

B(b, c− b)

∫ 1

0

tb(1− t)c−bIv+ 1
2
(q;

−p
tµ (1− t)σ

)

∞∑
n=0

(a)n
(zt)

n

n!
dt

=

√
2
π

B(b, c− b)

∫ 1

0

tb(1− t)c−b(1− zt)−aIv+ 1
2
(q;

−p
tµ (1− t)σ

)dt,

where (1− zt)−a =
∑∞
n=0(a)n

(zt)n

n! ,∀ |zt| < 1. Similarly, from the definitions of the
functions (2.19) and (2.21), we can derive the integral representation (2.22) with exp(zt) =∑∞
n=0

(zt)n

n! . �

Also, it can be easily seen that the new extensions (2.20) and (2.22) reduce to the fol-
lowing special functions as

Case 2.18. extended Gauss hypergeometric function and extended confluent hypergeomet-
ric function in Lee et al. ([13], pp. 189, Equations. (1.11) and (1.12)]) respectively when
υ = 0 , q = 1

2 and µ = σ = 1. The extended Gauss hypergeometric function is defined as

Fp(a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−a exp

[
−p

t (1− t)

]
dt

and extended confluent hypergeometric function

Φp(b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1 exp

[
zt− p

t (1− t)

]
dt.
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Case 2.19. new generalized beta function in Özergin et al. ([17]; pp. 4607, Equations.
(11)) when q = 2α−β+ 1

2 , v = β−α− 1
2 and µ = σ = 1. Precisely, the new generalized

beta function is defined as

1F
(α,β;p)
1 (b; c; z) =

1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1 exp [zt] 1F1

(
α;β;

−p
t (1− t)

)
dt.

Remark 2.20. An interesting generalization of extension of gamma function and general-
ized gamma function given together in the paper ([17]) can be considered as

Γv,qp (x) : =

∫ 1

0

tx−1Iv+ 1
2
(q;−(t+

p

t
)dt,

(Re(p) > 0, Re(x) > 0, Re(v + q) > −1

2
, Re(2v + q) > −3

2
).

2.3. The Mellin and Laplace Transforms. In this subsection, we derive the Mellin
and Laplace transforms into extended modified Bessel and extended beta-hypergeometric
functions. The necessary conditions for their existences can be followed through existences
of the special functions appearing in their respective formulae.

Theorem 2.21. The Mellin transform of

M [Iv(q;x); s] : =

∫ ∞
0

xs−1Iv(q;x)dx

: =
(−1)

v+s−1
2q−s−

1
2 Γ (v + s) Γ (q − s)

√
πΓ
(
q + v − s+ 1

2

)
whenever integral exists.

Proof. Assume that the Mellin transform of Iv(q;x) exists. Then,

M [Iv(q;x); s] : =

∫ ∞
0

xs−1Iv(q;x)dx

: =
2v+q− 1

2

√
πΓ
(
v + 1

2

) ∫ ∞
0

xs−1

∫ 1

0

xvtυ+q−1 (1− t)υ−
1
2 exp(2xt) dtdx.

By using uniform convergency of the integration with substitutions σ = −2xt and λ = t,
we have∫ ∞

0

xs−1Iv(q;x)dx =
2q−s−

1
2 (−1)

v+s−1

√
πΓ
(
v + 1

2

) ∫ 1

0

λq−s−1 (1− t)υ−
1
2 dλ

∫ ∞
0

σv+s−1 exp(−σ) dσ.

Hence,∫ ∞
0

xs−1Iv(q;x)dx =
2q−s−

1
2 (−1)

v+s−1
Γ (v + s)

√
πΓ
(
v + 1

2

) B

(
q − s, v +

1

2

)
=

2q−s−
1
2 (−1)

v+s−1
Γ (v + s) Γ (q − s)

√
πΓ
(
q + v − s+ 1

2

) .

�
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In the paper ([3],pp. 410, equation (3.3)), the Mellin transform of the hypergeometric
function 1F1 (α, β,−b) is used as∫ ∞

0

bs−1
1F1 (α, β,−b) db =

Γ (α− s) Γ (β) Γ (s)

Γ (α) Γ (β − s)
. (2.23)

By using Mellin transform of Iv(q;x), the Mellin transform of 1F1 can easily be showed
by the following corollary.

Corollary 2.22. From the Mellin transform of Iv(q;x), we can easily derive the Mellin
transform of 1F1 (α, β,−p) as∫ ∞

0

ps−1
1F1 (α, β,−p) dp =

Γ (α− s) Γ (β) Γ (s)

Γ (α) Γ (β − s)
.

Proof. Considering the Mellin transform of Iv(q;x) with relation (2.12), we have∫ ∞
0

ps−1

[
(p)

υ
2υ+q− 1

2 Γ(υ + q)
√
π Γ(2υ + q + 1

2 )
1F1

(
υ + q, 2υ + q +

1

2
, 2p

)]
dp =

2q−s−
1
2 (−1)

v+s−1
Γ (v + s) Γ (q − s)

√
πΓ
(
q + v − s+ 1

2

) .

If we consider the substitutions p→ −p2 , α = v+ q, β = 2v+ q+ 1
2 for above integration,

we have∫ ∞
0

p(s+v)−1Γ (α) 2q−s−
1
2 (−1)

v+s−1

√
πΓ (β)

1F1 (α, β,−p) dp =
2q−s−

1
2 (−1)

v+s−1
Γ (v + s) Γ (q − s)

√
πΓ
(
q + v − s+ 1

2

)
which gives Mellin transform (2.23). �

Theorem 2.23. The Mellin transform of

M
[
B(µ,σ)
v,q (x, y; p); s

]
: =

∫ ∞
0

ps−1B(µ,σ)
v,q (x, y; p)dp

: =
2q−s

π

(−1)
v

Γ (v + s) Γ (q − s)
Γ
(
q + v − s+ 1

2

) B (x+ µs+ 1, y + σs+ 1)

whenever integral exists.

Proof. In the light of Mellin transform of Iv(q;x), the Mellin transform of B(µ,σ)
v,q (x, y; p)

can be represented as

M
[
B(µ,σ)
v,q (x, y; p); s

]
=

√
2

π

∫ 1

0

tx (1− t)y
∫ ∞

0

ps−1 Iv+ 1
2
(q;− p

tµ (1− t)σ
)dpdt.

Let p = Θ (tµ (1− t)σ) and λ = t (dp = dΘ (tµ (1− t)σ) and dλ = dt) . Then,

M
[
B(µ,σ)
v,q (x, y; p); s

]
=

√
2

π

∫ 1

0

λx+µs (1− λ)
y+σs

dλ

[
2q−s−

1
2 (−1)

v
Γ (v + s) Γ (q − s)

√
πΓ
(
q + v − s+ 1

2

) ]

=

√
2

π

[
2q−s−

1
2 (−1)

v
Γ (v + s) Γ (q − s)

√
πΓ
(
q + v − s+ 1

2

) ] ∫ 1

0

λx+µs (1− λ)
y+σs

dλ

=

√
2

π

2q−s−
1
2 (−1)

v
Γ (v + s) Γ (q − s)

Γ
(
q + v − s+ 1

2

) B (x+ µs+ 1, y + σs+ 1) .
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�

Remark 2.24. Since the special function (2.19) is extensions of some recently introduced
special functions, the Mellin transforms of these covered functions can be derived.

Theorem 2.25. The Laplace transform, if exists, of extended modified Bessel function is

L{Iv(q;x); s} :=

∫ ∞
0

e−sxIv(q;x)dx (2.24)

:=
2q+v−

1
2 Γ (v + q) Γ (v + 1)

√
πsv+1Γ

(
q + 2v + 1

2

) F

(
v + 1, v + q; 2v + q +

1

2
;

2

s

)
.

where F (a, b; c; z) is Gauss hypergeometric function (see ([15],pp.11, equation (2)).

Proof. Consider the Laplace transform of Iv(q;x)

L{Iv(q;x); s} =

∫ ∞
0

e−sxIv(q;x)dx =

∫ ∞
0

e−sx
(
x
2

)υ
22υ+q− 1

2

√
π Γ

(
υ + 1

2

) ∫ 1

0

tυ+q−1 (1− t)υ−
1
2 exp(2xt) dtdx.

By using uniform convergency of the integration, we have∫ ∞
0

e−sxIv(q;x)dx =
2υ+q− 1

2

√
π Γ

(
υ + 1

2

) ∫ 1

0

tυ+q−1 (1− t)υ−
1
2 dt

∫ ∞
0

(x)
υ
ex(−s+2t) dx.(s > 2t).

By using the substitutions x→ σ
s−2t and λ = t, we have∫ ∞

0

e−sxIv(q;x)dx =
2υ+q− 1

2

√
π Γ

(
υ + 1

2

) ∫ 1

0

λυ+q−1 (1− λ)
υ− 1

2 (s− 2λ)
−v−1 dλ

∫ ∞
0

(σ)
υ
e−σ dσ

=
2υ+q− 1

2 Γ (υ + 1)
√
π sv+1Γ

(
υ + 1

2

) ∫ 1

0

λυ+q−1 (1− λ)
υ− 1

2

(
1− 2

s
λ

)−v−1

dλ.

Since

F (a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1 (1− t)c−b−1
(1− zλ)

−a dt with |arg (1− z)| < π,

then∫ ∞
0

e−sxIv(q;x)dx =
2υ+q− 1

2 Γ (υ + 1)
√
πsv+1 Γ

(
υ + 1

2

)F (v + 1, v + q; 2v + q +
1

2
;

2

s
) ·B(v + q, v +

1

2
)

=
2υ+q− 1

2 Γ (υ + 1)
√
π sv+1Γ

(
υ + 1

2

)F (v + 1, v + q; 2v + q +
1

2
;

2

s
)
Γ (υ + q) Γ

(
υ + 1

2

)
Γ
(
2υ + q + 1

2

) ,

which gives the formula (2.24). �

As an particular case, the Laplace transform of Iv(q;x) (2.24) when v = 0 and q = 1
2

gives

L{I0(
1

2
;x); s} =

1√
s2 − 2s

.
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Consequently, Laplace transform of modified Bessel function of the first kind for v = 0 via
Laplace transform of Iv(q;x) can easily be obtained

L{I0 (x) ; s} = L{e−xI0(
1

2
;x); s} =

1√
(s+ 1)

2 − 2 (s+ 1)
=

1√
s2 − 1

.

Corollary 2.26. The Laplace transform of modified Bessel function is

L{Iv (x) ; s} =
1

2v (s+ 1)
v+1

Γ
(
q + 2v + 1

2

)F (v + 1, v +
1

2
; 2v + 1;

2

s+ 1

)
.

Proof. Assume that Laplace transform of Iv(q;x) exists and equals toF (s). Consequently,

L{Iv (x) ; s} = L{e−xIv
(

1

2
, x

)
; s} = F (s+ 1) .

By using formula (??) together with Legendre’s duplication formula, we derive the corre-
sponding formula. �

3. 3. GENERALIZATION OF FRACTIONAL DERIVATIVES

3.1. Extended Fractional Derivative via Extended Modified Bessel Function. In
this subsection, we introduce an interesting extended fractional derivative which can be
generalization of a large set of fractional derivatives. Let z > 0 then the new extension of
Riemann-Liouville fractional derivative µ,σDα,η,p

v,q;z f(z) is defined as follows:

µ,σD
α,η,p
v,q;z (f(z)) :=

√
2
π

Γ(α)

∫ z

0

f(t)(z − t)α−1tηIv+ 1
2
(q;

−pzµ+σ

tµ (z − t)σ
)dt, (3.25)

(min{Re(α) > 0, Re(p), Re(η) > 0, Re(v + q +
1

2
) > 0, Re(2v + q +

3

2
) > 0), µ, σ ≥ 0),

where n− 1 < Re(α) < n (n = 1, 2, 3, ...).

Now, we start with the extended fractional derivative of elementary function f(z) = zλ.

Corollary 3.1. Let Re(η + λ+ µq) > −1. Then

µ,σD
α,η,p
v,q;z (zλ) =

zη+λ+α

Γ(α)
B(µ,σ)
v,q (η + λ, α− 1; p)

whenever the function B(µ,σ)
v,q exists.

Proof. Consider the fractional derivative (3.25), we get

µ,σD
α,η,p
v,q;z (zλ) =

√
2
π

Γ(α)

∫ z

0

(z − t)α−1tη+λIv+ 1
2
(q;

−pzµ+σ

tµ (z − t)σ
)dt.
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Taking t = zu, after a little simplification, gives

µ,σD
α,η,p
v,q;z (zλ) =

√
2
π z

η+λ+α

Γ(α)

∫ 1

0

(1− u)α−1uη+λIv+ 1
2
(q;

−p
uµ (1− u)

σ )du

=
zη+λ+α

Γ(α)
B(µ,σ)
v,q (η + λ, α− 1; p).

�

Corollary 3.2. Let ξ 6= 0 and ξ ∈ C. Then

µ,σD
α,η,p
v,q;z ((z − ξ)r) :=

(−ξ)rB(η, α− 1)zη+α

Γ(α)
F (µ,σ)
v,q;p (−r, η; η + α− 1;

z

ξ
), (3.26)

whenever the function F (µ,σ)
v,q;p exists.

Proof. Consider the fractional derivative (3.25), we get

Dµ,η,p
z ((z − ξ)r)

=

√
2
π

Γ(α)

∫ z

0

(z − t)α−1(t− ξ)rtηIv+ 1
2
(q;

−pzµ+σ

tµ (z − t)σ
)dt

=

√
2
π (−ξ)rzη+α

Γ(α)

∫ 1

0

(1− u)α−1(1− z

ξ
u)ruηIv+ 1

2
(q;

−p
uµ (1− u)

σ )du (t = uz)

=
(−ξ)rB(η, α− 1)zη+α

Γ(α)
F (µ,σ)
v,q;p (−r, η; η + α− 1;

z

ξ
).

�

The special case of new extension (3.25) with p → 2p, µ = σ = 1; v = 0, q = 1
2 ;α =

−µ− 1
2 , η = −1

2 reduces the generalized Riemann-Liouville fractional derivative which is
defined by Özarslan et al ([16]) as

Dµ,η,p
z f(z) :=

1

Γ(−µ)

∫ z

0

f(t)(z − t)−µ−1exp
( −pz2

t(z − t)
)dt,

(Re(µ) < 0, Re(p) > 0).

Also, the particular case µ = σ = 0; v = 0, q = 1
2 ;α = −µ, η = 0 for extended

fractional derivative (3.25) reduces the Riemann-Liouville fractional derivative

Dµ
z f(z) :=

1

Γ(−µ)

∫ z

0

f(t)(z − t)−µ−1dt,

(Re(µ) < 0).
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It is also important to note that the extended fractional derivative (3.25) reduces to ex-
tended fractional derivative

Iµ,bz {f(z)} :=
1

Γ(µ)

∫ z

0

f(t)(z − t)µ−1
1F1

(
γ, β,− bzρ+λ

tρ(z − t)λ

)
dt,

(ρ > 0, λ > 0,min{Re(γ), Re(β), Re(µ), Re(b)} > 0),

defined in ([14],pp.647) when p → b
2 , µ = ρ, σ = λ; v = 0, q = 2γ − β + 1

2 , v =

β − γ − 1
2 ;α = µ+ βλ− γλ− λ

2 , η = βρ− γρ− ρ
2 .

Finally, Katugampola in the paper ([12]) introduced a new fractional integral operator
given by,

(
ρIαa+f

)
(x) =

ρ1−α

Γ (α)

∫ x

a

τρ−1f (τ)

(xρ − τρ)1−α dτ, (3.27)

which is generalization of the Riemann-Liouville and the Hadamard fractional integrals.
The extended fractional derivative (3.25) reduces to the fractional derivative (3.27) when
z → xρ − aρ, f (z)→ f

(
(z + aρ)

1
ρ

)
;α→ α, η = 0, v = 0, q = 1

2 and µ = σ = 0.

In the light of these reductions, we can easily understand that the extended fractional
derivative (3.25) is generalization of many defined fractional derivatives.

3.2. Fractional Derivative of Rational Functions. In this subsection, we will derive
the extended fractional derivative of arbitrary rational functions. Consequently, the general
representation of fractional derivatives of many defined fractional derivatives of arbitrary
rational functions can firstly be derived.

Assume that P (z) and Q(z) are polynomials such that deg(P ) < deg(Q). In this case,
the real partial fraction decomposition of the rational function P (z)

Q(z) can be represented as

P (z)

Q(z)
=

p∑
i=1

k
i∑

r=1

air
(z − z

i
)r

+

q∑
j=1

l
j∑

s=1

βjsz + γjs(
z2 − 2Re(zj )z + |zj |2

)s (3.28)

where air, βjs, γjs ∈ R. In the representation (3.28), the inverse of quadratic functions
can not be worked well in many calculations. Because of this quadratic functions of the
denominators, for example, we can not derive the fractional derivatives of rational func-
tions. In this paper, we will use complex partial fraction decomposition method together
with formula (3.26) to derive extended fractional derivatives of rational functions. In the
paper ([18]), the complex partial fraction decomposition of arbitrary rational function was
derived by the following theorem:

Theorem 3.3. Let x1, . . . , xp be pairwise different real numbers and z1, . . . , zq ∈ C\R be
also pairwise different. If P (x) is a polynomial with real coefficients whose degree satisfies
the inequality deg

(
P (x)

)
< p + 2(l1 + · · · + lq), then there exists air, βjs, γjs ∈ R and
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bjs ∈ C such that

P (x)
Q(x) =

p∑
i=1

k
i∑

r=1

air
(x− x

i
)r

+

q∑
j=1

l
j∑

s=1

βjsx+ γjs(
x2 − 2Re(z

j
)x+ |z

j
|2
)s

=

p∑
i=1

k
i∑

r=1

air
(x− x

i
)r

+

q∑
j=1

l
j∑

s=1

( bjs(
x− z

j

)s +
b̄js(

x− z̄
j

)s),
where

Q(x) = (x−x
1
)k1 . . . (x−x

p
)kp
(
x2−2Re(z

1
)x+|z

1
|2
)l

1 . . .
(
x2−2Re(z

q
)x+|z

q
|2
)lq .

The relations between the coefficients of the real partial fraction decomposition and the
coefficients of the complex partial fraction decomposition are

bj1 =

l∑
s=2

βjsω
2
j |ω|2(s−2)Cs−2

2s−3 +

l∑
s=1

(βjsωjz + ωjγjs)|ωj |2(s−1)Cs−1
2(s−1),

bj2 =

l∑
s=3

βjsω
3
j |ωj |2(s−3)Cs−3

2s−4 +

l∑
s=2

(βjsω
2z + ω2

jγjs)|ωj |2(s−2)Cs−2
2s−3,

...
bjlj−1 = βjljω

l + βj lj−1ω
lj−1
j z + ω

lj−1
j γj lj−1 + (βjljω

lj−1
j z + ω

lj−1
j γjlj )|ωj |2C1

lj

bjlj = βjljω
l
jz + ωljγjlj ,

(3.29)
where ωj = 1

2iIm(zj)
.

Theorem 3.4. Let Re(η) > 0 and Re(α) > 0. The extended fractional derivative of
arbitrary rational function satisfying previous theorem is

µ,σD
α,η,p
v,q;z

(
P (z)

Q(z)

)
=

=

p∑
i=1

k
i∑

r=1

airB(η, α− 1)zη+α

(−x
i
)rΓ(α)

F (µ,σ)
v,q;p (r, η; η + α− 1;

z

x
i

)

+

q∑
j=1

l
j∑

s=1

(
bjs

B(η, α− 1)zη+α

(−zj)sΓ(α)
F (µ,σ)
v,q;p (s, η; η + α− 1;

z

zj
)

+ b̄js
B(η, α− 1)zη+α

(−z̄j )sΓ(α)
F (µ,σ)
v,q;p (s, η; η + α− 1;

z

z̄j
)
)

whenever the extended hypergeometric functions F (µ,σ)
v,q;p exist.

Proof. Considering the formula (3.26) and complex partial fraction decomposition, the
proof of the theorem can easily be done. �
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A numerical example of extended fractional derivative of the rational function given in
([18]) will be derived by the following example.

Example 3.5. Consider the rational function given in ([18])

f (z) =
2z + 1

(z2 + 6z + 10)
3 . (3.30)

The complex partial fraction decomposition of function (2.20) can be given as

f(z) =

3∑
s=1

(
z
s

(x− (−3 + i))
s +

z̄s
(x− (−3− i))s

)
, (3.31)

where z1 = 15i
16 , z2 = 15

16 −
i
8 and z3 = −1

4 −
5i
8 . By using the decomposition (3.31) , the

extended fractional derivative of rational function (3.30) can be given as

µ,σD
α,η,p
v,q;z (f(z)) =

3∑
s=1

(zs
B(η, α− 1)zη+α

(3− i)))sΓ(α)
F (µ,σ)
v,q;p (s, η; η + α− 1;

z

i− 3
)+

+ z̄s
B(η, α− 1)zη+α

(3 + i)))sΓ(α)
F (µ,σ)
v,q;p (s, η; η + α− 1;

z

−i− 3
)).

4. CONCLUSION
Recently, the investigation into extensions of some special functions has become im-

portant. Thus, many extensions of special functions have been obtained by the authors of
different studies. From this point of view, we present extended modified Bessel function
Iυ(q;x) which generalizes the Bessel and modified Bessel functions, by using an addi-
tional parameter in the integral representation. An extension of the well-known functions
of the literature such as the hypergeometric function, the confluent hypergeometric func-
tion and the extended beta functions are also given via extended modified Bessel function.
A necessary relation between extended modified Bessel function Iυ(q;x) and the confluent
hypergeometric function 1F1(α, β, x) is easily given. Moreover, Mellin and Laplace trans-
forms for some newly derived special functions are obtained as a common coverage. We
derive asymptotic formulae and the generating functions of the extended modified Bessel
function. Hence, a lot of relations with respect to this new function can be proved by using
its generating functions. The fractional derivative of rational functions is explicitly found
by using the new definition of fractional derivative and complex partial fraction decompo-
sition. It can be easily seen that the results obtained in this paper are new and effective
mathematical tools and, also extensions of many results of the literature.
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