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Abstract. The primary objective of this study is to investigate the spread 
of rice tungro disease within a community, with a particular focus on the 
role of predators in disease transmission. A mathematical model has been 
developed to examine the progression of rice tungro disease in a healthy 
environment, incorporating various control strategies such as the contin-
uous removal of different categories of infected plants. To get proper 
numerical results, the rice tungro model is converted into a fractional 
rice model, and for fractional order, the fractal-fractional (FF) operator 
is used for continuous monitoring. The stability of the newly built model 
is checked by the quantitative and qualitative investigation. For a better 
understanding of the newly developed model, obtain the mathematical so-
lution of the model with boundedness and uniqueness. The impact of dif-
ferent parameters on the spread of rice tungro disease is investigated. By 
using the Lipschitz condition and normed function, checking the spreads 
of rice tungro disease in all sub-compartmentss. Furthermore, the stability
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of the model is examined by the Hyers-Ulam concept. The flip bifur-
cation is investigated for all compartments at equilibrium points, and a
simulation for flip bifurcation is examined and see the effect of different
variables on the spreading of disease across all compartments for flip bi-
furcation. Additionally, for numerical analysis of the fractional operator
used the two-step Lagrange polynomial method was used for the general-
ized form with Mittag-Leffler kernel. Finally, numerical simulations are
employed to demonstrate the effects of various factors on disease dynam-
ics. Simulations have been conducted to observe the actual behavior and
progression of rice tungro disease at various stages, using different param-
eter values in a healthy environment exhibiting a hypersensitive response
(HR). This research contributes to a deeper understanding of disease trans-
mission and supports the development of effective management strategies
for plants based on validated findings.

AMS (MOS) Subject Classification Codes: 35B35; 26A16; 45M20; 37B25.
Key Words: Boundedness, Lipschitz Conditions, Positiveness, Rice Tungro, Stability
Analysis.

1. INTRODUCTION

The Sustainable Development Goals (SDGs) include promoting sustainable agriculture
and ensuring food security. One strategy to guarantee food security is to make staple foods
like rice a staple meal made from rice plants available [19]. Measures must be taken to
prevent diseases like tungro disease from spreading among rice plants to achieve this goal.
The primary vector responsible for spreading tungro disease among rice plants is the green
leafhopper. Two to three weeks after planting, plants will start to exhibit signs of tungro
disease if infection happens at the nursery stage [13]. After rice is planted in the field,
diseased and immature rice plants serve as the main source of inoculum. During a certain
stage of growth, the number of infected plants can double. Immigrant insects were the
source of the first infection peak, and infection with immigrant insect descendants was the
reason for the second infection peak [18].

A key issue in global development is food security. Every individual, at all times, has
physical and financial access to enough healthful food to suit their dietary needs and pref-
erences for an active and healthy life, which is what is meant by [11]. The issue of food
security is significantly influenced by the agricultural sector. A sustainable approach to
agricultural growth and food security involves raising agricultural production [9]. How-
ever, a number of issues, particularly with regard to food crop commodities, contribute to
a decline in both the amount and quality of agricultural production. Plant susceptibility to
disease, pests, weather, and climate change is one of the primary determinants of it [7]. A
mathematical model for plant diseases was created to give a thorough explanation of how
to characterize, evaluate, and forecast plant disease outbreaks to create and evaluate crop
protection control measures and strategies [12]. Plant epidemiology presents a number of
significant challenges for human and animal disease models. Nevertheless, modeling plant
diseases is complicated by several distinctive features of plant epidemiology [6].
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Rice (Oryza sativa) is the most significant food crop in developing countries, since it is
a staple diet for more than half of the world’s population [10]. Since rice is a staple meal
that many Asian communities depend on, rice harvests are currently the main source of
concern. The prospective results of the rice varieties will not be achieved if the plants are
infected with the Tungro virus [5]. There will be no repercussions even if the Tungro virus
infection occurs during the early vegetative stage. The two related Tungro viral types that
cause Tungro rice disease are the stem virus (Rice Tungro Bacilliform Virus: RTBV) and
the spherical virus (Rice Tungro Spherical Virus: RTSV). Complex symptoms will be dis-
played by rice plants infected with two different strains of the Tungro virus. The symptoms
are less severe if the plant is just infected with RTBV, but they are completely absent if it
is only infected with RTSV. The green leafhopper Nephotettix virescens is the only semi-
persistent carrier of both viruses. Rao discovered that as the vector population grew, so did
the prevalence of RTV (Rice Tungro Virus) [15]. The Tungro virus must be managed in
order to stop the spread of illness. Taking into account integrated pest and disease control
techniques, effective cultural practices, and varietal resistance [1]. Insecticides are the most
widely used strategy for managing the Tungro virus. Insecticide spraying aids in lowering
the green leafhopper population, which delays the virus’s transmission. Green leafhopper
populations can be efficiently controlled using several standard insecticides.

Fractional calculus is used in many scientific fields, including physics and engineering.
Fractional order models are preferable to ordinary integer order models because they can
account for the genetic and memory components of systems [4]. Applications of fractional
calculus can be found in many different and broad areas of science and engineering, includ-
ing biological community models, optics, signal processing, fluid mechanics, electromag-
netics, viscoelasticity, and electrochemistry. The primary objective of [8] was to examine
the ocean system model by examining how predators are causing global climate change. A
mathematical model has been developed using the hypothesis created for an ideal setting in
order to examine the various incidences of Marburg virus disease following the implemen-
tation of control measures with implementation [14]. For different protection. Fractional
calculus is used to create a mathematical model that includes control and asymptomatic
variables to track the pace at which pine wilt changes. The model is reformulated as a
fractional-order system using the Atangana–Baleanu–Caputo (ABC) operator, allowing for
continuous monitoring [2]. According to [3], this method is crucial for comprehending the
dynamics of illnesses that are common around the world. The optimal pH and temperature
for this process were established, and the impact of the starting substrate concentration was
evaluated [16]. Additionally, a fractional-order mathematical model including global prop-
erties of the Mittag-Leffler kernel characterized the results. In order to comprehend the
entire dynamics of cholera and how the disease spreads across a population, mathematical
formulas are a crucial tool [17].

To effectively control the rice tungro virus, particularly within populations of suscepti-
ble and infected individuals, this study introduces a novel approach that incorporates early
detection and recovery-based control strategies. The main objective is to develop a new
mathematical model that reflects the recovery impact of the disease in a healthy environ-
ment. Rice tungro is a highly destructive disease posing a serious threat to plant life. The
study is structured to guide readers through its key components: Section 1 provides an in-
troduction and historical background; Section 2 formulates the new recovery-based model
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with proposed control measures; Section 3 analyzes the basic reproduction number along
with the models equilibrium and endemic points; Section 4 investigates local stability us-
ing equilibrium analysis and the Jacobian matrix; Section 5 presents analytical results on
positivity, boundedness, nonlocal operators, and the positive invariant region; Section 6
explores flip bifurcation through eigenvalue analysis and graphical simulations; Section 7
examines the effect of the global derivative using the Riemann-Stieltjes integral and norm;
Section 8 develops numerical solutions using a fractional operator with a Mittag-Leffler
kernel; Section 9 offers a detailed physical interpretation based on MATLAB simulations;
and finally, Section 10 concludes with a summary of the main findings.

1.1. Basic Results and Definitions. Definition. 1: [8] Assume that F (t) is fractal differ-
entiable of order η ∈ (0, 1) and continuous on the interval (x, y). The Fractal-Fractional
derivative in the sense of the Riemann–Liouville type with power-law kernel is defined as:

• For 0 ≤ η, β ≤ 1, the kernel for a law of power is thus provided.

FFP
0 Dη,β

t G(t) =
1

Γ(n+ η)

d

dtβ

∫ t

0

(t− β)n−η−1G(β)dβ

where η > n− 1, β < n ∈ N. And

DG(β)

Dββ
= lim

t→β

G(t)−G(β)

tη − ββ
.

• is stated using a kernel for exponential decay as follows:

FFE
0 Dη,β

t G(t) =
M(η)

Γ(n+ η)

d

dtβ

∫ t

0

exp

[
− η

1− η
(t− β)

]
G(β)dβ

where η > 0, β ≤ n ∈ N, and M(0) = 1 = M(1)
• with an Mittag-Leffler kernel is expressed as:

FFM
0 Dη,β

t G(t) =
AB(η)
1− η

d

dtβ

∫ t

0

Eη

[
− η

1− η
(t− β)η

]
G(β)dβ

where Eη and 0 < η, β ≤ 1 represent the Mittag-Leffler function, and AB(η) = 1 − η +
η

Γ(η) represents the normalization function.
Definition. 2: [8] The Fractal-Fractional integral of G(t), with fractional order η and

fractal order β, is continuous on the interval (x, y), provided that 0 ≤ η, β ≤ 1 and G(t) is
continuous on (x, y).
• is provided using a power law kernel as follows:

FFP
0 Iη,βG(t) =

1

Γ(η)

∫ t

0

(t− β)η−1β1−βG(β)dβ

• is written as follows for a kernel of exponential decay:

FFE
0 Iη,βG(t) =

β(1− η)tβ−1G(t)

M(η)
+

ηβ

M(η)

∫ t

0

βη−1G(β)dβ

• is expressed using a Mittag-Leffler kernel as

FFM
0 Iη,βG(t) =

β(1− η)tρ−1G(t)

AB(η)
+

ηβ

AB(η)Γ(η)

∫ t

0

(t− β)η−1ββ−1G(β)dβ.
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2. FORMULATION OF RICE TUNGRO DISEASE

In order to maintain a healthy environment, this novel model for studying rice tungro
disease introduces several metrics to assess various outcomes and enables early detection
of infected plants, particularly those affected by stunted growth due to the disease. To the
best of our knowledge, no previous study has proposed a model with the same structure as
the one we present here, which incorporates multiple aspects of the disease’s impact.

In this new framework, the plant population is categorized into four compartments. The
generative-phase population of susceptible rice plants is denoted by Sg , and the generative-
phase infected population by Ig . In the vegetative phase, healthy rice plants are represented
by Sh, while infected rice plants are denoted by Ih. Additionally, two types of disease vec-
tors are considered: susceptible vectors (Sv) and infected vectors (Iv). The model also
accounts for carnivores, represented by P , which may influence the dynamics of disease
spread by preying on vectors. The population of the model consists of different compart-
ments, like as predators, rice plants at different stages, and vector beetles.

FIGURE 1. The newly created model is shown in the flow chart.

Different parameters are used with different characterization during the changing of
healthy rice plants over the growing period. The birth rate of healthy plants is φh, the rate
of transfer from susceptible to infected plants of the healthy category due to vector infection
is β1, and αh is the rate of natural decay of healthy plants. The equation becomes:

DSh = φh − β1ShIv − αhSh.

Rate of transfer from susceptible to infected plants of healthy category due to vector
infected is β1, dh is the rate due to infection decay, and αh is the rate of natural decay of
healthy plants. The equation becomes:

DIh = β1ShIv − (αh + dh)Ih.
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Different parameters are used with different characterization during the transition of
healthy rice plants to the growing period. The birth rate of growing plants is φg , the rate of
transfer from susceptible to infected plants of the growing category due to vector infection
is β2, and αg is the rate of natural decay of growing plants. The equation becomes:

DSg = φg − β2SgIv − αgSg.

Rate of transfer from susceptible to infected plants of growing category due to vector
infection is β2, dg is the rate due to infection death, and αg is the rate of natural decay of
growing plants. The equation becomes:

DIg = β2SgIv − (αg + dg)Ig.

The birth rate of vectors is φv , the rate of transfer from susceptible to infected vectors
due to the healthy infected class is β3, δv transfer rate from susceptible vectors to predators,
and αv is the rate of natural decay of vectors. The equation becomes:

DSv = φv − β3SvIh − (αv + δv)Sv.

The rate of transfer from susceptible to infected vectors due to the healthy infected class
is β3, the δv transfer rate from susceptible vectors to predators, and αv is the rate of natural
decay of vectors. The equation becomes:

DIv = β3SvIh − (αv + δv)Iv.

The δv transfer rate from both vectors, susceptible and infected, to predators and γ1 is
the rate of natural decay of predators. The equation becomes:

dP

dt
= δv(Sv + Iv)− γ1P.

This equation shows how the populations of disease-carrying vectors and predators
change over time.

Consequently, the differential equations system has been represented using a flow chart,
along with our proposed hypothesis, illustrating an epidemic model with nonlinear inci-
dence and a host vector.

DSh =φh − β1ShIv − αhSh;

DIh =β1ShIv − (αh + dh)Ih;

DSg =φg − β2SgIv − αgSg;

DIg =β2SgIv − (αg + dg)Ig;

DSv =φv − β3SvIh − (αv + δv)Sv;

DIv =β3SvIh − (αv + δv)Iv;

DP =δv(Sv + Iv)− γ1P.

(2. 1)

with the following initial conditions: Sh(0) = S0
h, Ih(0) = I0h, Sg(0) = S0

g , Ig(0) = I0g ,
Sv(0) = S0

v , Iv(0) = I0v , P (0) = P 0.
Using the notion of a fractal fractional derivative on the differential equation system

above, we now obtain
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FFM
0 Dη,β

t Sh =φh − β1ShIv − αhSh;

FFM
0 Dη,β

t Ih =β1ShIv − (αh + dh)Ih;

FFM
0 Dη,β

t Sg =φg − β2SgIv − αgSg;

FFM
0 Dη,β

t Ig =β2SgIv − (αg + dg)Ig;

FFM
0 Dη,β

t Sv =φv − β3SvIh − (αv + δv)Sv;

FFM
0 Dη,β

t Iv =β3SvIh − (αv + δv)Iv;

FFM
0 Dη,β

t P =δv(Sv + Iv)− γ1P.

(2. 2)

The fractal fractional operator of Mittag-Leffler in this case is FFM
0 Dη,β

t , where 0 <
η ≤ 1 and 0 < β ≤ 1. The system under description is associated with the initial conditions
Sh(0) = S0

h, Ih(0) = I0h, Sg(0) = S0
g , Ig(0) = I0g , Sv(0) = S0

v , Iv(0) = I0v , P (0) = P 0.

3. ANALYSIS OF MODEL

3.1. Positivity and Bounded-ness.

Theorem 3.2. Assume that initial state values be (Sh(0), Ih(0), Sg(0), Ig(0), Sv(0), Iv(0),
P (0) > 0). Then, the solution set Ψ = {Sh, Ih, Sg, Ig, Sv, Iv, P} ∈ R+

7 of the rice tungro
disease model ( 2. 2 ) are positive for all t > 0. Furthermore

lim
t→∞

supNh ≤ φh

αh
, lim
t→∞

supNg ≤ φg

αg
, lim
t→∞

supNv ≤ φv

αv + δv
, lim
t→∞

supP ≤ δvNv

γ1

with Nh = Sh + Ih, Ng = Sg + Ig , Nv = Sv + Iv .

Proof: Let t1 = sup{t > 0 : Sh(0) > 0, Ih(0) > 0, Sg(0) > 0, Ig(0) > 0, Sv(0) > 0,
Iv(0) > 0, P (0) > 0} ∈ [0, T ]. If every initial value is 0, we have nothing to prove. Thus,
if we allow the initial data to be more than zero, T1 > 0. The initial dynamical equation of
the model ( 2. 2 ) states that

DSh = φh − β1ShIv − αhSh.

Solving for Sh(t1) from the above equation using the integrating factor technique yields
d

dt
{[(β1Iv + αh)t]Sh} = φh exp[(β1Iv + αh)t].

So

Sh(t1) exp[(β1Iv + αh)t1]− Sh(0) =

∫ t1

0

φh exp[(β1Iv + αh)x]dx.

Which leads to

Sh(t1) = Sh(0) exp[−(β1Iv+αh)t1]+exp[−(β1Iv+αh)t1]

∫ t1

0

φh exp[(β1Iv+αh)x]dx.

Also from the third equation of model ( 2. 2 ), Sg(t1)can be obtained. Thus

Sg(t1) = Sg(0) exp[−(β2Iv+αg)t1]+exp[−(β2Iv+αg)t1]

∫ t1

0

φg exp[(β2Iv+αg)x]dx.



730 Ghaffar et al.

It is also possible to extract Sv(t1) from the fifth equation of the model ( 2. 2 ). Thus

Sv(t1) = Sg(0) exp[−(β3Ih + αv + δv)t1] + exp[−(β3Ih + αv + δv)t1]∫ t1

0

φv exp[(β3Ih + αv + δv)x]dx.

Also from the last equation of model ( 2. 2 ), P (t1)can be obtained. Thus

P (t1) = P (0) exp[−(γ1)t1] + exp[−(γ1)t1]

∫ t1

0

(δv)Nv exp[(γ1)x]dx.

Thus, for every t > 0, Ih > 0, Ig > 0, and Iv > 0, it can be shown that. We now prove
that the total population of the climate change model compartments remains bounded as
time progresses, thereby completing the second part of Theorem 3.2. 0 < Sh + Ih ≤ Nh,
0 < Sg + Ig ≤ Ng , 0 < Sv + Iv ≤ Nv , and 0 < P (t) ≤ P (t), assuming the following.
The entire population is given by the model ( 2. 2 ) as

dNh

dt
= φh − αh(Sh + Ih)− dhIh < φh − αh(Sh + Ih), (3. 3)

dNg

dt
= φg − αg(Sg + Ig)− dgIg < φg − αg(Sg + Ig), (3. 4)

dNh

dt
= φv − (αv + δv)(Sv + Iv), (3. 5)

dP

dt
= δvNv − γ1P. (3. 6)

Thus,

φh − αhNh ≤ dNh

dt
≤ φh − αhNh,

φg − αgNg ≤ dNg

dt
≤ φg − αgNg,

φv − (αv + δv)Nv ≤ dNv

dt
≤ φv − (αv + δv)Nv,

δvNv − γ1P ≤ dP

dt
≤ δvNv − γ1P.

Hence,

φh

αh
≤ lim inf

t→∞
Nh ≤ lim sup

t→∞
Nh ≤ φh

αh
,

φg

αg
≤ lim inf

t→∞
Ng ≤ lim sup

t→∞
Ng ≤ φg

αg
,

φv

αv + δv
≤ lim inf

t→∞
Nv ≤ lim sup

t→∞
Nv ≤ φh

αv + δv
,

Nvδv
γ1

≤ lim inf
t→∞

P ≤ lim sup
t→∞

P ≤ Nvδv
γ1

,

complete the proof.
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3.3. Invariant regions. By considering the epidemiological feasible region P ⊂ R7
+, de-

fined as below, we aim to verify that the trajectories of the rice tungro model (2. 2 ) remain
within a realistic bounded domain for all t > 0.

Ψ = Ψh +Ψg +Ψv +ΨP ⊂ R2
+ × R2

+ × R2
+ × R1

+

where

Ψ =

{
(Sh, Ih, Sg, Ig, Sv, Iv, P ) ∈ R+

7 : Nh ≤ φh

αh
, Ng ≤ φg

αg
, Nv ≤ φv

αv + δv
, P ≤ δvNv

γ1

}
.

We now review the following Eqs to prove that R+
7 is positively invariant. Here, it should

be mentioned that if 0 < Ih ≤ Nh, 0 < Ig ≤ Ng , and 0 < Iv ≤ Nv , then it follows that (
3. 3 ), ( 3. 4 ), ( 3. 5 ), and ( 3. 6 )

dNh

dt
≤ φh − αhNh,

dNg

dt
≤ φg − αgNg,

dNh

dt
≤ φv − (αv + δv)Nv

dP

dt
≤ δvNv − γ1P.

The following is established when the aforementioned inequalities are solved. Nh(t) ≤
Nh(0)e

−αht + φh

αh
(1− e−αht), Ng(t) ≤ Ng(0)e

−αgt +
φg

αg
(1− e−αgt), Nv(t) ≤ Nv(0)

e−αv+δvt + φv

αv+δv

(
1− e−αv+δvt

)
and P (t) ≤ P (0)e−γ1t + δvNv

γ1
(1− e−γ1t). Specifi-

cally Nh ≤ φh

αh
, Ng ≤ φg

αg
, Nv ≤ φv

αv+δv
, P ≤ δvNv

γ1
as t → ∞. As a result, the region Ψ is

positively invariant. Therefore, it is sufficient to conclude that all solutions of the rice tun-
gro disease model, starting from initial conditions within the feasible region Ψ, remain in
this region for all future times. This confirms that the proposed model is epidemiologically
meaningful and mathematically well-posed.

3.4. Analysis of Existence for solution. We aim to determine the existence of solutions
for the fractal-fractional model of rice tungro disease given by equation ( 2. 2 ) using the
fixed-point theorem. Accordingly, we have:

Sh(t)− Sh(0) =
β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)η−1(φh − β1ShIv − αhSh)dp

+
β(1− η)tβ−1

KM(η)
(φh − β1ShIv − αhSh),

Let us now define a set of constants ri, where i ∈ N7
1, along with
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C1(t, Sh) = φh − β1ShIv − αhSh, C2(t, Ih) = β1ShIv − (αh + dh)Ih;

C3(t, Sg) = φg − β2SgIv − αgSg, C4(t, Ig) = β2SgIv − (αg + dg)Ig;

C5(t, Sv) = φv − β3SvIh − (αv + δv)Sv, C6(t, Iv) = β3SvIh − (αv + δv)Iv;

C7(t, P ) = δv(Sv + Iv)− γ1P.

† To support our findings, the following assumptions are considered: the functions Sh,
Ih, Sg , Ig , Sv , Iv , P , and S?

h are continuous. Furthermore, the functions I?h, S?
g , I?g , S?

v ,
I?v , and P ? belong to the space L[0, 1]. It is also assumed that there exist constants k1, k2,
and k3 such that ‖Ih‖ ≤ k1, ‖Ig‖ ≤ k2, and ‖Iv‖ ≤ k3.

Theorem 3.5. Assuming that condition (†) holds, the kernels Ci, for i = 1, 2, . . . , 7, satisfy
the Lipschitz condition and fulfill the inequality ji < 1 for all i ∈ N7

1.

Proof: The proof is omitted as it follows similarly to the approach in [3].
Equation ( 3. 7 ) is rewritten using the kernels, with the initial conditions Sh(0) = 0,

Ih(0) = 0, Sg(0) = 0, Ig(0) = 0, Sv(0) = 0, Iv(0) = 0, and P (0) = 0, which leads to:

Sh(t) =
β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, Sh(p))dp

+
β(1− η) tβ−1

KM(η)
C1(t, Sh(t)), (3. 7)

Ih(t) =
β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC2(p, Ih(p))dp+
β(1− η) tβ−1

KM(η)
C2(t, Ih(t)),

Now, we state the following formulas recursively.

Shn(t) =
β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, Shn−1(p))dp+
β(1− η) tβ−1

KM(η)
C1(t, Shn−1(t)),

Ihn
(t) =

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC2(p, Ihn−1
(p))dp+

β(1− η) tβ−1

KM(η)
C2(t, Ihn−1

(t)),

Further, let us consider the following differences, G∗:

G∗(Shn+1(t)) = Shn+1 − Shn =
β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, Shn(p))dp

+
β(1− η) tβ−1

KM(η)
C1(t, Shn

(t))−
(

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η

C1(p, Shn−1(p))dp+
β(1− η) tβ−1

KM(η)
C1(t, Shn−1(t))

)
,

Imposing norm on G∗, we get
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‖G∗(Shn+1
(t))‖ = ‖Shn+1

− Shn
‖ =

∥∥∥∥ β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, Shn
(p))dp

+
β(1− η) tβ−1

KM(η)
C1(t, Shn

(t))−
(

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η

C1(p, Shn−1(p))dp+
β(1− η) tβ−1

KM(η)
C1(t, Shn−1(t))

)∥∥∥∥,
=

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η‖C1(p, Shn
(p))dp− C1(p, Shn−1

(p))dp‖+

β(1− η) tβ−1

KM(η)
‖C1(t, Shn

(t))− C1(t, Shn−1
(t))‖.

Similarly, for the remaining equations in ( 2. 2 ), we proceed in the same manner as
demonstrated for the equation of Sh(t).

Theorem 3.6. The following conditions must be met for the fractal-fractional rice tungro
illness model to have a solution:

li = max{j1, j2, j3, j4, j5, j6, j7} < 1.

Proof: We now define the following functions:


K1(n)t = Shn+1 − Shn , K2(n)t = Ihn+1 − Ihn ,
K3(n)t = Sgn+1 − Sgn , K4(n)t = Ign+1 − Ign ,
K5(n)t = Svn+1

− Svn
, K6(n)t = Ivn+1

− Ivn
,

K7(n)t = Pn+1 − Pn,

(3. 8)

Imposing norms on ( 3. 8 ), results in

‖K1(n)t‖ = ‖Shn+1 − Sh‖ =

∥∥∥∥ β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, Shn(p))dp

+
β(1− η) tβ−1

KM(η)
C1(t, Shn

(t))−
(

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η

C1(p, Sh(p))dp+
β(1− η) tβ−1

KM(η)
C1(t, Sh(t))

)∥∥∥∥,
=

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η‖C1(p, Shn(p))dp− C1(p, Sh(p))dp‖+

β(1− η) tβ−1

KM(η)
‖C1(t, Shn

(t))− C1(t, Sh(t))‖
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‖K1(n)t‖ ≤
(

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η +
β(1− η) tβ−1

KM(η)

)
j1‖Shn(t)− Sh(t)‖

≤
(

η βΓ(β)

KM(η) Γ(η + β)
+

β(1− η)

KM(η)

)
j1‖Shn

(t)− Sh(t)‖

≤
(

η βΓ(β)

KM(η) Γ(η + β)
+

β(1− η)

KM(η)

)n

ln‖Sh1(t)− Sh(t)‖

Where l < 1, and as n → ∞, it follows that Shn
→ Sh. By applying the following integral

formula:

A(a, b) = (v − a)−a+b+1

∫ v

u

(x− u)a−1(v − x)b−1 dx,

and considering t ∈ [0, T ], we have t−1−η+β ≤ 1 and tβ ≤ 1. Similarly, for the remaining
equations in ( 2. 2 ), we proceed as done for the equation of Sh(t). This concludes the
proof.

3.7. Uniqueness of model’s solution.

Theorem 3.8. If the following inequalities hold, then the fractal-fractional rice tungro
disease model given by ( 2. 2 ) admits a unique solution:(

η βΓ(β)

KM(η) Γ(η + β)
+

β(1− η)

KM(η)

)
ji ≤ 1 i ∈ N7

1.

Proof: Examine the paradox that, for the fractal-fractional rice tungro illness model ( 2.
2 ), there is an alternative solution such that

S∗
h(t) =

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, S
∗
h(p))dp+

β(1− η) tβ−1

KM(η)
C1(t, S

∗
h(t)),

I∗h(t) =
β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC2(p, I
∗
h(p))dp+

β(1− η) tβ−1

KM(η)
C2(t, I

∗
h(t)),

Taking the variation in the norms of Sh, S∗
h, we get

‖Sh(t)− S∗
h(t)‖ =

∥∥∥∥ β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, Sh(p))dp+
β(1− η) tβ−1

KM(η)
C1(t, Sh(t))−

(
β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, S
∗
h(p))dp+

β(1− η) tβ−1

KM(η)
C1(t, S

∗
h(t)))

∥∥∥∥,
=

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η‖C1(p, Sh(p))− C1(p, S
∗
h(p))‖dp

+
β(1− η) tβ−1

KM(η)
‖C1(t, Sh(t))− C1(t, S

∗
h(t))‖

≤
(

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η +
β(1− η) tβ−1

KM(η)

)
j1‖Sh(t)− S∗

h(t)‖

×
[
1−

(
η βΓ(β)

KM(η) Γ(η + β)
+

β(1− η)

KM(η)

)]
‖Sh(t)− S∗

h(t)‖ < 0.
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Above inequality is true if ‖Sh(t) − S∗
h(t)‖ = 0, thus S∗

h(t) = Sh(t). Similarly, for the
remaining equations in ( 2. 2 ), we follow the same approach as demonstrated for the
equation of Sh(t). Therefore, it is evident that the assumption of non-uniqueness is false,
and the model admits a unique solution given by

Sh = S∗
h, Ih = I∗h, Sg = S∗

g , Ig = I∗g , Sv = S∗
v , Iv = I∗v , P = P ∗.

4. STABILITY OF MODEL IN HYERS-ULAM

Definition 4.1. If there are constants ki > 0 for i ∈ N7
1 that fulfill for each σi, then

the fractal-fractional integrals defined in ( 3. 7 ) are considered Hyers-Ulam stable. For
i ∈ N7

1, the following is true:

∣∣∣∣Sh(t)−
β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, Sh(p))dp+
β(1− η) tβ−1

KM(η)
C1(t, Sh(t))

∣∣∣∣ ≤ σ1,∣∣∣∣Ih(t)− β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC2(p, Ih(p))dp+
β(1− η) tβ−1

KM(η)
C2(t, Ih(t))

∣∣∣∣ ≤ σ2,

The rice tungro disease model ( 2. 2 ) has an approximate solution, S∗
h, I∗h, S∗

g , I∗g , S∗
v ,

I∗v , and P ∗, that fulfills the model as provided, such that

|Sh(t)− S∗
h(t)| =

∣∣∣∣ β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, Sh(p))dp+
β(1− η) tβ−1

KM(η)
C1(t, Sh(t))−

(
β η

Γ(η) KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, S
∗
h(p))dp+

β(1− η) tβ−1

KM(η)
C1(t, S

∗
h(t)))

∣∣∣∣,
=

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η|C1(p, Sh(p))− C1(p, S
∗
h(p))|dp

+
β(1− η) tβ−1

KM(η)
|C1(t, Sh(t))− C1(t, S

∗
h(t))|

≤
(

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η +
β(1− η) tβ−1

KM(η)

)
j1‖Sh(t)− S∗

h(t)‖

×
[
1−

(
η βΓ(β)

KM(η) Γ(η + β)
+

β(1− η)

KM(η)

)]
‖Sh(t)− S∗

h(t)‖ ≤ 0.

Letting χ1 =
[
1−

(
η βΓ(β)

KM(η) Γ(η+β) +
β(1−η)
KM(η)

)]
‖Sh(t) − S∗

h(t)‖, so the inequality above
becomes |Sh(t)− S∗

h(t)| ≤ χ1 j1. Similarly for remaining equations of ( 2. 2 ), we do
like as above equations of Sh(t). And for all remaining equations of model the inequality
becomes like as |Ih(t)− I∗h(t)| ≤ χ2 j2,

∣∣Sg(t)− S∗
g (t)

∣∣ ≤ χ3 j3,
∣∣Ig(t)− I∗g (t)

∣∣ ≤
χ4 j4, |Sv(t)− S∗

v (t)| ≤ χ5 j5, |Iv(t)− I∗v (t)| ≤ χ6 j6 and |P (t)− P ∗(t)| ≤ χ7 j7.

Theorem 4.2. With assumption , the fractal-fractional rice tungro disease model ( 2. 2 ) is
HyersUlam stable.
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Proof: Knowing that the fractal-fractional rice tungro disease model ( 2. 2 ) has a unique
solution. Let there exist an approximate solution of the rice tungro disease model ( 2. 2 ),
Sh, Ih, Sg , Ig , Sv , Iv , P that satisfies the given model, such that:

|Sh(t)− S∗
h(t)| =

∣∣∣∣ β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, Sh(p))dp+
β(1− η) tβ−1

KM(η)
C1(t, Sh(t))−

(
β η

Γ(η) KM(η)

∫ t

0

pβ−1(t− p)1−ηC1(p, S
∗
h(p))dp+

β(1− η) tβ−1

KM(η)
C1(t, S

∗
h(t)))

∣∣∣∣,
=

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η|C1(p, Sh(p))− C1(p, S
∗
h(p))|dp

+
β(1− η) tβ−1

KM(η)
|C1(t, Sh(t))− C1(t, S

∗
h(t))|

≤
(

β η

Γ(η)KM(η)

∫ t

0

pβ−1(t− p)1−η +
β(1− η) tβ−1

KM(η)

)
j1‖Sh(t)− S∗

h(t)‖

×
[
1−

(
η βΓ(β)

KM(η) Γ(η + β)
+

β(1− η)

KM(η)

)]
‖Sh(t)− S∗

h(t)‖ ≤ 0.

Letting $1 =
[
1−

(
η βΓ(β)

KM(η) Γ(η+β) +
β(1−η)
KM(η)

)]
‖Sh(t) − S∗

h(t)‖, so becomes the above
inequality |Sh(t)− S∗

h(t)| ≤ χ1 j1 Similarly for remaining equations of ( 2. 2 ), we do
like as above equations of Sh(t). And for all remaining equations of model the inequality
becomes like as |Ih(t)− I∗h(t)| ≤ χ2 j2,

∣∣Sg(t)− S∗
g (t)

∣∣ ≤ χ3 j3,
∣∣Ig(t)− I∗g (t)

∣∣ ≤
χ4 j4, |Sv(t)− S∗

v (t)| ≤ χ5 j5, |Iv(t)− I∗v (t)| ≤ χ6 j6 and |P (t)− P ∗(t)| ≤ χ7 j7.
Consequently, the fractal-fractional model of rice tungro illness ( 2. 2 ) is by definition
Hyers-Ulam stable. The evidence is finished now.

5. MODEL’S REPRODUCTIVE NUMBER AND EQUILIBRIUM POINT

The point of equilibrium in this model that is free of sickness with absence predators:

E0 =

{
Sh =

φh

αh
, Ih = 0, Sg =

φg

αg
, Ig = 0, Sv =

φv

αv + δv
, Iv = 0, P = 0

}
,

The point of equilibrium in this model that is free of sickness:

E1 =

{
Sh =

φh

αh
, Ih = 0, Sg =

φg

αg
, Ig = 0, Sv =

φv

αv + δv
, Iv = 0, P =

δvφv

γ1 (αv + δv)

}
,
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as well as endemic points are E∗ = (S∗
h, I

∗
h, S

∗
g , I

∗
g , S

∗
v , I

∗
v , P

∗) where

S∗
h =

(αv + δv) ((dh + αh) (αv + δv) + β3φh)

β3 (αh (αv + δv) + β1φv)
; I∗h =

β1β3φhφv − αh (dh + αh) (αv + δv)
2

β3 (dh + αh) (αh (αv + δv) + β1φv)
;

S∗
g =

β1φg (αv + δv) ((dh + αh) (αv + δv) + β3φh)

dh (αv + δv) 2 (β1αg − β2αh) + (αv + δv)X1 + β1β2β3φhφv
;

I∗g = −
β2φg

(
αh (dh + αh) (αv + δv)

2 − β1β3φhφv

)
(dg + αg) (dh (αv + δv) 2 (β1αg − β2αh) + (αv + δv)X1 + β1β2β3φhφv)

;

S∗
v =

(dh + αh) (αh (αv + δv) + β1φv)

β1 ((dh + αh) (αv + δv) + β3φh)
; I∗v =

β1β3φhφv − αh (dh + αh) (αv + δv)
2

β1 (αv + δv) ((dh + αh) (αv + δv) + β3φh)
;

P ∗ =
δvφv

γ1 (αv + δv)
,

where X1 = (β1β3αgφh + αh (αv + δv) (β1αg − β2αh)) . If the equilibrium point of the
proposed model is asymptotically stable for all delay values, the model is considered abso-
lutely stable; otherwise, it is conditionally stable for certain delay intervals but not for all.
The basic reproduction number is given by

R0 =

√
β1

√
β3

√
φh

√
φv√

αh

√
dh + αh (αv + δv)

.

6. ANALYSIS OF BIFURCATION

In this section, we use bifurcation theory to analyze the bifurcation occurring at the
equilibrium point E1.

Analysis of the bifurcation at the equilibrium point E1 in the rice tungro virus model
The eigenvalue computation shows that none of the eigenvalues equals ±1, which sug-

gests the possibility of a flip bifurcation in the system. The parameter set is denoted by

(φh, φg, φv, β1, αh, β2, αg, αv, δv).

F |E1 =

{
(φh, φg, φv, β1, αh, β2, αg, αv, δv) : αg =

dh
2
, αg =

dg
2
, αv =

δv
2
,

}
. (6. 9)

The following theorem states that for system (2. 2 ), there exists no flip-type bifurcation
at

(φh, φg, φv, β1, αh, β2, αg, αv, δv) ∈ F (E1).

Theorem 6.1. Given the model (2. 2 ) with parameters

(φh, φg, φv, β1, αh, β2, αg, αv, δv) ∈ F (E1),

the system does not exhibit a flip bifurcation.

Proof:
By restricting the study of model (2. 2 ) to the subspace where Ih = Ig = Iv = P = 0,

we can analyze the bifurcation behavior. This restriction is valid because model (2. 2 ) is
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invariant under the conditions Ih = Ig = Iv = P = 0, resulting in the following reduced
form:

St+1
h = φ1 − αhSh; St+1

g = φ2 − αgSg; St+1
v = φ3 − (αv + δv)Sv.(6. 10)

From 6. 10 , one denotes map

f1(Sh) = φ1 − αhSh; f2(Sg) = φ2 − αgSg; f3(Sv) = φ3 − (αv + δv)Sv.(6. 11)

Now if αg = dh

2 , αg =
dg

2 , αv = δv
2 and Sh = S∗

h = φ1

αh
, Sg = S∗

g = φ2

αg
, Sv = S∗

v =
φ2

αv+δv
then from 6. 11 we get

∂f1
∂Sh

= −αh = −dh
2

6= 0;
∂f2
∂Sg

= −αv = −dh
2

6= 0;
∂f3
∂Sv

= −(αv + δv) = −3δv
2

6= 0,

∂f1
∂αh

= Sh = −S∗
h 6= 0;

∂f2
∂αg

= Sg = −S∗
g 6= 0;

∂f3
∂αv

= Sv = −S∗
v 6= 0,

and

∂2f1
∂S2

h

= 0;
∂2f2
∂S2

g

= 0;
∂2f3
∂S2

v

= 0. (6. 12)

The computations above indicate that there is no flip bifurcation for model (2. 2 ) at the
equilibrium point E1, since the parametric condition (6. 12 ) fails to satisfy the non-degeneracy
requirement for

(φh, φg, φv, β1, αh, β2, αg, αv, δv) ∈ F (E1).
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FIGURE 2. Bifurcation Graphs

The newly designed model under investigation analyzes various infectious measures
of rice tungro disease. The model’s impacts on trees are quite complex, and it describes
a continuous time-dependent system. According to the hypotheses of the model, several
parameters are used, including: φh = 0.75, β1 = 0.02, αh = 0.05, dh = 0.031, φg = 0.5,
β2 = 0.01, αg = 0.091, dg = 0.031, φv = 0.05, β3 = 0.076, αv = 0.057, δv = 0.43
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and γ1 = 0.021. The linearization technique is employed in Figure (2) to demonstrate the
stability and boundedness of the model’s equations. The linearization technique is used
in Figure (2) to accomplish the stability and boundedness of the equation model. In this
case, we have constructed the bifurcation diagram of the continuous time graph of the
model about different parametric values in certain ranges, like β1, 0 to 1. We can ascertain
the continuous model’s stable condition by including the rice tungro disease and different
measures. Our theoretical results are supported by time-steady graphs in Figure (2), which
show the rate of parametric values of the total requirement rate.

7. SOLUTIONS BY FRACTAL FRACTIONAL OPERATOR

Now, we will apply the numerical method to solve our newly generated model, denoted
by equation 2. 2 . In this instance, we replace the classical derivative operator with the ML
kernel. The version with a flexible order will also be used. We also consider the model in
its variable-order form. For clarity, equation (2. 2 ) can be expressed as follows:

FFM
0 Dη,β

t Sh = φh − β1ShIv − αhSh;
FFM
0 Dη,β

t Ih = β1ShIv − (αh + dh)Ih;
FFM
0 Dη,β

t Sg = φg − β2SgIv − αgSg;
FFM
0 Dη,β

t Ig = β2SgIv − (αg + dg)Ig;
FFM
0 Dη,β

t Sv = φv − β3SvIh − (αv + δv)Sv;
FFM
0 Dη,β

t Iv = β3SvIh − (αv + δv)Iv;
FFM
0 Dη,β

t P = δv(Sv + Iv)− γ1P.

After applying the Mittag-Leffler kernel and the fractal-fractional integral, we obtain the
following results.

Sh(tk+1) = Sh0 +
1− η

KM(η)
t1−β
k Sh1(tk, Sh(tk), Ih(tk), Sg(tk), Ig(tk), Sv(tk), Iv(tk), P (tk))

+ ~
k∑

w=2

∫ tw+1

tw

Sh1(t, π)β
1−β(tk+1 − β)1−ηdβ.

Where π = Sh, Ih, Sg, Ig, Sv, Iv, P and ~ = η
KM(η)Γ(η) . Here, we recall the Newton

polynomial. After substituting the Newton polynomial into the preceding equations, the
integrals in those equations can be evaluated using the corresponding numerical methods.
Consequently, we obtain the following final expressions:
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Sh(k+1) = Sh0 +
1− η

KM(η)
t1−β
k Sh1(tk, Sh(tk), Ih(tk), Sg(tk), Ig(tk), Sv(tk), Iv(tk), P (tk))

+ ~
k∑

w=2

Sh1[tw−2, S
w−2
h , Iw−2

h , Sw−2
g , Iw−2

g , Sw−2
v , Iw−2

v , Pw−2]t1−β
w−2

× (4t)η

η
[(k − w + 1)η − (k − w)η] + ~

k∑
w=2

1

4t

{
t1−β
w−1Sh1(tw−1, S

w−1
h , Iw−1

h , Sw−1
g , Iw−1

g ,

Sw−1
v , Iw−1

v , Pw−1)− t1−β
w−2Sh1[tw−2, S

w−2
h , Iw−2

h , Sw−2
g , Iw−2

g , Sw−2
v , Iw−2

v , Pw−2]
}

× (4t)η+1

η(η + 1)

[
(k − w + 1)η(k − w + 3 + 2η)− (k − w)η(k − w + 3 + 3η)

]
+ ~

k∑
w=2

1

24t2

{
t1−β
i Sh1[tw, S

w
h , I

w
h , Sw

g , I
w
g , Sw

v , I
w
v , Pw]

−2t1−β
w−1Sh1(tw−1, S

w−1
h , Iw−1

h , Sw−1
g , Iw−1

g , Sw−1
v , Iw−1

v , Pw−1) + t1−β
w−2Sh1

[tw−2, S
w−2
h , Iw−2

h , Sw−2
g , Iw−2

g , Sw−2
v , Iw−2

v , Pw−2]
}
× (4t)η+2

η(η + 1)(η + 2)[
(k − w + 1)η

{
2(k − w)2 + (3η + 10)(k − w) + 2η2 + 9η + 12

}
−

(k − w)η
{
2(k − w)2 + (5η + 10)(k − w) + 6η2 + 18η + 12

}]
Similarly, for the remaining equations in (2. 2 ), we proceed as demonstrated for the

equation of Sh(t). This completes the numerical scheme for model (2. 2 ) in the sense of
the fractal-fractional derivative with the Mittag-Leffler kernel.

7.1. Advantages and Disadvantages of the Fractional-Order Model. Advantages
• Captures Memory and Delayed Effects: Fractional-order derivatives model mem-

ory effects and delayed responses in dynamic systems, which are often present in
real-world processes like climate change, disease spread, and ecological systems.

• Improved Accuracy: The fractional-order approach provides a more accurate rep-
resentation of complex phenomena that exhibit non-local and non-linear behaviors,
which integer-order models cannot capture.

• Greater Flexibility: It offers flexibility in modeling systems with a variety of
dynamics, allowing for more realistic simulations in various fields such as biology,
physics, and engineering.

• Better Fit for Real-World Systems: For long range duration and memory effect
fractional derivative is good and also clear with natural system.

Disadvantages
• More Complexity in Computation: Higher computing costs and more intricate

numerical techniques are frequently the results of include fractional derivatives.
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• Hard Parameter Requirement: The estimation of parameters of fractional model
is so difficult by comparing with integer order model.

• The Challenges of Interpretation: In certain situations, it might be more difficult
to intuitively comprehend the behavior of the model due to the more abstract nature
of the physical interpretation of fractional-order derivatives.

• Limited Software and Tools: For use of clear calculation, fractional derivatives
used some special type softwares which are not easily available.

8. SIMULATION EXPLANATION

8.1. Analysis and Simulation of Parameter Effects in 3D. In Fig. 3, the impact of β1

rate of transfer from susceptible to infected healthy plants class due to infected vectors on
all compartments of fractional rice model, which shoes the threshold shedding throughout
time. Consequently, β1 is essential for assessing the level of infection healthy in the rice
population.
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FIGURE 3. Simulation of all compartment of the system for β1.

In Fig. 4, the impact of β2 rate of transfer from susceptible to infected growing plants
class due to infected vectors on all compartments of fractional rice model, which shoes the
threshold shedding throughout time. Consequently, β2 is essential for assessing the level
of infection growing in the rice population.
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FIGURE 4. Simulation of all compartment of the system for β2.
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In Fig. 5, the impact of β3 rate of transfer from susceptible to infected vector class due
to infected healthy plants on all compartments of fractional rice model, which shoes the
threshold shedding throughout time. Consequently, β3 is essential for assessing the level
of infection vectors in the rice population.
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FIGURE 5. Simulation of all compartment of the system for β3.

In particular, we now emphasize how tactics for limiting viral propagation in agricultural
systems like rice may be informed by adjustments to the model’s parameters, such as the
shedding rates β1, β2, and β3. We also discuss the potential for applying our findings to
improve early detection, optimize interventions, and reduce infection rates by controlling
factors such as virus shedding and transmission. This enhances the relevance of our model
and its implications for practical disease management.

8.2. Simulation of the Fractal-Fractional Model (FFM). The effectiveness of the de-
rived theoretical results is demonstrated through the following simulations. The math-
ematical analysis of the rice tungro disease yields insightful outcomes when fractional
(non-integer) order parameters are employed. As the fractional orders decrease, the so-
lutions for Sh, Ih, Sg , Ig , Sv , Iv , and P shown in Figures 6–12 approach their expected
steady-state values. The numerical simulations of the fractional-order rice tungro disease
model were implemented using MATLAB. The initial conditions for the system are set
as Sh(0) = 2.25, Ih(0) = 1.75, Sg(0) = 3.75, Ig(0) = 2.80, Sv(0) = 6, Iv(0) = 3,
and P (0) = 5.5 for the respective sub-compartments. The parameter values used are:
φh = 0.75, β1 = 0.02, αh = 0.05, dh = 0.031, φg = 0.5, β2 = 0.01, αg = 0.091,
dg = 0.031, φv = 0.05, β3 = 0.076, αv = 0.057, δv = 0.43, γ1 = 0.021.

Figures 6–12 illustrate the graphical behavior of the rice tungro disease model based on
the proposed numerical method, comparing fractional-order results with classical integer-
order solutions. The dynamics of susceptible healthy plants Sh and susceptible growing
plants Sg are presented in Figures 6 and 8, respectively. In these cases, all compartments
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exhibit a rising trend, eventually stabilizing due to an increase in the recovered popula-
tion. The infected healthy plants Ih, infected growing plants Ig , susceptible vectors Sv ,
and infected vectors Iv are depicted in Figures 7, 9, 10, and 11, respectively. These com-
partments show a steady decline over time, approaching equilibrium as recovery increases.
Furthermore, the predator populations, both with and without medication, increase as the
fractional orders decrease, as shown in Figure 12. Figures 6a–12a and 6b–12b compare
the system behavior for fractional orders 0.6 and 0.4, respectively. While the overall dy-
namics are similar for both fractional orders, lower fractional values tend to produce more
accurate and stable results. This analysis highlights future research directions aimed at
reducing the number of diseased plants and infected vectors in the environment. For all
sub-compartments, the Caputo fractional derivative provides better modeling accuracy than
classical derivatives. Additionally, the solutions become more precise and reliable as the
fractional orders decrease.
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FIGURE 6. Simulation of Sh(t) for different fractal dimensions β and
fractional orders η.
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FIGURE 7. Simulation of Ih(t) for different fractal dimensions β and
fractional orders η.
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FIGURE 8. Simulation of Sg(t) for different fractal dimensions β and
fractional orders η.
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FIGURE 9. Simulation of Ig(t) for different fractal dimensions β and
fractional orders η.
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FIGURE 10. Simulation of Sv(t) for different fractal dimensions β and
fractional orders η.



750 Ghaffar et al.

0 50 100 150
0

0.5

1

1.5

2

2.5

3
Proposed Method

t

I v(t)

 

η=1.0
η=0.96
η=0.92
η=0.88

(A) β = 0.8

0 50 100 150
0

0.5

1

1.5

2

2.5

3
Proposed Method

t

I v(t)

 

η=1.0
η=0.96
η=0.92
η=0.88

(B) β = 0.6

FIGURE 11. Simulation of Sv(t) for different fractal dimensions β and
fractional orders η.
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FIGURE 12. Simulation of P (t) for different fractal dimensions β and
fractional orders η.

9. CONCLUSION

This work develops a fractional-order model for rice tungro disease without pharma-
cological treatment, utilizing the Fractal-Fractional Operator (FFO) to generate reliable
data. The model provides guidelines for early disease detection and removal by introduc-
ing control measures, such as cutting and burying infected plants, to prevent the diseases
spread. We analyze the diseases impact across different infectious stages and verify the
systems stability both qualitatively and numerically, confirming the existence of bounded
and unique solutions. Our study evaluates global efforts to control rice tungro and exam-
ines how infection rates change following asymptomatic interventions. Using the FFO, we
continuously track disease progression in plants and their surroundings. Numerical simu-
lations employing a two-step Lagrange polynomial method illustrate how various factors
influence the disease dynamics and highlight the role of the fractional operator in captur-
ing complex, nonlocal interactions. The model incorporates hypersensitive response (HR)
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mechanisms that enhance plant resistance against bacterial infection. This approach ad-
vances understanding of rice tungro by improving long-term forecasts and revealing intri-
cate disease behaviors under different fractional orders. Ultimately, this analysis supports
effective management and control strategies, contributing valuable insights for future re-
search aimed at reducing the diseases environmental and agricultural impact.
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