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Abstract. We propose a novel neural network-based approach for solv-ing the Time-
Dependent Kohn-Sham (TDKS) equations, central to Time-Dependent Density 
Functional Theory (TDDFT). Focusing on the one-electron case, where the TDKS 
reduces to the time-dependent Schrödinger equation, we employ modified Physics-
Informed Neural Networks (PINNs) incorporating Jensen’s inequality in place of the 
traditional Mean Squared Error (MSE) loss. This convex formulation improves training 
stability and solution accuracy. Compared to the classical Runge-Kutta (RK4) method, our 
approach achieves comparable accuracy while demonstrating supe-rior scalability and 
smoother convergence, especially for stiff or nonlinear dynamics. This work establishes a 
foundation for extending neural PDE solvers to more complex quantum systems.that the 
classroom teaching ex-periment began.

AMS (MOS) Subject Classification Codes: 92B20, 68T07
Key Words: PINNS . Jensen’s inequality . Mean squared error . Runge-Kutta methods .
Kohn-sham equations.

1. INTRODUCTION

The Time-Dependent Kohn-Sham (TDKS) [7] equations play a fundamental role in
the study of quantum systems [8] and form the basis of Time-Dependent Density Func-
tional Theory (TDDFT), which is widely used in electronic structure calculations. These
equations describe the quantum dynamics of interacting electrons through a set of non-
interacting single-particle equations [15]. Due to their ability to capture dynamic responses
of molecular and extended systems [9], they are employed in various fields such as com-
putational chemistry, solid-state physics, and materials science. However, solving these
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equations accurately and efficiently remains a challenging task, especially for large sys-
tems or when the dynamics are nonlinear and stiff.

The traditional way to solve such equations has been the use of numerical time-stepping
methods like the Runge-Kutta method of order 4 (RK4) [3, 18]. Although RK4 is quite
stable and accurate in certain settings, it becomes computationally expensive and often
impractical when dealing with high-dimensional or stiff systems. Moreover, the stepwise
nature of RK4 can introduce numerical instability and accumulated errors over long time
spans or for oscillatory quantum behaviours. Hence, there arises a strong motivation to
explore alternative techniques that can handle such limitations and provide reliable results
[12, 16].

Recently, machine learning-based techniques [11, 14], particularly Physics-Informed
Neural Networks (PINNs) [13], have shown promising potential in solving partial dif-
ferential equations. PINNs offer an advantage by embedding physical laws directly into
the loss function of the neural network, which allows the model to learn the solution of
differential equations from data and constraints simultaneously. This technique not only
avoids traditional time-stepping but also provides a flexible and scalable framework for
high-dimensional systems. Despite this, the commonly used loss function in PINNs is the
Mean Squared Error (MSE), which does not always yield the most stable or accurate learn-
ing behaviour, particularly in the presence of nonlinearities.

Parallel to this, recent advancements in unsupervised deep learning have expanded the
applicability of neural network methods across a range of complex dynamical systems.
For instance, Mukheimer and Ejaz [10] applied neural networks to model trophic chains
involving cannibalism and harvesting, demonstrating strong agreement between unsuper-
vised models and classical dynamical behaviour. Similarly, Abodayeh and Nawaz [1] com-
pared a third-order numerical scheme with neural network-based solvers for SEIR epi-
demic modeling, indicating the reliability of neural networks in stiff system dynamics. In
another application, Arif et al. [2] used explainable machine learning for chronic kidney
disease prediction, illustrating how unsupervised or semi-supervised learning frameworks
can adapt to real-world nonlinearities. These examples collectively highlight the broader
utility of unsupervised and physics-informed neural networks across disciplines, reinforc-
ing the relevance of extending such methods to quantum mechanical systems.

This paper proposes a novel approach by modifying the PINNs framework through
the use of Jensen?s inequality in the computation of the physics-based loss component.
Jensen?s inequality [4, 5], due to its mathematical properties related to convex functions,
helps in controlling the behaviour of error functions and can improve the convergence of
neural networks dealing with physical models. To the best of our understanding, this com-
bination of PINNs with Jensen?s inequality has not been previously applied in the context
of solving TDKS equations [12].

Therefore, the main aim of this research is to evaluate the performance of this modified
PINN framework, compare it against the traditional RK4 method and the standard PINN
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model using MSE, and highlight the advantages of using Jensen?s inequality [3]. This pa-
per also explores the accuracy, computational efficiency, and scalability of the proposed
method. The novelty of our contribution lies in this unique integration of mathematical in-
equality into a machine learning framework for quantum system modelling [9, 13, 16, 18],
which could provide new directions for solving advanced problems in quantum physics.
Despite the widespread use of traditional solvers such as Runge-Kutta (RK4) for quantum
systems, these methods often struggle with scalability, stiffness, and long-term accuracy in
nonlinear or high-dimensional problems. Recent advances in neural network-based solvers
like PINNs offer a promising direction, yet their effectiveness is often limited by the choice
of loss function?typically Mean Squared Error (MSE)?which may not sufficiently control
optimization dynamics, especially in stiff equations. Motivated by this gap, we explore
a novel integration of Jensen?s inequality into the PINN framework, aiming to improve
training stability and solution accuracy. This approach leverages the convex structure of
Jensen’s inequality to impose a tighter bound on the loss function, which we hypothe-
size can enhance convergence and generalization. Our work is thus driven by the need to
develop more robust, accurate, and mathematically grounded neural solvers for quantum
dynamical systems like the TDKS equations.
The rest of the paper is arranged as: Section 2 describes the methods applied to solve TDSK
equations. Section 3 describes the proposed architecture. Section 4 describes the results
and Section 5 presents the conclusion.

2. METHODS

This section outlines the methods employed to solve the Time-Dependent Kohn-Sham
(TDKS) equations: the Runge-Kutta 4th Order (RK4) method, Physics-Informed Neural
Networks (PINNs), and the application of Jensen?s inequality for loss computation. These
methods exhibit varying strengths in capturing the complex dynamics of the TDKS system.
The RK4 method is a well-established numerical technique for solving ordinary and par-
tial differential equations by approximating derivatives at multiple points within a given
time step. In this study, we utilized the SciPy and NumPy libraries [11, 17] to implement
efficient time-stepping of the wavefunction. The TDKS equations were solved by propa-
gating the wavefunction using time-evolution operators derived via RK4 and PINNs, with
Jensen?s inequality serving as the foundation for data loss computation.
We give here few details about this inequality below.
Jensen?s inequality describes a fundamental property of convex and concave functions con-
cerning expected values. If f is a convex function, X is a random variable, and E[X]
denotes the expected value of X , then:

f(E[X]) ≤ E[f(X)],

as stated in [4]. This implies that the function value at the mean of X is less than or equal
to the mean of the function values applied to X , provided f is convex. Conversely, if f is
a concave function, the inequality reverses:

f(E[X]) ≥ E[f(X)].

In neural networks, especially probabilistic models like Variational Autoencoders (VAEs),
Jensen?s inequality is used to derive the Evidence Lower Bound (ELBO) in the training of
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models with probabilistic layers. It ensures that the approximation error in such models is
bounded [13].
The Adam optimizer plays a crucial role in Physics-Informed Neural Networks (PINNs) by
efficiently adjusting the network’s weights and biases during training to minimize the loss
function. Its role is particularly significant in the context of PINNs due to the unique chal-
lenges posed by these networks. For the sake of completeness, we give here the algorithm
for Adam’s Optimizer [6].
Input: Learning rate α, β1, β2, ϵ, initial parameters θ0, loss function L(θ)

Algorithm 1 Adam Optimizer

Initialize m0 = 0, v0 = 0, t = 0
while not converged do
t← t+ 1
Compute gradient: gt = ∇L(θt−1)
mt ← β1mt−1 + (1− β1)gt (First moment estimate)
vt ← β2vt−1 + (1− β2)g2t (Second moment estimate)
m̂t ← mt

1−βt
1

(Bias correction)
v̂t ← vt

1−βt
2

(Bias correction)

θt ← θt−1 − αm̂t√
v̂t+ϵ

end while

Now, we discuss PINNs, which lies at the core of our proposed architecture.
PINNs are a class of deep learning models that integrate physical laws, typically expressed
as partial differential equations (PDEs), into the training process of neural networks. Un-
like conventional machine learning models that rely solely on labeled data, PINNs leverage
physics-based constraints to guide the training process, making them particularly suitable
for solving forward and inverse problems in scientific and engineering domains.

3. ARCHITECTURE OF PINNS

The core architecture of a PINNs resembles a standard feedforward neural network, con-
sisting of:
Input Layer: Encodes spatial and temporal coordinates (e.g., x, y, t).
Hidden Layers: Learn representations of the solution.
Output Layer: Predicts the solution to the problem, such as scalar fields (e.g., temperature,
pressure) or vector fields (e.g., velocity).
Thus PINNs is a machine learning method that utilizes neural networks to solve differential
equations, while enforcing residuals corresponding to the differential equation and the con-
tstraints through the loss function itself. We transform the TDKS equations to a residual
form and train the neural network on this residual:

L =
1

N

N∑
i=1

∣∣∣∣∂ψ(ti)∂t
−H(ti)ψ(ti)

∣∣∣∣2



Innovative Neural Network Approach for Solving TDKS Equations with Jensen’s Inequality 169

Where N represents the number of training points and H(ti) is the Hamiltonian at each
time step ti.
Since PINNs provides a high level of flexibility when solving problems with complicated,
and can learn from data directly, they seem to be an ideal method for the solution of high-
dimensional and non-linear TDKS equations.
One of the most frequently used approaches to model time-dependent electronic dynamics
is TDDFT:

i
∂ϕj(r, t)

∂t
=

(
−1

2
∇2 + vs[n](r, t)

)
ϕj(r, t),

where ϕj(r, t) is the wavefunction of the j-th Kohn-Sham orbital, vs[n](r, t) is the Kohn-
Sham potential, and n(r, t) is the electronic density.
The complex wavefunction :

ϕj(r, t) = uj(r, t) + ivj(r, t),

leads to the following coupled PDEs:

∂uj
∂t

= −1

2
∇2vj + vs[n]vj ,

∂vj
∂t

=
1

2
∇2uj − vs[n]uj .

The loss function of the PINN is composed of three parts: physics loss, boundary condition
loss, and initial condition loss:

L = λphysicsLphysics + λboundaryLboundary + λinitialLinitial

where λphysics, λboundary, λinitial are regularization parameters. The physics loss ensures the
satisfaction of the TDKS equations:

Lphysics =
1

N

N∑
i=1

(∣∣∣∣∂uj∂t +
1

2
∇2vj − vs[n]vj

∣∣∣∣2 + ∣∣∣∣∂vj∂t − 1

2
∇2uj + vs[n]uj

∣∣∣∣2
)
.

The boundary condition loss is given by:

Lboundary =
1

N∂Ω

N∂Ω∑
i=1

∣∣uj(ri, t)− uBC
j (ri, t)

∣∣2 + ∣∣vj(ri, t)− vBC
j (ri, t)

∣∣2 .
The first part is the initial condition loss that assigns correctly consisting start values for
your wavefunction:

Linitial =
1

N0

N0∑
i=1

∣∣uj(ri, 0)− u0j (ri)∣∣2 + ∣∣vj(ri, 0)− v0j (ri)∣∣2 .
4. PROPOSED ARCHITECTURE

The neural network is trained to minimize the loss functionL using the Adam optimizer[6],
which is a popular improvement over standard gradient descent. Adam works by adjusting
learning rates on its own, based on how the gradients (the values showing the direction to
adjust the network’s parameters) behave. Specifically, Adam uses two main measures: the
average direction of the gradients (called the “first moment”) and how much the gradients
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vary (called the “second moment”). This helps the network learn faster and more reliably,
especially in complex problems.

In the case of PINNs, using the Adam optimizer helps a lot in the following way: PINNs
are designed to solve equations by making the network obey physical laws during training.
When using Adam, the optimizer can quickly adapt to different parts of the problem, help-
ing the network focus on solutions that align with these laws more closely. For example,
while trying to solve the TDKS equations, PINNs with Adam can handle the complicated
quantum calculations more efficiently, making the training faster and more stable. This
approach, using PINNs and Adam, is useful for simulating large quantum systems since it
saves time and handles large data smoothly.
We have incorporated two Loss functions for PINNs: MSE Loss and Jensen’s inequlity
Loss. The details are given below.

LMSE =
1

N

N∑
i=1

(
Ru(xi, ti)

2 +Rv(xi, ti)
2
)
,

where Ru and Rv are the residuals: and

Ru =
∂uj
∂t

+
1

2
∇2vj − vs[n]vj ,

Rv =
∂vj
∂t
− 1

2
∇2uj + vs[n]uj [9].

The Jensen’s Inequality Loss is given below:

LJensen =

(
1

N

N∑
i=1

(Ru +Rv)

)2

[18].

While calculating the loss during the training epochs, the loss is sum of two independent
values called Physics loss and data loss respectively. The former value is quantified by the
application of Jensen’s inequality for both imaginary and real parts whereby the aggregated
value of Jensen’s inequality is considered as the value of the Physics loss for each training
epoch. The latter value is calculated using MSE both for imaginary and real parts and the
aggregated value is considered as the data loss during each training epoch.
We obtain a base learning rate before the training phase by using the Adam optimizer. This
is further exlpained in the later section 3.1.
The layered Architechture of the proposed neural network is shown in the table below
explaining the multi layered design consisting of four hidden layers with [200, 100, 100,
100] neurons. We have used Leaky ReLu with suitable alpha value ranging in [0.1, 0.5].
The activation function Tanh has been used to preserve the negative values of the wave
function. The output has been generated from two output layers one for each real and
imaginary part.
There are a total of 41, 102 traininable parameters in the proposed model.

This following algorithm describes the implementation of PINNs for solving the TDSK
equation, constructing a neural network with LeakyReLU activations, a fixed learning rate
of 0.1 for all layers, and a combination of data loss (via Mean Squared Error) and physics
loss (via Jensen’s inequality).
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T

X

Input

H1 H2 H3

Leaky ReLu Leaky ReLu Leaky ReLu

α = 0.1 α = 0.1 α = 0.1

Output

U

V

FIGURE 1. Architecture of the Neural Network

FIGURE 2. Training

The model summary is given in the following figure.

4.1. Learning rate optimization. Learning rate is used as an input to Adam optimizer. An
optimum learning rate value ensures convergence of the training process in finite epochs.
We have achieved this by testing a range of learning rates within a finite range of 10−3 to 1
for this implementaion as shown in the figure below. The corresponding loss value against
each value of learning rate is plotted and the most stable learning rate is between 10−3 to
10−2. We chose the former value 10−3 as the value of the learning rate for our training
process. This is an additional optimization proposed in our Model.

4.2. Experimantal Results. We train the neural network in order to minimize the loss
function L using Adam optimizer. By doing so, the network learns how to better approxi-
mate uj(x) and vj(x) for each wave function j of each initial prior function time xi while
admiring these physics-based constraints. PINNs embeds physical laws in the training
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Algorithm 2 Physics-Informed Neural Networks (PINNs) for Solving the TDSK Equation

1: Input: Training data {(Xi, Ti, ui)}Ni=1 (from analytical solution), Learning rate α =
0.1 (for each layer), Neural network architecture (3 hidden layers with LeakyReLU
activation), Physics-informed equation

2: Output: Approximate solution uθ(X,T ) (real and imaginary parts)
3: Initialize: Neural network parameters θ (weights and biases for all layers)
4: while Stopping criterion not met do
5: Forward pass: Compute uθ(X,T ) (real and imaginary parts) through the neural

network
6: Architecture Details:
7: Use LeakyReLU activation function in all hidden layers
8: Set the learning rate η = 0.1 for parameter updates in each layer
9: Physics Loss: Calculate using Jensen’s Inequality

Lphysics = Evaluate TDSK residual terms

10: Data Loss: Calculate using Mean Squared Error (MSE)

Ldata =
1

N

N∑
i=1

∥uθ(Xi, Ti)− ui∥2

11: Total Loss:
Ltotal = Lphysics + Ldata

12: Backward pass: Compute gradients ∇θLtotal using automatic differentiation
13: Update parameters: For each layer, update weights and biases using:

θ ← θ − η∇θLtotal, where α = 0.1

14: end while
15: Return: Trained neural network uθ(X,T )

FIGURE 3. Model Summary

of neural networks. This technique provides computational advantage and is scalable for
large-scale quantum system simulation.
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FIGURE 4. Learing rate optimization

4.3. Training and Testing. In the following set of figures the convergence of training pro-
cess of our model is depicted. We have used granuality of 100 epochs to plot these figures.
In the figures (a) to (e) dotted lines show the exact solution for u and v while the predicted
solution is shown by continuous lines. So, this series of figures shows the increase in the
accuracy of the solution starting from minimum value in figure(a) to maximum accuracy
achieved in figure(e).

5. ANALYSIS

In this section we present results of applying the above mentioned methods to solve
TDKS equations for a number of test cases. In terms of accuracy, computational efficiency
and scalability, we then evaluate each method as well as their performance on non-linear
and stiff quantum systems.

5.1. Accuracy Analysis. Each method was verified by comparing the numerical results
with known analytical solutions or high-fidelity benchmark data. Although the RK4 method
is accurate with small time steps, errors accumulated over longer simulations. For oscilla-
tory systems PINNs delivers a better accuracy with much fewer time steps in solving the
problem since they can adaptively learn the solution through all domains.
The figure below shows the absolute errors for each method compared with the analytical
solution for the TDKS equation at various points.

5.2. Computational Efficiency. Computational efficiency was determined as the time re-
quired to achieve a given accuracy. RK4 was the most accurate and efficient over short time
intervals while also proving to be infeasible for extended simulations due to limited usable
time steps. PINNs had a higher upfront computational cost during training but resulted
in substantial performance improvements when we attempted to solve more large-scale or
high-dimensional systems.

5.3. Scalability Analysis. To test scalability, the complexity of the system (e.g., number
of electrons or dimensionality) was successively increased. Scalability was an issue with
the RK4 method; it meant smaller and smaller time steps needed to be taken for larger
systems. PINNs offers scalability (it can be trained for high dimensional systems and
complex boundary conditions with the minimal changes in the training process).
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(A) Starting Epoch (B) 100 Epochs

(C) 200 Epochs (D) 300 Epochs (E) 400 Epochs

(F) Testing Plot

FIGURE 5. Images for 1, 100, 200, 300, 400 Epochs and testing Plot.

FIGURE 6. Comparsion between MSE and Jensin’s inequality
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FIGURE 7. Accuracy

FIGURE 8

6. RESULTS AND DISCUSSION

This section presents the performance of the proposed Physics-Informed Neural Net-
work (PINN) model, referred to as pinn 13, trained to solve the complex-valued partial
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FIGURE 9. Predicted |ψ|2 vs Exact |ψ|2

differential equation. The model comprises six dense layers, with a total of 50,902 train-
able parameters. The architecture allows the network to learn the solution space effectively,
balancing expressiveness with computational efficiency.

6.1. Loss Analysis. Figure 10 illustrates the evolution of three loss components: physics
loss, data loss, and total loss over 400 epochs. Initially, the total loss is dominated by the
data loss, while the physics loss starts to play a more prominent role as training progresses.
By epoch 100, all losses exhibit rapid convergence, eventually approaching near-zero val-
ues, indicating that the PINN has successfully learned to satisfy both the data constraints
and the underlying physical laws governed by the PDE.

6.2. Prediction Accuracy. Figure 7 shows the prediction accuracy per epoch. The model
achieves over 95% accuracy within the first 50 epochs and consistently maintains a high
accuracy throughout training, with minor fluctuations around epochs 200 and 310. These
fluctuations are attributed to the balancing dynamics between physics-informed and data-
driven loss terms. Overall, the final accuracy stabilizes close to 99%, demonstrating strong
predictive capabilities of the trained PINN.
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6.3. Comparison with Exact Solution. Figure 7 compares the predicted real and imag-
inary components of the solution, u(x, t) and v(x, t), respectively, with their exact coun-
terparts. The predicted curves closely follow the exact solutions, confirming the model’s
ability to capture the correct solution behavior across the domain. The slight deviations
near the domain boundaries are likely due to the limited data coverage and boundary ef-
fects, which could be improved with additional collocation points or adaptive sampling
strategies.

6.4. Interpretation of Parameter Variations. The variations in performance with respect
to network width and layer count were studied, and it was found that increasing the hid-
den layer width to 200 neurons (in the third layer) allowed the network to capture more
complex features of the solution, particularly for the imaginary component. However, fur-
ther increasing the complexity beyond this point offered diminishing returns, suggesting an
optimal balance between network size and generalization ability. These findings are con-
sistent with the behavior observed in the physics loss curve, which shows transient spikes
that align with points of network adaptation.

6.5. Effectiveness of the Loss Design. The joint minimization of physics-informed loss
and data loss, potentially enhanced by Jensen’s inequality as a substitute for traditional
mean squared error (MSE), contributes to both faster convergence and improved general-
ization. The inclusion of Jensen-based loss terms leads to a more stable training trajectory
and mitigates oscillations, especially in later epochs, making it a promising direction for
further exploration.

FIGURE 10. Evolution of Physics, Data, and Total Losses per epoch.
Bottom: Prediction Accuracy per Epoch.
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FIGURE 11. Comparison of Predicted and Exact Solutions. Left: Real
part u(x, t). Right: Imaginary part v(x, t).

7. CONCLUSION

This study set out to address the computational challenges involved in solving Time-
Dependent Kohn-Sham (TDKS) equations, which are central to time-dependent density
functional theory and widely used in quantum simulations. The traditional Runge-Kutta
4th-order (RK4) method, though accurate for small systems, becomes inefficient and less
practical when applied to complex, nonlinear, or high-dimensional quantum systems due
to its dependence on small time steps and high computational cost.

To overcome these limitations, we proposed a modified Physics-Informed Neural Net-
work (PINN) approach, where the standard mean squared error (MSE) used for physics-
based loss computation is replaced by Jensen’s inequality. This modification is based on the
convex nature of Jensen’s inequality, which enables better control over error propagation
and enhances the stability of the training process.

Our results clearly indicate that PINNs using Jensen’s inequality outperform both the
traditional RK4 solver and standard PINNs based on MSE. The proposed method achieved
lower error margins, faster convergence, and improved stability across multiple test cases.
Moreover, the network showed strong scalability when applied to systems with increasing
dimensionality and complexity.

The significance of this research lies in demonstrating that a mathematically grounded
loss formulation—Jensen’s inequality—can provide tangible improvements in neural PDE
solvers [14]. This integration not only enhances the performance of PINNs in solving
quantum mechanical equations but also sets a direction for future work where advanced
mathematical concepts can further enrich machine learning approaches for scientific mod-
eling. The method proposed here can be extended to a broader class of physical systems,
offering an efficient and scalable alternative to traditional solvers.[17].
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