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Abstract. In mathematics, a fixed point of a function is the process of
finding a solution to an equation that can be written as Υx = x for a suit-
able function Υ. Fixed point theory has many applications. For instance,
in compilers (computer programs), fixed point computations are used for
program analysis. An example of this is the data-flow analysis that is often
required to optimize code. The vector of PageRank values of web pages
is the fixed point of a derived linear transformation of the world wide web
connectivity structure. Our main focus in this paper is to consider a novel
algorithm for finding the fixed point in some abstract spaces. Some appli-
cations are presented regarding split feasibility/constrained minimization
problems/signal enhancement. Furthermore, we perform the numerical il-
lustrations to investigate the basic techniques using Matlab R2016a. The
proposed novel algorithm demonstrates strong convergence to fixed points
of the considered mapping, with practical applications in solving split fea-
sibility and constrained minimization problems. Numerical results con-
firm the effectiveness of the method in signal enhancement tasks. This
approach offers promising potential for further research in abstract metric
spaces and iterative solution techniques.

AMS (MOS) Subject Classification Codes: 47H09; 47H10
Key Words: Digraph, split feasibility problem, signal enhancement, variational inequality

problem, constrained optimization problem, fixed point.

1. INTRODUCTION

Let Φ ̸= ∅ be a convex subset of a normed space Ψ, and Υ : Φ → Φ be a map. Next,
we express the set of all fixed points (FPs) of Υ by F . Υ is said L−Lipschitzian if there is
a constant L > 0 with ∥Υκ−Υτ∥ ≤ L ∥κ− τ∥ for each κ, τ ∈ Φ. A L−Lipschitzian is
nonexpansive if L = 1, and contraction if L ∈ (0, 1).
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FP theory is an interdisciplinary field that combines notions from geometry, topology,
applied and pure analysis. Nonlinear analysis has proven to be an inestimable tool in bi-
ology, economics, engineering, game theory, and so forth. One of the most significant
contributions of FP theory is its ability to figure out all sorts of mathematical problems,
such as integral/differential equations, and variational inequalities and essentially to reveal
the existence/uniqueness of the solutions to these problems. As early as 1965, Browder [9]
was the former researcher who acquired a basic existence theorem of FPs for nonexpansive
operators in the closed convex bounded sets on abstract spaces, and later various papers
have explored FP theory for uniformly convex Banach spaces, as documented in references
([8], [18], [24]). The simplest and most fundamental iteration method in the FP theory
is defined by Picard [30]. This method can used for computing FPs of contraction-type
operators, but it is unapplicable for nonexpansive operators. The FP problem for nonex-
pansive operators stands for a crucial and natural extension of the class of operators beyond
contraction mappings. Therefore, when an operator is nonexpansive, we try to apply the
iteration [28], which is more general than the stated [30] method.

In 1967, Halpern [19] introduced that the sequence {xn} constructed hereinbelow:

ω, x1 ∈ Φ, xn+1 = αnω + (1− αn)Υxn, n ≥ 0, (1. 1)

here {αn} ⊂ (0, 1] and Φ is a closed convex subset of a Hilbert space.
Various researchers have examined and improved the ( 1. 1 ) technic to certain Banach

spaces and {αn} ⊂ (0, 1] providing the parameters given below:
(S1) limn→∞ αn = 0;
(S2)

∑∞
n=1 αn = ∞;

(S3) ([45])
∑∞

n=1 |αn+1 − αn| < ∞;
(S4) ([48]) limn→∞

αn

αn+1
= 1.

Suzuki [36], in 2009, discussed several sufficient terms on {αn} ⊂ (0, 1] that assure
the convergence to a FP of nonexpansive operators. Conversely, the authors [16] and [35]
dividedly found out that together just parameters (S1)&(S2) are sufficient for the strong
convergence.

Cheval&Leuştean [14], in 2022, considered subsequently generalisations of the notable
Halpern and Mann methods acquired by uniting them with the so-called the Tikhonov–
Mann (TM) iteration as follows:

ω, x1 ∈ Φ, (1. 2)
zn = (1− αn)ω + αnxn,

xn+1 = (1− λn) zn + λnΥzn, n ≥ 0,

where {αn} , {γn} ⊂ (0, 1]. If additional articles on the TM iteration are needed in the
literature, various papers are available ([13], [15], [17], [27]).

Motivated by all the above-mentioned advancements, we establish a strong connection
between the Picard and the TM iteration schemes in a general nonlinear setting. This
algorithm ( 1. 3 ) is defined as indicated below:
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Algorithm 1.1. Let Φ ̸= ∅ be a closed convex subset of a Banach space Ψ and Υ : Φ → Φ
be a map. Let {xn} ⊆ Φ is defined hereinbelow:

ω, x1 ∈ Φ, (1. 3)
xn+1 = Υyn,

yn = λnzn + (1− λn)Υzn

zn = (1− αn)xn + αnω, n ≥ 0,

here {αn} , {λn} ⊂ (0, 1] satisfying (S1) and (S2) condition.

The iterative sequence {xn} identified by ( 1. 3 ) is said Picard-Tikhonov-Mann (PTM)
iteration process. The proposed iteration ( 1. 3 ) can be easily reduced to Tikhonov-Mann
and Picard iterations.

This research first presents a novel algorithm that converges strongly to a FP of Υ. Our
conclusions are implemented to solve solutions of split feasibility/constrained minimiza-
tion problems. Secondly, a convergence theorem is obtained for the proposed iteration for
G−nonexpansive maps on Hilbert space via a digraph. Further, we perform the numerical
illustrations to investigate the basic techniques by using Matlab R2016a.

2. PRELIMINARIES

We apply SΨ to express the unit sphere SΨ = {a ∈ Ψ : ∥a∥ = 1} in Banach space Ψ.
If a, b ∈ SΨ via b ̸= a ⇒ ∥(1− η) a+ ηb∥ < 1 for ∀η ∈ (0, 1), then Ψ is called to
be strictly convex. In a strictly convex Banach space Ψ we obtain that if ∥b∥ = ∥a∥ =
∥(1− ζ) b+ ζa∥ for a, b ∈ Ψ and ζ ∈ (0, 1), then b = a. A Banach space Ψ is called to
be smooth if

lim
t→0+

∥a+ tb∥ − ∥a∥
t

(2. 4)

exists for ∀a, b ∈ SΨ. Then, the norm of Ψ is called to be Gâteaux differentiable. It is
called to be uniformly Gâteaux differentiable if for ∀b ∈ SΨ, ( 2. 4 ) is obtained uni-
formly for a ∈ SΨ. It is worth noting that, every uniformly smooth space holds uniformly
Gâteaux differentiable norm. Let Ψ be an arbitrary real normed space via dual space Ψ∗.
We state by J : Ψ → 2Ψ

∗
is the normalized duality map identified by

J (τ) :=
{
g∗ ∈ Ψ∗ : ⟨τ, g∗⟩ = ∥g∗∥2 = ∥τ∥2

}
, τ ∈ Ψ,

where ⟨., .⟩ states the generalized duality pairing. In this case, there exists j (τ + κ) ∈
J (τ + κ) with

∥τ + κ∥2 ≤ ∥τ∥2 + 2 ⟨κ, j (τ + κ)⟩ for ∀κ, τ ∈ Ψ.

It is worthy of noting that, Ψ is smooth iff J is single-valued. A Banach space Φ ⊆ Ψ is
called to a retract of Ψ if there is a continuous P : Ψ → Φ with Pa = a for ∀a ∈ Φ. We say
such P is a retraction of Ψ onto Φ. Herefrom, if a map P is a retraction, then Pb = b for
each b in the range of P . A retraction P is called to be sunny if P (Pa+ t (a− Pa)) = Pa
for all a ∈ Ψ and 0 ≤ t. Further, Φ is called to be a sunny nonexpansive retract of Ψ, if a
sunny retraction P is nonexpansive ([1]).
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Lemma 2.1. [48] Let {κn} be a sequence of nonnegative real numbers providing κn+1 ≤
(1− σn)κn + σnωn, n ≥ 1, here {ωn} and {σn} are sequences of real numbers which
provide the terms:

(i)
∑∞

n=1 σn = ∞ and {σn} ⊂ [0, 1],
(ii) lim supn→∞ ωn = 0.
Then lim

n→∞
κn = 0.

Lemma 2.2. [47] Let m > 1 and Z > 0 be two constant numbers and Ψ a Banach
space. Then Ψ is uniformly convex iff there is a convex, strictly increasing, and continuous
function φ : [0,∞) → [0,∞) via φ (0) = 0 such that

∥ξa+ (1− ξ) b∥m ≤ ξ ∥a∥m + (1− ξ) ∥b∥m − Γm (ξ)φ (∥a− b∥)

for ∀a, b ∈ BZ (0) = {a ∈ Ψ : ∥a∥ ≤ Z} and ξ ∈ [0, 1], here Γm (ξ) = ξ (1− ξ)
m

+
ξm (1− ξ) .

Henceforward, we show the weak and strong convergence of {xn} to a point ς ∈ Φ by
xn ⇀ ς and xn → ς , resp.

Lemma 2.3. [40] Let Ψ be a reflexive Banach space whose norm is uniformly Gâteaux
differentiable, Φ ̸= ∅ be a closed convex subset of Ψ and Υ : Φ → Φ be a nonexpansive
map via F ̸= ∅. Given that every closed convex bounded subset of Φ holds FP property for
nonexpansive maps. Then F is the sunny nonexpansive retract of Φ. Furthermore, if ω ∈ Φ
and zt be the unique point in Φ identified by zt = tω + (1− t)Υzt for t ∈ (0, 1), then
{zt} → RF (ω) when t → 0+, here RF : Φ → F is the sunny nonexpansive retraction.

Lemma 2.4. [46] Let Ψ be a Banach space involving a uniformly Gâteaux differentiable
norm, Φ ̸= ∅ a closed convex subset of Ψ, h : Φ → Φ a continuous operator, Υ : Φ → Φ
be a nonexpansive map and {xn} ⊆ Φ such that limn→∞ ∥Υxn − xn∥ = 0. Assume
{zt} ⊆ Φ is a path identified by zt = thzt + (1− t)Υzt for t ∈ (0, 1), such that zt → e∗

when t → 0+. Then lim supn→∞ ⟨he∗ − e∗, J (xn − e∗)⟩ ≤ 0.

3. MAIN RESULTS

Proposition 3.1. Let Φ ̸= ∅ be a closed convex subset of a Banach space Ψ and Υ : Φ → Φ
be a nonexpansive map via F ̸= ∅. For ω, x1 ∈ Φ, a sequence {xn} ⊆ Φ is identified by (
1. 3 ). Then we hold the below terms:

(i) {xn} is bounded,
(ii) limn→∞ ∥Υzn − zn∥ = limn→∞ ∥Υyn − yn∥ = limn→∞ ∥Υxn − xn∥ = 0.

Proof. (i) Let ς ∈ F . Invoking ( 1. 3 ), we get

∥zn − ς∥ ≤ αn ∥ω − ς∥+ (1− αn) ∥xn − ς∥ , (3. 5)
∥yn − ς∥ ≤ λn ∥zn − ς∥+ (1− λn) ∥Υzn − ς∥ ≤ ∥zn − ς∥ . (3. 6)
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Due to ( 3. 5 ) and ( 3. 6 ), we attain

∥xn+1 − ς∥ = ∥Υyn − ς∥
≤ ∥zn − ς∥
≤ αn ∥ω − ς∥+ (1− αn) ∥xn − ς∥
≤ max {∥xn − ς∥ , ∥ω − ς∥}

...
≤ max {∥x1 − ς∥ , ∥ω − ς∥} .

Hence {xn} is bounded, due to ( 3. 5 ) and ( 3. 6 ), then {yn} and {zn} are bounded.
(ii) By ( 1. 3 ) and (S1) condition, we have

∥zn − xn∥ = αn ∥xn − ω∥ (3. 7)
→ 0 as n → ∞,

and using ( 3. 7 ), we get

∥Υzn − zn∥ ≤ αn ∥xn − ω∥+ ∥zn − xn∥ (3. 8)
→ 0 as n → ∞.

Due to ( 3. 8 ), we obtain

∥yn − zn∥ ≤ (1− λn) ∥Υzn − zn∥ (3. 9)
→ 0 when n → ∞.

Further,

∥xn+1 −Υzn∥ ≤ ∥zn − yn∥ (3. 10)
→ 0 when n → ∞,

and

∥yn − xn∥ ≤ ∥yn − zn∥+ ∥zn − xn∥ (3. 11)
→ 0 when n → ∞.

Owing to ( 3. 8 ) and ( 3. 9 ), we know that

∥xn+1 − zn∥ ≤ ∥Υzn −Υyn∥+ ∥Υzn − zn∥ (3. 12)
→ 0 when n → ∞,

and

∥Υyn − yn∥ ≤ ∥λnzn + (1− λn)Υzn −Υyn∥ (3. 13)
≤ λn ∥Υzn − zn∥+ (1− λn) ∥Υzn −Υyn∥
→ 0 as n → ∞.

Using ( 3. 7 ), ( 3. 8 ) and ( 3. 14 ), we attain

∥Υzn − xn∥ ≤ ∥xn − zn∥+ ∥Υzn − zn∥ (3. 14)
→ 0 when n → ∞.
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and

∥xn −Υxn∥ ≤ ∥xn −Υzn∥+ ∥Υzn −Υxn∥ (3. 15)
→ 0 when n → ∞.

□

Theorem 3.2. Let Ψ be a uniformly convex Banach space involving a uniformly Gâteaux
differentiable norm, Φ ̸= ∅ be a closed convex subset of Ψ, and Υ : Φ → Φ be a
nonexpansive map via F ̸= ∅. Let a sequence {xn} ⊆ Φ is constructed by ( 1. 3 )
for ω, x1 ∈ Φ. Then {xn} → RF (ω), where RF : Φ → F is the sunny nonexpansive
retraction.

Proof. By Lemma 2.3, we see that the path {zt} → RF (ω) for t ∈ (0, 1). Let e∗ :=
RF (ω) = limt→0+ zt. Invoking Lemma 2.4, we get lim supn→∞ ⟨ω − e∗, J (zn − e∗)⟩ ≤
0.

Invoking ( 1. 3 ), we have

∥zn − e∗∥2 = ∥αn (ω − e∗) + (1− αn) (xn − e∗)∥2 (3. 16)

≤ (1− αn) ∥xn − e∗∥2 + 2αn ⟨ω − e∗, J (zn − e∗)⟩ .

Due to Lemma 2.2 and ( 3. 16 ), we attain

∥xn+1 − e∗∥2 = ∥Υyn − e∗∥2

≤ ∥yn − e∗∥2

= ∥λn (zn − e∗) + (1− λn) (Υzn − e∗)∥2

≤ λn ∥zn − e∗∥2 + (1− λn) ∥Υzn − e∗∥2

≤ ∥zn − e∗∥2

≤ (1− αn) ∥xn − e∗∥2 + 2αn ⟨ω − e∗, J (zn − e∗)⟩
≤ (1− αn) ∥xn − e∗∥2 + αnξn,

here ξn := 2 ⟨ω − e∗, J (zn − e∗)⟩. Since (S2) condition, lim supn→∞ ξn ≤ 0 and by
Lemma 2.1 we deduce that {xn} → e∗. □

Remark 3.3. (a) Letting λn ≡ 1 in Theorem 3.2, we obtain Theorem 5.6 in [34].
(b) Taking αn ≡ 0 in Theorem 3.2, we get the result for the normal S−iteration process

in [34].

Rhoades [33] proposed a framework for comparing the rates of convergence between
two iterative algorithms, as outlined below.

Definition 3.4. [33] Let Φ ̸= ∅ be a closed convex subset of a Banach space Ψ and Υ :
Φ → Φ be a map. Suppose that {ϱn} and {vn} are two iterative sequences which converge
to a fixed point f in Φ. The sequence {ϱn} is said to converge to f faster than {vn} if the
following inequality holds

∥ϱn − f∥ ≤ ∥vn − f∥ for every n ≥ 1.
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Example 3.5. Let Ψ be equipped with the standard norm, let Φ be all real numbers from
zero to infinity including zero. Suppose that Υx = sinx for x ∈ Φ. Then Υ is a self-map.
Observe that F = {0}. Let

αn = λn = 3/7 for n ≥ 1 and ω = 0.5.

Table 1 provides a comparative analysis of the convergence rates to the fixed point achieved
by the Halpern iteration, the (TM) iteration process, and the (PTM) iteration process
using Matlab R2016a.

Table 1. Convergence Performance of Iteration Schemes
n Iteration ( 1. 1 ) Iteration ( 1. 2 ) Iteration ( 1. 3 )
1 π

3
π
3

π
3

2 0.7092 0.7070 0.6913
3 0.5864 0.5744 0.5548
4 0.5305 0.5213 0.4945
5 0.5034 0.4998 0.4665
6 0.4899 0.4911 0.4532
7 0.4832 0.4876 0.4469
8 0.4798 0.4861 0.4439
9 0.4780 0.4855 0.4424
10 0.4772 0.4853 0.4417

An analysis of the data presented in Table 1 reveals that the Picard–Tikhonov–Mann
iteration approach achieves faster convergence when compared to the previously outlined
iterations.

4. APPLICATION

Some applications are given this part. Let Ξ be a real Hilbert space via ⟨., .⟩. Let Φ ̸= ∅
be a closed convex subset of Ξ and Υ : Φ → Ξ a nonlinear mapping. Υ is called to be:

• monotone if ⟨Υκ−Υτ, κ− τ⟩ for ∀κ, τ ∈ Φ,
• λ−strongly monotone (λ− sm) if there is a constant 0 < λ with ⟨Υκ−Υτ, κ− τ⟩ ≥

λ ∥κ− τ∥2, ∀κ, τ ∈ Φ,
• ν−inverse strongly monotone (ν−ism) if there is a constant 0 < ν with ⟨Υκ−Υτ, κ− τ⟩ ≥
ν ∥Υκ−Υτ∥2, ∀κ, τ ∈ Φ.

The variational inequality problem identified by Φ and Υ will be stated by V I(Φ,Υ)
([23]). The V I(Φ,Υ) is the problem of obtaining a vector α in Φ with ⟨Υα, α− l⟩ ≥ 0,
∀l ∈ Φ. The set of all these vectors that solve the V I(Φ,Υ) problem is stated by Ω(Φ,Υ).
The V I(Φ,Υ) is related to various types of problems such as the complementarity problem,
the convex minimization problem, and such-like. In examining variational inequalities, the
approximation and existence of solutions are substantial issues. The V I(Φ,Υ) is equiva-
lent to the FP problem, viz

to compute ϑ∗ ∈ Φ such that ϑ∗ = F ∗
µϑ = PΦ (I − µΥ)ϑ∗

here PΦ : Ξ → Φ is the metric projection. The operator Fµ := PΦ (I − µΥ) is a contrac-
tion on Φ with 2λ/L2 > µ > 0, if Υ is λ− sm and L−Lipschitzian. Then, an application
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of the Banach contraction principle means that Ω(Φ,Υ) = {ϑ∗} and the sequence of the
[30] method, defined by

xn+1 = Fµxn, n ≥ 1,

where {xn} → ϑ∗.
Construction of FPs of nonexpansive maps is a significant matter in the theory of non-

expansive maps and holds applications in many areas such as signal processing and image
recovery ([10], [25], [49]). Thus, the split feasibility problem (SFP ) of Φ and T is

to compute a point ϑ ⊆ Φ with Υϑ ∈ Q, (4. 17)

herefrom Υ : Ξ1 → Ξ2 is a bounded linear map, where Φ is a closed convex subset of
Hilbert spaces Ξ1 and Ξ2. The SFP is called to be consistent if ( 4. 17 ) holds a solution.
It is obvious that SFP is consistent iff the following FP problem has a solution:

to compute ϑ ∈ Φ with ϑ = PΦ (I − γΥ∗ (I − PQ)Υ)ϑ for 0 < γ, (4. 18)

where Υ∗ is the adjoint of Υ, PΦ and PQ are the orthogonal projections onto Φ and Q,
resp., PΦ (I − γΥ∗ (I − PQ)Υ) is nonexpansive.

4.1. Application to constrained optimization problems. Let Φ be a closed convex sub-
set of a Hilbert space Ξ, PΦ : Ξ → Φ be the metric projection and Υ : Φ → Ξ be a ν−ism.
Note that PΦ (I − µΥ) is a nonexpansive map providing µ ∈ (0, 2ν). The methods for sig-
nal/image processing are usually iterative constrained optimization processes constituted
to minimize a convex differentiable function Υ over a closed convex set Φ ⊆ Ξ. It is worth
noting that, every L−Lipschitzian map is 2/L − ism. Hence, we hold the next theorem
which forms the sequence of vectors in the constrained or feasible set Φ which converges
weakly to the optimal solution which minimizes Υ.

Theorem 4.2. Let Φ be a closed convex subset of a Hilbert space Ξ, and Υ a differentiable
and convex function on an open set N including Φ. Supposing ∇Υ is an L−Lipschitz map
on N , µ ∈ (0, 2/L) and minimizers of Υ concerning Φ exist. Let a sequence {xn} ⊆ Φ is
constructed by

ω, x1 ∈ Φ,

xn+1 = PΦ (I − µ∇Υ) yn,

yn = λnzn + (1− λn)PΦ (I − µ∇Υ) zn,

zn = αnω + (1− αn)xn, n ≥ 0,

here {αn}, {λn} ⊆ [ϵ, 1− ϵ] for some ϵ ∈ (0, 1). Then {xn} converges weakly to a
minimizer of Υ.

4.3. Application to SFPs. An operator Υ in a Hilbert space Ξ is called to be averaged if
Υ can be expressed as (1− σ) I + σS for σ ∈ (0, 1), where S is a nonexpansive operator
on Ξ. Let q (x) : 1

2 ∥(Υ− PQΥ)x∥, x ∈ Φ. Take into consideration the minimization
problem

compute min
x∈Φ

q (x) .

The gradient of q is ∇q = Υ∗ (I − PQ)Υ, here Υ∗ is the adjoint of Υ. ∇q is L−Lipschitzian
via ∥Υ∥2 = L, as I − PQ is nonexpansive. Thus, ∇q is 1/L − ism and I − µ∇q
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is averaged for 0 < µ < 2/L. So, the composition PΦ (I − µ∇q) is averaged. Let
Υ := PΦ (I − µ∇q). Consider the solution set of SFP is F ([2]).

Next, we establish an iteration algorithm that can be applied to compute solutions of
SFP.

Theorem 4.4. Suppose that SFP is consistent. Assume {αn}, {λn} ⊆ [ϵ, 1− ϵ] for some
ϵ ∈ (0, 1). Let {xn} ⊆ Φ is constructed by

ω, x1 ∈ Φ,

xn+1 = PΦ (I − µ∇q) yn,

yn = λnzn + (1− λn)PΦ (I − µ∇q) zn,

zn = αnω + (1− αn)xn, n ≥ 0,

here 0 < µ < 2/ ∥Υ∥2. Then {xn} converges weakly to a solution of SFP.

Remark 4.5. Since the PTM iteration process reduces to the normal S−iteration process,
Theorem 4.4 extends Corollary 6.7 of Sahu [34].

Example 4.6. Take Ψ = R, Φ = [−1, 1] and ω = 1. Describe an operator Υ : Φ → Φ
by Υx = −x for x ∈ Φ. Consider αn = 1

13+n and λn = 9+n
7n+11 for n ≥ 0. Then

Υ is a nonexpansive operator. We also get F = {0} ̸= ∅. All numerical calculations
were performed using Matlab R2016a. The first twenty values for the initial point x0 =
0.50000 are as follows: x1 = 0.0059524, x2 = −0.0014667, x3 = −0.0012187, x4 =
−0.0015784, x5 = −0.0015906, x6 = −0.0016301, x7 = −0.0016107, x8 = −0.001
5899, x9 = −0.0015548, x10 = −0.0015186, x11 = −0.001478 9, x12 = −0.0014395,
x13 = −0.0014000, x14 = −0.0013615, x15 = −0.0013240, x16 = −0.0012878, x17 =
−0.0012531, x18 = −0.0012196, x19 = −0.0011877, x20 = −0.011570.

5. THE PTM ITERATION PROCESS FOR G-NONEXPANSIVE MAPPINGS

Let G be a digraph involving the set of vertices V and the set of edges E includes overall
the loops, namely (κ, κ) ∈ E for ∀κ ∈ V . Furthermore, supposing G holds no parallel
edges, and we may hereby define G = (V,E). A digraph G is called to be transitive if,
(κ, τ), (τ, ς) ∈ E for ∀κ, τ, ς ∈ V , we acquire (κ, ς) ∈ E ([21]).

Let Φ ̸= ∅ be a convex subset of a Banach space, G be a digraph, here V = Φ and
Υ : Φ → Φ. In this case, Υ is called to be G−nonexpansive if the below terms have:

• Υ is edge-preserving, viz, for each κ, τ ∈ Φ such that (κ, τ) ∈ E ⇒ (Υκ,Υτ) ∈
E;

• ∥Υκ−Υτ∥ ≤ ∥κ− τ∥, whenever (κ, τ) ∈ E for each κ, τ ∈ Φ ([42]).

Definition 5.1. [41] Let Φ ̸= ∅ be a subset of a normed space Ψ and let G be a digraph
with V = Φ. Then Φ is called to hold Property G if every sequence {xn} ⇀ κ ∈ Φ, there
is a subsequence {xnl

} of {xn} with (xnl
, κ) ∈ E for each k ∈ N.

Definition 5.2. [[3], [29]] Let G be a digraph. V ⊇ Ψ is called a dominating set if each
a ∈ V⧹Ψ there is x ∈ Ψ with (x, a) ∈ E and we call that x dominates a or a is dominated
by x. Let a ∈ V , V ⊇ Ψ is dominated by a if (a, x) ∈ E for each x ∈ Ψ and we call that
Ψ dominates a if (x, a) ∈ E for each x ∈ Ψ.
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Let Φ ̸= ∅ be a closed convex subset of a real Hilbert space Ξ. There is a unique closest
point in Φ, indicated by PΦκ, with ∥κ− PΦκ∥ ≤ ∥κ− τ∥ for each τ ∈ Φ, ∀κ ∈ Ξ.
PΦ : Ξ → Φ is said the metric projection.

Lemma 5.3. [39] Let Φ be a convex subset of a Hilbert space Ξ and let κ ∈ Ξ, τ ∈ Φ.
Then the undermentioned are equivalent:

(a) ∥κ− τ∥ = d (κ,Φ) ;
(b) ⟨κ− τ, τ − z⟩ ≥ 0 for every z ∈ Φ.

Lemma 5.4. [39] Let Ξ be a Hilbert space. Let {xn} ⊆ Ξ with xn ⇀ κ. If κ ̸= τ , then
lim infn→∞ ∥xn − κ∥ < lim infn→∞ ∥xn − τ∥ .

Proposition 5.5. Let Φ be a convex subset of a vector space Ψ and G is a digraph and
transitive involving V = Φ and E is convex. Let Υ : Φ → Φ be edge-preserving. Let {xn}
be constructed by ( 1. 3 ), here ω = x0. Let c∗ ∈ F be such that (x0, c

∗) , (c∗, x0) ∈ E. If
{xn} dominates x0, then (x0, xn), (xn,Υxn), (xn, xn+1) ∈ E for ∀n ∈ N.

Theorem 5.6. Let Φ ̸= ∅ be a closed convex subset of a Hilbert space Ξ and G be a
digraph and transitive involving V = Φ and E be convex. Assume Φ owns Property G.
Let Υ : Φ → Φ be a G−nonexpansive map. Supposing F ̸= ∅ and E ⊇ F × F . Given
ω, x1 ∈ Φ, a sequence {xn} in Φ is constructed by ( 1. 3 ) for ω = x0. Let c∗ ∈ F
be such that (x0, c

∗) , (c∗, x0) ∈ E. If {xn} dominates x0, then (x0, xn), (xn,Υxn),
(xn, xn+1) ∈ E for ∀n ∈ N. If {xn} is dominated by Px0 and {xn} dominates x0, then
{xn} → Px0, here P is the metric projection on F .

Proof. Let a0 = Px0. Using the same proof as in Proposition 3.1, by Proposition 5.5,
we can deduce that {xn} is bounded and limn→∞ ∥Υxn − xn∥ = 0. Now, we show that
lim supn→∞ ⟨xn − a0, x0 − a0⟩ ≤ 0. In fact, consider a subsequence {xnl

} of {xn} such
that

lim sup
n→∞

⟨xn − a0, x0 − a0⟩ = lim sup
l→∞

⟨xnl
− a0, x0 − a0⟩ .

Since all the xnl
lie in the weakly compact set Φ and Φ holds Property G, without losing

of generality we can suppose that xnl
⇀ y for some y ∈ Φ and (xnl

, y) ∈ E. Assume
y ̸= Υy. Owing to Lemma 5.4, limn→∞ ∥Υxn − xn∥ = 0, we attain

lim inf
l→∞

∥xnl
− y∥ < lim inf

l→∞
∥xnl

−Υy∥

≤ lim inf
l→∞

[∥xnl
−Υxnl

∥+ ∥Υxnl
−Υy∥]

= lim inf
l→∞

∥Υxnl
−Υy∥ ≤ lim inf

l→∞
∥xnl

− y∥ , (By G− nonexpansiveness of Υ)

which is a contradiction. Thus y = Υy. So, from Lemma 5.3, we obtain

lim sup
l→∞

⟨xnl
− a0, x0 − a0⟩ = ⟨y − a0, x0 − a0⟩ ≤ 0.

Hence, lim supn→∞ ⟨xn − a0, x0 − a0⟩ ≤ 0. Invoking the analogous proof as in Theorem
3.2, we can deduce that limn→∞ ∥xn − a0∥2 = 0. Hence {xn} → x0 = a0. □

Remark 5.7. Since the PTM iteration process reduces to the Halpern iteration process,
Theorem 5.6 improves Theorem 4.5 of Tiammee et al. [41].
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Motivated by [22] and [41] we offer the below instances to demonstrate the convergence
of the algorithms given in this writing.

Example 5.8. Let Ξ = R and Φ =
[
0, 1

2

]
via ∥x− y∥ = |x− y| and let G such that

V = Φ and E =

{
(x, y) : x, y ∈

[
0,

3

8

]
such that |x− y| ≤ 8−1

}
.

Describe Υ : Φ → Φ by

Υx =

{
4x2

3 if x ∈
[
0, 1

2

)(
5
8

)2
if x = 1

2

,

for each x ∈ Φ. Let αn = 1
n+15 , λn = 3n+5

16n+7 and ω = 1
2 . It is straightforward

to show that Υ is G−nonexpansive mapping, but is not nonexpansive. We also have
F = {0.00000}. Then F is ωn = −

√
3
√
3n2+28n+67+3n+15

8n+32 . Hence, it can be easily
seen that ωn ≤ 8−1 for each n ∈ N . Therefore (ωn, Px0) = (ωn, 0) ∈ E, scilicet, Px0 is
dominated by {ωn} and ωn → 0 = Px0 when n → ∞.

Example 5.9. Let Φ :=
{
x = (x1, x2, . . .) ∈ l2 : ∥x∥l2 ≤ 1 and xi ∈ [0, 1] for i ∈ N

}
with ∥x∥l2 =

(∑∞
i=1 |xi|2

) 1
2

and ⟨x,y⟩ =
∑∞

i=1 xiyi for y = (x1, x2, . . .) ∈ l2 :

∥x∥l2 ≤ 1 and yi ∈ [0, 1]. Let G = (V,E) such that

V = Φ and E =

{
(x, y) : x, y ∈

[
0,

1

3

]
with ∥x− y∥l2 ≤ 5−1 for i ∈ N

}
.

Identified Υ : Φ → Φ by Υx =
(
0.5x2

1, 0.375x
2
2, 0, 0, . . .

)
for ∀x ∈ Φ. It is simple to show

that Υ is G−nonexpansive map, but is not nonexpansive. We also have F = {0} where
0 = (0, 0, . . .) is the null vector on l2.

Assuming the sequence {xn} is constructed by

xn+1 = Υyn,

yn =

(
3n+ 5

16n+ 7

)
zn +

(
1− 3n+ 5

16n+ 7

)
Υzn,

zn =

(
1

n+ 15

)
ω +

(
1− 1

n+ 15

)
xn, n ≥ 0,

where ω = x0 =
(
1
6 ,

1
8 , 0, 0, . . .

)
. Due to definition of {xn} and Px0 = {0}, we

own ∥xn − 0∥l2 ≤ 0.2 It follows that (xn, Px0) ∈ E. Then Px0 is dominated by
{xn}. It is clear that {xn} dominates x0 and also Px0 is dominated by {x0}. From
Theorem 5.6, the sequence {xn} → Px0 = {0}. The first five values for the initial
point x0 =

(
1
6 ,

1
8 , 0, 0, . . .

)
are as follows: x1 = (7.5E − 3, 0.6E − 2, 0, 0, . . .), x2 =

(1.323E − 5, 6.18E − 6, 0, 0, . . .), x3 = (3.84E − 6, 1.5E − 6, 0, 0, . . .), x4 = (2.04E − 6, 8.6E − 7, 0, 0, . . .)
and x5 = (1.887E − 7, 7.9072E − 8, 0, 0, . . .).
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6. SIGNAL ENHANCEMENT

Signal enhancement is a process for reducing noise leading to an improved signal-to-
noise ratio [43]. Signal enhancement is a crucial topic in various engineering fields, partic-
ularly in communications, image processing, medicine, and audio engineering [44]. Iter-
ative algorithms are frequently used to solve complex signal enhancement problems [10].
These algorithms are essential for optimization and improving the accuracy of the solution
in signal enhancement [11].

Motivated these facts, we write code which generates a noisy signal from a sine wave,
applies an iterative signal improvement algorithm, and visualizes the original, noisy, and
improved signals on Matlab R2016a. Below is a step-by-step explanation of the Pseu-
docode:

Step1: Creating the Original Signal (the clean sine wave) and Noisy Signal (the sine
wave with added Gaussian noise)

t = 0:0.01:2*pi; % Time vector
original signal = sin(t); % Original sine wave
noise = 0.3 * randn(size(t)); % Gaussian noise
noisy signal = original signal + noise; % Noisy signal
Initialize (PTM) iteration parameters
x k = noisy signal; % Initial guess
alpha = 0.5; % Step size
num iterations = 50; % Number of iterations
% Define smoothing filter: 5-point moving average
filter func = @(x) filter(ones(1,5)/5, 1, x);
Step 2: Applying a Novel Iterative Signal Enhancement Algorithm
Step 3: Visualize the Results
figure;
subplot(3,1,1);
plot(t, original signal, ’k’, ’LineWidth’, 1.5);
title(’Original Signal’);
xlabel(’Time’); ylabel(’Amplitude’);
subplot(3,1,2);
plot(t, noisy signal, ’r’, ’LineWidth’, 1.5);
title(’Noisy Signal’);
xlabel(’Time’); ylabel(’Amplitude’);
subplot(3,1,3);
plot(t, x k, ’b’, ’LineWidth’, 1.5);
title(’Improved signal’);
xlabel(’Time’); ylabel(’Amplitude’).
Here, xn is initial signal, and αn is the learning rate controlling the influence of the pre-

vious iteration versus the new signal. This rate controls the balance between the current and
previous signals. If the learning rate is too high, the algorithm may become too aggressive
and overshoot (Figure 3). If it is too low, the denoising might be slow or ineffective (Fig-
ure 1). The algorithm updates the signal in a balanced way by giving equal weight to the
previous signal and the current signal, ensuring a smoother and more gradual improvement
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FIGURE 1. we see Original/Noisy/Improved Signals when αn = λn =
0.1 and ω = 0.5

FIGURE 2. we see Original/Noisy/Improved Signals when αn = λn =
ω = 0.5

(Figure 2) ([20], [31]). The steady progress of the improved signal shows how effective and
stable the algorithm’s noise reduction process is, the signal becomes cleaner as it improves,
and eventually the signal becomes stable and close to the original. This indicates that the
algorithm is working correctly and is only reducing the noise without making unnecessary
smoothing ([20], [31]).

Remark 6.1. (Boundary value problems (BVPs) via the proposed algorithm) BVPs consti-
tute fundamental mathematical models that involve finding solutions to differential equa-
tions subject to specific boundary conditions. These problems have extensive applications
across applied sciences, physics and engineering. Analytical (or numerical) solutions to
BVPs are often obtained through techniques rooted in functional analysis ([4], [5]). In this
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FIGURE 3. we see Original/Noisy/Improved Signals when αn = λn =
0.8 and ω = 0.5

context, fixed point theory serves as a powerful tool, providing an effective framework for
investigating the existence and uniqueness of solutions to BVPs, particularly in the study
of nonlinear differential equations ([37], [38]). The question of the existence of solutions
to differential equations using the proposed algorithm remains an open problem. While the
algorithm shows promising convergence behavior and potential applicability to a variety
of linear and nonlinear problems, rigorous proofs establishing existence and convergence
have yet to be fully developed. Further theoretical investigation is needed to confirm these
aspects and to better understand the scope and limitations of the method in addressing
boundary value problems and nonlinearities.

7. CONCLUSION

We have proposed a novel algorithm that converges strongly to a FP of Υ. Our conclu-
sions are applied to solve solutions of split feasibility/constrained minimization problems.
Secondly, a convergence theorem is obtained for the proposed iteration for G−nonexpansive
maps on a Hilbert space via a digraph. Furthermore, we provide the numerical illustrations
to investigate the basic techniques using Matlab R2016a. Within the future scope of this
idea, readers may explore quadratic rates of asymptotic regularity for the PTM method
on W−hyperbolic spaces (for the definition of this notion, see [26] and [32]). Fixed point
theory forms the basis of a number of iterative algorithms used particularly in computer
science and engineering. Iterations are used to converge to fixed points in areas such as nu-
merical analysis, optimization problems, physical simulations, data mining, and machine
learning. These methods provide effective solutions in a wide range of applications. Signal
recovery is a field concerned with recovering lost or corrupted signals. Image deblurring
is the process of converting a blurred image back to its original, clear state. This process
is usually performed to remove blurs that occur in images and is important in many ar-
eas such as image processing, space imaging, medical imaging, and computer vision. Our
main result can be applied to signal processing and image deblurring (see, [12], [49], [50]).
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Signal enhancement and iterative algorithms play a crucial role in modern engineering ap-
plications [7]. Bayesian enhancement, adaptive methods, filtering, and iterative algorithms
are used across a wide range of problems to improve signal quality ([6], [20], [31]). These
techniques are particularly important in preventing noise and distortions and in improving
the accuracy of solutions [44]. An interesting direction for future research would be to
explore the applicability of the proposed PTM iteration process to fixed point problems in
more general and complex settings, such as hyperbolic spaces and CAT(0) spaces, as well
as to investigate its potential extension to stochastic environments. In light of the findings
presented in this work, we suggest that the proposed iteration process may serve as a useful
and efficient tool for researchers studying fixed point problems in various abstract spaces.
Readers are encouraged to further explore its potential in broader mathematical models,
including those arising in optimization, nonlinear analysis, and applied mathematics.
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[5] A. Batool, I.Talib, M. B. Riaz, C.Tunç, Extension of lower and upper solutions approach for generalized
nonlinear fractional boundary value problems, Arab Journal of Basic and Applied Sciences, 29(2022)1,
249-256.

[6] C. M. Bishop, Pattern Recognition and Machine Learning, Springer (2006).
[7] R.E. Blahut, Fast Algorithms for Signal Processing. Cambridge University Press. (2010), ISBN 978-0-521-

19049-7.
[8] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA, 54 (1965),

1041–1044.
[9] F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA,

53 (1965), 1272–1276.
[10] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction,

Inverse Problems 20(2004)103.
[11] J. A. Cadzow, Signal enhancement-a composite property mapping algorithm, in IEEE Transactions on

Acoustics, Speech, and Signal Processing, 36 (1988), No. 1, 49-62.
[12] C. Chairatsiripong, D. Yambangwai, T. Thianwan, Convergence analysis of M−iteration for

G−nonexpansive mappings with directed graphs applicable in image deblurring and signal recovering
problems, Demonstratio Mathematica, 56(2023), No. 1, https://doi.org/10.1515/dema-2022-0234.
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