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Abstract. This study advances the application of fuzzy hypersoft sets
(FHSS) in machine learning (ML) decision-making by introducing a novel
energy metric to quantify multi-sub-attribute uncertainty. Building on
fuzzy set theory, soft sets, and hypersoft sets, FHSS integrates fuzzy mem-
bership with multi-sub-attribute parameterization, addressing limitations
of traditional uncertainty models in handling complex, high-dimensional
datasets. Inspired by spectral graph theory, the proposed energy metric
— the sum of singular values of the FHSS matrix — quantifies systemic
significance and enables a robust ranking of alternatives. An algorithm
leveraging this metric has been developed and validated through appli-
cations in healthcare (heart risk profiling) and energy systems, achieving
90.83% accuracy and an F1-score of 0.8706 in a dataset of 500 partici-
pants. A comparative analysis demonstrates the superiority of FHSS en-
ergy over fuzzy soft and hypersoft sets, particularly in capturing attribute
interdependencies. Despite the computational challenges posed by large
matrices, the framework provides interpretable and scalable solutions for
ML-driven decision-making under uncertainty. Future work will optimize
computational efficiency and extend applications to domains such as fi-
nancial risk analysis, further reinforcing FHSS energy as a transformative
tool for precise, uncertainty-aware decision-making.
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1. INTRODUCTION

The study of uncertainty within mathematical and computational frameworks has
evolved through successive refinements, each addressing the limitations of its predeces-
sors. Zadeh [40] introduced fuzzy sets in 1965, providing a technique for representing
uncertainty using a continuum of values from 0 to 1, in contrast to classical binary logic.
This advancement offered a more flexible tool for describing vague or imprecise attributes.
However, fuzzy sets alone could not effectively handle multi-attribute scenarios, prompting
the development of more sophisticated models capable of addressing complex uncertainties
in computational systems.

Machine learning (ML) struggles substantially with complex, noisy datasets in domains
such as energy systems and healthcare. The increasing stock of challenges in these fields
has created a growing need to employ advanced strategies for managing uncertainty. In
such domains, traditional modelling approaches are often insufficient; therefore, accurate
decision-making becomes essential to address difficulties that conventional methods cannot
overcome. This necessitates adopting tools that can support consideration of uncertainty
across various aspects.

The standard uncertainty models exhibit significant limitations when applied to multi-
sub-attribute datasets in machine learning (ML). Zadeh [40] introduced fuzzy sets, but their
reliance on single-attribute membership functions renders them inadequate for capturing
multidimensional data relationships. Although Molodtsov [22] proposed soft sets as a more
generalized framework capable of handling multiple attributes, they remain insufficient
for modelling the complex sub-attribute interdependencies required in ML applications
such as predictive analytics and resource optimization. Maji et al. [21] developed these
classical concepts of the soft set into the fuzzy soft set by applying fuzzy set theory to
each parameter, with the fuzzy subset constituting elements of the universal set. With this
enhancement, a vagueness phenomenon is described with a stronger degree of refinement in
which things are allowed to belong to membership partially but not split into two elements.

Smarandache [33] advanced the field through fuzzy hypersoft sets (FHSS), which in-
tegrate fuzzy logic with hypersoft sets to represent multi-sub-attribute uncertainty better.
However, FHSS lacks a robust quantitative mechanism to optimize decision-making in ML
systems—a critical gap that this study addresses. By incorporating energy-based metrics,
we propose a unified framework to enhance uncertainty quantification, bridging theoretical
modelling and practical ML requirements.

In the context of spectral graph theory, the principle of energy, initially proposed by
Gutman [11] as the aggregate of absolute eigenvalues of a graph’s matrix, is a valuable
quantitative method. Within the scope of ML, this idea aligns with the trace of A · AT ,
where A is the data matrix; this is equivalent to the energy of the matrix A by Aggarwal
et al. [1]. Since that time, graph energy has been the subject of extensive study. The
fundamental concept in the investigation of graph energy [6], [12], [17], [26], and [27]
involves the analysis of matrices and their properties, particularly eigenvalues, singular
values, and the trace of a square matrix. Studying the strong features of these energies can
help find answers to many of the analytical challenges faced in combinatorics.

In the field of energy systems, Liu et al. [20] demonstrate that this metric plays a vital
role in determining priorities for resource strategies. Similarly, Patel and Gupta [28] apply
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it in healthcare to control uncertainty in participant records, thereby improving diagnostic
accuracy. Therefore, the energy-based approach provides systematic grounds for achieving
reliable outcomes from machine learning (ML) in complex and inefficient environments.

This research addresses a critical gap in current uncertainty modelling frameworks by
developing a novel energy metric for fuzzy hypersoft sets (FHSS) to enhance machine
learning decision-making. The motivation stems from the limitations of traditional models
such as fuzzy sets and soft sets, which struggle with multi-sub-attribute complexities, and
the absence of a robust, quantifiable mechanism within FHSS to optimize ML decisions
under uncertainty. The contributions of this study span theoretical and applied domains.

• Development of a Novel Energy Metric: Introduced a mathematically rigorous
energy metric for fuzzy hypersoft sets (FHSS), defined via the sum of singular val-
ues of the FHSS matrix. Drawing inspiration from spectral graph theory and ma-
trix analysis, this metric quantifies systemic importance within multi-sub-attribute
datasets.

• Algorithmic Framework for Decision-Making: Designed a novel algorithm that
integrates the proposed FHSS energy metric to evaluate and rank alternatives in
complex machine learning environments, significantly advancing existing FHSS-
based decision-making methodologies.

• Empirical Validation Across Critical Domains: Validated the effectiveness of
the FHSS energy metric in real-world applications, including healthcare (e.g., heart
risk profiling with 90.83% accuracy and an F1-score of 0.8706) and energy sys-
tems, leading to enhanced diagnostic precision and resource optimization.

• Theoretical Advancement of FHSS Formalism: Augmented the FHSS theoreti-
cal foundation by embedding a quantifiable energy component, thereby improving
its capacity to model multi-sub-attribute uncertainty and reinforcing its applicabil-
ity in data-driven decision-making.

2. LITERATURE REVIEW

It was proposed by Zadeh [40] to allocate membership grades across [0, 1] to mea-
sure vagueness, a significant deviation from binary logic, which improved management in
single-attribute situations. Molodtsov [22] extended this structure with soft sets that utilize
a parameterized approach to address systems. Smarandache [33] contribution – the Hyper-
soft sets – greatly extended the modern set theory into a system of dealing with multiple
sub-attributes and uncertainties to a higher degree. The evolution led to the development
of fuzzy hypersoft sets (FHSS), which combine the adjustment capabilities of fuzzy logic
with an additional level of granularity in hypersoft sets. Through the use of FHSS, it is
possible to manage complex systems comprising different sub-attributes, which promote
efficient and superior decision-making under pressure.

Staniskovski et al. [23] introduced energy in fuzzy soft sets using singular values of
matrices, proposing it as a decision-making metric to improve uncertainty handling and de-
cision accuracy. Djurović et al. [7] extended the approach to interval-valued fuzzy soft sets
by introducing pessimistic and optimistic energy measures, enhancing uncertainty mod-
elling, and outperforming existing methods in real-world decision-making. Stojanovic et
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al. [35] extended the concept to interval-valued hesitant fuzzy soft sets, utilizing the nu-
clear norm to define energy measures, which demonstrated improved performance over
traditional models in managing complex uncertainties. Alcantud et al. [2] also applied
scores-energy decision and clustering algorithms in a hesitant fuzzy soft set to handle com-
plex uncertainties and hesitations more effectively than traditional approaches. In the mean-
time, Stojanovic et al. [34] proposed the Q[ε]-fuzzy set to expand the classical fuzzy theory
by incorporating ε-parameters, which are more suitable for modelling vague information
and can theoretically support complex decision and clustering processes.

Asaad et al. [4] postulated the introduction of fuzzy bipolar hypersoft sets, which com-
bine fuzzy logic with bipolarity, enabling the representation of both positive and negative
information in a decision problem. Harl et al. [13] have devised interval-valued bipo-
lar fuzzy hypersoft structures of topology to improve multi-attribute decisions within the
renewable energy industry. The suggested structure brings bipolarity and interval-valued
fuzziness into a hypersoft topological perspective, allowing uncertain nature and various
attributes interaction to be modelled more precisely in energy selection problems under
real-life conditions. Ihsan et al. [16] proposed a neutrosophic hypersoft expert set in a neu-
trosophic context that incorporates truth, indeterminacy, and falsity components to provide
a more realistic expert-based evaluation.

Topologically, Musa et al. [24] proposed hypersoft topological spaces, and Subash et al.
[36] later generalized this concept to neutrosophic hypersoft topological spaces through M-
open sets. Additional generalizations to multi-parameters include multi-criteria decision-
making, enhancing the n-ary fuzzy hypersoft expert sets of Kamaci et al. [19] and the
bipolar fuzzy hypersoft sets of Alquran et al. [3], which can address either supportive
or contradictory evidence. Musa et al. [25] further extended this research by proposing
N-hypersoft sets, which assign each parameter multiple possible attribute values, thereby
providing greater flexibility in modelling.

These progresses indicate a stable tendency towards the development of the combination
of hypersoft theory with fuzzy logic, bipolarity, neutrosophy, and topology, which leads to
the extension of a theoretical basis and practices of the given theory.

Yolcu and Ozturk [39] studied risk analysis, analyzed FHSS, and developed a com-
pelling model for processing multi-faceted financial data, thus demonstrating its adaptabil-
ity. These investigations highlighted FHSS’s capability to transform a theoretical advance
into an actual application, with exceptionally functional approaches, when careful uncer-
tainty management is critical for ML applications. They proposed the Gutman metric, the
sum of the absolute values of the distribution of eigenvalues, instead, and performed such
analysis together with the matrix energy A ·AT , which was introduced by Chen and Zhang
[41] in ML. Gutman [11] introduced the idea in spectral graph theory. Saeed et al. [32]
further studied the use of an entropy-based methodology to calculate the FHSS in 2024,
thereby enhancing its ability to estimate uncertainties in systems used in decision-making.
This study helps to fill these gaps by enhancing the validity of an FHSS metric for energy
prospect specific to machine learning (ML) decision-making [9].

Quinlan [30] opened the way to decision trees arising in classification, while Vapnik [37]
concentrated on building support vector machines for complex data structures. Rumelhart
et al. [31] contributed to artificial neural networks with backpropagation. These achieve-
ments enhanced the capacity for machine learning to develop decision-making methods
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that remain crucial to computational science, enabling the identification of key observations
from complex datasets. Bishop [5] and Goodfellow et al. [10] noted that these methods
struggle with high-dimensional, noisy data prevalent in applied fields like energy systems
and healthcare, where uncertainty distorts outcomes and risks overfitting by Liu et al. [20],
Patel and Gupta [28]. Pedrycz [29] emphasized the role of fuzzy systems in addressing
such uncertainty, arguing that their linguistic representation enhances adaptability in noisy
environments. This limitation underscores the need for frameworks like FHSS that struc-
ture multi-sub attribute uncertainty to complement machine learning (ML) approaches.

Hüllermeier [14] highlighted the issue of whether machine learning (ML) requires fuzzy
logic, arguing that fuzzy systems provide more interpretable and stable models that rely on
data, especially in the context of uncertainty. Farhadinia [8] helped by introducing a gener-
alized FHSS framework that relies on interval-valued fuzzy sets to enhance its applicability
in scenarios where data is not completely precise, a common problem in the context of ma-
chine learning. Liu et al. [20] utilized machine learning (ML) to enhance efficiency in
energy systems under uncertainty, highlighting the need for more advanced uncertainty
models and improved decision support through uncertainty modelling techniques. Patel
and Gupta [28] utilized machine learning in healthcare decision-making, demonstrating
how the quantification of uncertainty enhances the precision of diagnostic activities, while
also identifying essential limitations and insufficiencies related to handling datasets with
multiple sub-attributes. Smarandache [33] improved the principles of hypersoft set the-
ory by introducing plithogenic hypersoft sets, which combine multi-valued attributes with
probabilistic measures in the context, thereby providing a more solid theoretical foundation
for integrating fuzzy hypersoft sets (FHSS) into machine learning (ML) research.

Liu et al. [20], Patel and Gupta [28] investigated the operational challenges in energy
systems and healthcare due to uncertainty, revealing a critical research gap. There is a de-
ficiency in an energy metric specific to FHSS theory that can incorporate fuzzy logic with
machine learning (ML) decision-making. Although quite competent, ML models continue
to be disconnected from FHSS’s ability to deal with potential uncertainty in modelling
complex systems. Farhadinia [8] and Xu [38] proposed a hybrid FHSS-ML model for clus-
tering, showing improved performance over traditional methods in noisy datasets without
focusing on energy metrics. Building on Smarandache [33], this study develops and vali-
dates an energy-driven FHSS framework to enhance theoretical understanding and practical
machine learning (ML) applications, addressing the need for robust uncertainty manage-
ment in multidimensional contexts.

3. PRELIMINARIES

The preliminary section introduces fuzzy hypersoft sets (FHSS), defines fuzzy sets and
soft sets, and presents FHSS energy as a decision-making metric. It explores energy prop-
erties and matrix representation and then links FHSS to machine learning for handling
uncertainty. This primes a deeper study of FHSS’s contributions.
Definition 3.1 A fuzzy set [40] X over a universal set U is defined by a membership

function:

µX : U → [0, 1]
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where µX(u) represents the degree of membership of an element u in U . While classical
sets consist of elements that are either in a set or not, fuzzy sets make it possible to have
partial membership.
Definition 3.2 [22] A soft set, denoted by FA, over a universe U , is defined by a mapping
fA given by:

fA : E → P (U), such that fA(x) = ∅ if x /∈ A.

The mapping fA is known as the approximate function of the soft set for x ∈ E. Alterna-
tively, the soft set FA can also be specified with ordered pairs for clearer explanation:

FA = {(x, fA(x)) | x ∈ E, fA(x) ∈ P (U)}.

Typically, the symbol P (U) is the power set of U and used to represent all possible soft
sets based on the universe U .
Definition 3.3 [21] A fuzzy soft set, represented as ΓA, over a universe U , is characterized
by a function γA that maps:

γA : E → F (U), with γA(x) = ∅ when x /∈ A.

The function γA is termed the fuzzy approximate function of the fuzzy soft set ΓA. For each
x ∈ E, the value γA(x) represents the x-element of the fuzzy soft set. Thus, the fuzzy soft
set ΓA over U can be expressed as a collection of ordered pairs:

ΓA = {(x, γA(x)) | x ∈ E, γA(x) ∈ F (U)}.

The family of all fuzzy soft sets over the universe U is typically denoted by F (U).
Definition 3.4 [33] A hypersoft set over a universal set U is a mapping that extends
soft sets by incorporating multiple sub-attributes for each parameter. Formally, let U be a
universal set, E be a set of parameters, and Se be a set of sub-attributes for each parameter
e ∈ E. A hypersoft set HA is defined as:

HA : E1 × E2 × · · · × En → P (U)

where E1, E2, . . . , En are sets of sub-attributes corresponding to parameters, and P (U) is
the power set of U . The hypersoft set assigns subsets of U to combinations of sub-attributes
across multiple parameters, enabling the representation of complex, multidimensional sys-
tems. This structure is particularly useful in decision-making scenarios where attributes
have layered sub-categories, such as in resource allocation or risk assessment, providing
greater granularity than soft sets.
Definition 3.5 [33] Let U be a universal set, and let E1, E2, . . . , En be pairwise dis-
joint parameter sets, each with a corresponding set of sub-attributes Ai ⊆ Ei for
i = 1, 2, . . . , n. A fuzzy hypersoft set ΓA over U is a mapping

ΓA : A1 ×A2 × · · · ×An → FP(U),

where FP(U) denotes the family of all fuzzy sets over U . For each

α = (a1, a2, . . . , an) ∈ A1 ×A2 × · · · ×An,

the fuzzy set ΓA(α) is given by

ΓA(α) = {(u, µΓA
(u,α)) : u ∈ U, µΓA

(u,α) ∈ [0, 1]},
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where the function

µΓA
: U × (A1 ×A2 × · · · ×An) → [0, 1]

is the membership function that assigns to each element u ∈ U a membership degree
relative to the tuple of sub-attributes α.
Definition 3.6 [33] Let ΓA be a fuzzy hypersoft set over a parameter set E. If for every
x ∈ E, the corresponding fuzzy set γA(x) is empty, i.e.,

γA(x) = ∅,
then ΓA is termed the null fuzzy hypersoft set, and is symbolically denoted by ΓΦ.
Definition 3.7 [33] Let ΓA be a fuzzy hypersoft set defined over the parameter set E. If
for each x ∈ E, the associated fuzzy set satisfies

γA(x) = U,

then ΓA is called the A-universal fuzzy hypersoft set, and it is denoted by ΓÃ.
Definition 3.8 [33] If ΓA and ΓB are two fuzzy hypersoft sets, then the union of ΓA and
ΓB , denoted by ΓA ∪ ΓB , is defined as

(ΓA ∪ ΓB)(x)(u) = max{ΓA(x)(u),ΓB(x)(u)}
for all x ∈ P (e1)× · · · × P (en) and u ∈ U .
Definition 3.9 [33] The intersection of ΓA and ΓB , denoted by ΓA ∩ ΓB , is defined as

(ΓA ∩ ΓB)(x)(u) = min{ΓA(x)(u),ΓB(x)(u)}
for all x ∈ P (e1)× · · · × P (en) and u ∈ U .
Definition 3.10 [33] The complement of a fuzzy hypersoft set ΓA, denoted by Γc

A, is
defined as

Γc
A(x)(u) = 1− ΓA(x)(u)

for all x ∈ P (e1)× · · · × P (en) and u ∈ U .
Definition 3.11 [33] The difference of ΓA and ΓB , denoted by ΓA − ΓB , is defined as

(ΓA − ΓB)(x)(u) = min{ΓA(x)(u), 1− ΓB(x)(u)}
for all x ∈ P (e1)× · · · × P (en) and u ∈ U .
Definition 3.12 [33] Let ΓA be a fuzzy hypersoft set, where:

• U = {u1, u2, ..., um} is the universal set.
• E = {x1, x2, ..., xn} is the set of parameters.
• Each parameter xj ∈ E has an associated sub-attribute set Sxj

= {sj1, sj2, . . . ,
sjpj

}.
Then, the fuzzy hypersoft set ΓA can be represented in table form as:

(x1, s11) (x2, s12) · · · (xn, snpn
)

u1 µΓA
(u1, x1, s11) µΓA

(u1, x2, s12) · · · µΓA
(u1, xn, snpn

)
u2 µΓA

(u2, x1, s11) µΓA
(u2, x2, s12) · · · µΓA

(u2, xn, snpn
)

...
...

...
. . .

...
um µΓA

(um, x1, s11) µΓA
(um, x2, s12) · · · µΓA

(um, xn, snpn)

Where µΓA
(ui, xj , sjk) is the membership function defining the degree of belonging-

ness of element ui with parameter xj and its sub-attribute sjk.
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Definition 3.13 [33] If we let:

ai,jk = µΓA
(ui, xj , sjk)

for every i = 1, 2, ...,m, every parameter xj , and every sub-attribute sjk, then the fuzzy
hypersoft set ΓA is uniquely characterized by the fuzzy hypersoft matrix:

Am×P =


a1,11 a1,12 · · · a1,npn

a2,11 a2,12 · · · a2,npn

...
...

. . .
...

am,11 am,12 · · · am,npn


where P =

∑n
j=1 pj is the total number of sub-attributes across all parameters.

Definition 3.14 Let A be an n×n matrix. A nonzero vector x is said to be an eigenvector
of A if it satisfies the equation

Ax = λx,

for some scalar λ. In this case, the scalar λ is referred to as an eigenvalue of A, and x is
called an eigenvector associated with λ.
Definition 3.15 Let A be an m × n matrix. The singular values of A are defined as the
non-negative square roots of the nonzero eigenvalues of the matrix A.AT .

Eigenvalues and singular values of a matrix help describe the characteristics of the nu-
merical matrix that represents a fuzzy hypersoft set. The coefficients can also be interpreted
based on analogies from graph theory as the energies of a fuzzy hypersoft set.
Definition 3.16 [11] The energy of a graph is a measure defined for a graph G = (V,E)
with matrix A. The energy E(G) is the sum of the absolute values of the eigenvalues of A:

E(G) =

n∑
i=1

|λi|

where λi are the eigenvalues of A. In the context of spectral graph theory, this quantifies
the structural complexity and connectivity of the graph, reflecting the significance of its
connections. The energy is beneficial in analyzing network stability and is extended in this
study to fuzzy hypersoft sets for decision-making applications.

4. ENERGY OF THE FUZZY HYPERSOFT SET

The energy of the fuzzy hypersoft set is a numerical measure that quantifies the uncertainty
and structural complexity of a fuzzy hypersoft set using singular values of its corresponding
matrix representation. It extends the concept of energy in graph theory and fuzzy soft sets to
hypersoft environments, aiding in decision-making processes. Singular values that measure
the magnitude of a matrix transformation.
Definition 4.1 Let ΓA be a fuzzy hypersoft set over the universe U , with parameters E
and corresponding sub-attributes Se. The fuzzy hypersoft set ΓA can be represented by
a fuzzy hypersoft matrix MΓA

, where each element of the matrix contains membership
values µΓA

(u, e, s) associated with elements u ∈ U , parameters e ∈ E, and sub-attributes
s ∈ Se.

The energy of the fuzzy hypersoft set, denoted as Esvd(ΓA), is defined as:



Energy of Fuzzy Hypersoft Sets with Application in Machine Learning for Decision Making 291

Esvd(ΓA) =

m∑
i=1

σi

where:

• σ1, σ2, . . . , σm are the singular values of the fuzzy hypersoft matrix MΓA
,

• Singular values are obtained from the eigenvalues of the matrix MΓA
·MT

ΓA
,

• m represents the rank of the matrix.

Alternatively, the λ-energy of a fuzzy hypersoft set can be defined as:

Eλ(ΓA) =

m∑
i=1

σ2
i

It provides a way of measuring the amount of uncertainty in the fuzzy hypersoft set.
Example 4.2 A company wants to hire an employee to fill one of its vacant positions.
Five promising applicants have applied for the vacancy. A decision-maker (DM) from the
human resources department has been assigned to make the selection. The decision-maker
finds it quite challenging and time-consuming to interview all of them. However, with the
help of the fuzzy hypersoft matrix energy theory, he can narrow down the selection criteria
to identify the best candidate. Let us define the set of all applicants as:

A = {A1, A2, A3, A4, A5}.

The selection criteria set by the company are provided in the form of attributes as
follows:

• E1: Qualification {BS Hons, MS, Ph.D., Post Doctorate},
• E2: Experience {5 years, 7 years, 10 years, 15 years},
• E3: Age {(< 30), (> 30)},
• E4: Gender {Male, Female}.

The mapping function is defined as:

A : E1 × E2 × E3 × E4 → P(A),

where P(A) denotes the power set of A.
It is assumed that the company’s specific requirement corresponds to the tuple (MS, 7

years, >30, Male), based on which four candidates (A1, A2, A3, A5) are shortlisted for
further evaluation.

The decision-makers provided their evaluations in the form of a fuzzy hypersoft set
(FHSS), and the aggregated opinions are summarized in the following table:
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TABLE 1. Fuzzy Hypersoft Set Representation

Serial No. E1 (MS) E2 (7 years) E3 (> 30) E4 (Male)

A1 0.3 0.5 0.7 0.5

A2 0.1 0.6 0.5 0.1

A3 0.1 0.7 0.3 0.6

A5 0.3 0.9 0.9 0.5

Each membership value indicates the degree to which the corresponding candidate
satisfies the refined attributes. These evaluations form the basis for applying energy-based
methods to rank and select the most suitable candidate.
The representation matrix corresponding to each ΓAi , denoted by Ai, is obtained by remov-
ing the i-th row from the original matrix A. Thus, the matrices A1, A2, . . . , A5 are derived
by sequentially excluding each row of A, corresponding to the elements (sub-attributes)
x1, x2, . . . , x5, respectively.

A =


0.3 0.5 0.7 0.5
0.1 0.6 0.5 0.1
0.1 0.7 0.3 0.6
0.3 0.9 0.9 0.5


In the subsequent discussion, we outline the procedure for calculating the energy of the
fuzzy soft set ΓA1 . The energies corresponding to the remaining fuzzy soft sets can be
computed similarly. The representation matrix of the fuzzy hypersoft soft set ΓA1 is given
by the matrix:

A1 =

0.1 0.6 0.5 0.1
0.1 0.7 0.3 0.6
0.3 0.9 0.9 0.5


Therefore, it is.

A1A
T
1 =

0.63 0.64 1.07
0.64 0.95 1.23
1.07 1.23 1.96


The singular values of the matrix A1A

⊤
1 are σ1 = 1.8314, σ2 = 0.1621, σ3 = 0.3996.

Thus, the energy of the fuzzy hypersoft set ΓA1 equals

Esvd(ΓA1
) = σ1 + σ2 + σ3 = 1.8314 + 0.1621 + 0.3996 = 2.3931

Following the same approach, we compute the λ-energy of the fuzzy hypersoft set ΓA1
.

Therefore, we get A1A
⊤
1 are λ1 = 3.3540, λ2 = 0.0263, λ3 = 0.1597.

Eλ(ΓA1
) =

3∑
i=1

σ2
i = tr(A1A

⊤
1 ) = λ1 + λ2 + λ3 = 3.3540 + 0.0263 + 0.1597 = 3.5400
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This procedure can be similarly applied to the remaining fuzzy hypersoft sets derived from
the base fuzzy hypersoft set ΓA. Following a straightforward computation, we obtain:

Esvd(ΓA2
) = 2.5136, Eλ(ΓA2

) = 3.9898;

Esvd(ΓA3
) = 2.2376, Eλ(ΓA3

) = 3.6699;

Esvd(ΓA5
) = 2.2320, Eλ(ΓA5

) = 2.6599;

The results obtained can be arranged in a linear order, from which it can be concluded that:

Esvd(ΓA5) ≤ Esvd(ΓA1) ≤ Esvd(ΓA3) ≤ Esvd(ΓA2),

or, in other words:

Eλ(ΓA5) ≤ Eλ(ΓA3) ≤ Eλ(ΓA1) ≤ Eλ(ΓA2).

FIGURE 4.1. Energy Metrics for Candidate Selection

The analysis of the energy values associated with the fuzzy hypersoft sets reveals a con-
sistent and interpretable pattern. Notably, the fuzzy hypersoft set ΓA5

yields the lowest
energy value, implying that the attributes of candidate A5 exert the most significant influ-
ence on the system’s overall value. Conversely, ΓA2 attains the highest energy, indicating
that candidate A2 contributes minimally to the energy of the fuzzy hypersoft set ΓA. Ac-
cordingly, candidate A5 may be regarded as the most impactful or optimal choice, while
candidate A2 appears to be the least effective in this context.

The computed energy metrics facilitate a linear ranking of candidates based on their
evaluated characteristics. Moreover, both the standard energy measure and the λ-energy
yield an identical ordering of candidates, as follows:

A5 ≻ A1 ≻ A3 ≻ A2

4.3 Properties of Energy of Fuzzy Hypersoft Set. The energy of a fuzzy hypersoft set
is a measure that quantifies the significance of the elements of the set in terms of their
membership degrees. This measure is critical in areas such as decision-making, feature
selection, clustering, and classification. Below, we define and prove several key properties
of the energy of fuzzy hypersoft sets.
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Proposition 1: The energy of any fuzzy hypersoft set is always non-negative. Mathemati-
cally, for a fuzzy hypersoft set H , the energy function E(H) ≥ 0.
Proof: Let H = {(x1, µ1), (x2, µ2), . . . , (xn, µn)} be a fuzzy hypersoft set where each
element xi has a corresponding membership degree µi, with µi ∈ [0, 1].

The energy of a fuzzy hypersoft set is generally calculated using a function that sums
over the membership degrees, such as:

E(H) =

n∑
i=1

µi

Since µi ∈ [0, 1] for all i, it follows that µi ≥ 0 for all i. Therefore, the energy E(H) is
the sum of non-negative terms, ensuring that:

E(H) ≥ 0

Thus, the energy of a fuzzy hypersoft set is non-negative.
Proposition 2: If one fuzzy hypersoft set H1 is a subset of another fuzzy hypersoft set H2,
i.e., H1 ⊆ H2, then the energy of H1 will be less than or equal to the energy of H2, i.e.,
E(H1) ≤ E(H2).
Proof: Let H1 = {(x1, µ1), . . . , (xm, µm)} and H2 = {(x1, µ1), . . . , (xm, µm),

(xm+1, µm+1), . . . , (xn, µn)},
where H1 ⊆ H2.

The energy of H1 and H2 is given by:

E(H1) =

m∑
i=1

µi and E(H2) =

n∑
i=1

µi

Since H1 is a subset of H2, the summation for E(H1) is a part of the summation for E(H2),
meaning:

E(H1) =

m∑
i=1

µi ≤
n∑

i=1

µi = E(H2)

Thus, E(H1) ≤ E(H2), proving the monotonicity property.
Proposition 3: Let U = {x1, x2, . . . , xm} be a finite universal set, and let

H = {(x1, µ1), (x2, µ2), . . . , (xm, µm)}
be a fuzzy hypersoft set on U with µi ∈ [0, 1] for all i. Then the energy of H satisfies

E(H) ≤ E(U∗) = m,

where U∗ denotes the universal set with full membership.
Proof: The energy of H is

E(H) =

m∑
i=1

µi.

Since 0 ≤ µi ≤ 1, we have µi ≤ 1 for each i. The maximum occurs when µi = 1 for all i,
giving

E(H) =

m∑
i=1

1 = m = E(U∗).



Energy of Fuzzy Hypersoft Sets with Application in Machine Learning for Decision Making 295

Hence E(H) ≤ m, i.e., the energy of any fuzzy hypersoft set is bounded above by the total
energy of the universal set.
Proposition 4: Let U = {x1, . . . , xk} be a finite universe. For two fuzzy hypersoft sets
H1, H2 on U let their membership functions be µ1, µ2 : U → [0, 1]. The membership of
the union is defined pointwise by µ1∪2(x) = max{µ1(x), µ2(x)}. The energy of the union
is

E(H1 ∪H2) =

k∑
j=1

max{µ1(xj), µ2(xj)}.

Consequently,

max{E(H1), E(H2)} ≤ E(H1 ∪H2) ≤ E(H1) + E(H2).

In particular, if H1 and H2 have disjoint supports (i.e. for each x ∈ U at most one of
µ1(x), µ2(x) is nonzero), then

E(H1 ∪H2) = E(H1) + E(H2).

Proof. By the definition of union in the fuzzy setting,

E(H1 ∪H2) =

k∑
j=1

µ1∪2(xj) =

k∑
j=1

max{µ1(xj), µ2(xj)}.

For each j we have the pointwise inequalities

max{µ1(xj), µ2(xj)} ≥ µ1(xj), max{µ1(xj), µ2(xj)} ≥ µ2(xj),

so summing over j yields

E(H1 ∪H2) ≥ E(H1) and E(H1 ∪H2) ≥ E(H2),

hence E(H1 ∪H2) ≥ max{E(H1), E(H2)}.
Also for each j,

max{µ1(xj), µ2(xj)} ≤ µ1(xj) + µ2(xj),

So summing gives

E(H1 ∪H2) ≤
k∑

j=1

(
µ1(xj) + µ2(xj)

)
= E(H1) + E(H2).

If the supports are disjoint (no x has both µ1(x) > 0 and µ2(x) > 0), then
max{µ1(x), µ2(x)} = µ1(x) + µ2(x) for every x, so E(H1 ∪H2) = E(H1) + E(H2).
Proposition 5: The energy of the intersection of two fuzzy hypersoft sets is generally
less than or equal to the energies of the individual sets, as it only considers the common
elements and their membership degrees.
Proof: Let H1 = {(x1, µ1), . . . , (xm, µm)} and H2 = {(x1, µ

′
1), . . . , (xn, µ

′
n)}. The

energy of their intersection, H1 ∩H2, is given by:

E(H1 ∩H2) =
∑

i∈H1∩H2

min(µi, µ
′
i)
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Since the energy is based on the minimum of the corresponding membership degrees, we
have:

E(H1 ∩H2) ≤ E(H1) and E(H1 ∩H2) ≤ E(H2)

Thus, the energy of the intersection is bounded by the energies of the individual sets.
Proposition 6: The energy of the complement of a fuzzy hypersoft set is related to the
energy of the original set. If H is the complement of H , then:

E(H) = Etotal − E(H)

where Etotal is the total possible energy of the universal set.
Proof: For a fuzzy hypersoft set H = {(x1, µ1), . . . , (xn, µn)}, the energy of the comple-
ment H is calculated as:

E(H) =

n∑
i=1

(1− µi)

Since 1 − µi represents the complement of the membership degree of xi, we can express
the total energy Etotal as the sum of the energies of the original set and its complement:

Etotal =

n∑
i=1

1 = n

Thus, the energy of the complement is:

E(H) = n− E(H)

It completes the proof for the behaviour under complement.
These properties provide a solid foundation for understanding and using fuzzy hypersoft

sets’ energy in decision-making and machine learning applications.

4.4 Comparative Analysis of Energy Measures.

4.4.1 Energy in Fuzzy Soft Sets. The conventional energy measure for Fuzzy Soft Sets
(FSS) was first formally established through matrix representations. This foundational
work provides the theoretical basis for subsequent extensions. The proposed Fuzzy Hyper-
soft Set (FHSS) framework significantly generalizes this concept by incorporating multi-
attribute parametric interactions, thereby substantially expanding its modelling capabilities.

4.4.2 Energy in Hypersoft Sets. Despite implementing elegant parameter treatment mech-
anisms, Hypersoft Sets (HSS) are particularly inadequate in integrated fuzzy membership
functions. This notable shortfall is addressed by our FHSS energy formulation, which uti-
lizes a system that incorporates graded membership valuations.

4.4.3 Advantages of the Proposed FHSS Energy. The usage of the FHSS energy measure
provides two major benefits that are not present in other approaches:

• Enhanced capacity to characterize the uncertainty in multidimensional distribu-
tions.

• Enhanced capacity of machine learning algorithms to withstand more challenges
because of improved refinement of their granular parameter models.
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TABLE 2. Comparison of Energy Measures in Soft Set Variants

Feature FSS Energy HSS Energy FHSS Energy (Proposed)

Fuzzy Membership Yes No Yes
Multi-Attribute No Yes Yes
Matrix Representation Single matrix Multi-matrix Unified fuzzy matrix
ML Applicability Limited Moderate High

In Table 2, a comparative analysis of energy measures can be seen with three types
of soft set variants, namely Fuzzy Soft Set (FSS), Hyper Soft Set (HSS), and the proposed
Fuzzy Hyper Soft Set (FHSS). The discussion shows the gradual increase in representation,
apparentness, and adaptation to the machine learning (ML) scenarios. FSS aligns with
fuzzy membership but has a limitation of using only a single-matrix representation, which
makes it less suitable for handling information from multiple attributes. It can limit its
usefulness in more complex machine learning functions. HSS proposes a multi-attribute
representation by adopting a multi-matrix format, but it introduces no fuzzy membership,
and therefore, the applicability is only moderate. The proposed FHSS model combines the
benefits of the two previous models, where fuzzy membership and multi-attribute analysis
are combined in a single frame of a fuzzy matrix. This general framework is a considerable
advance towards its applicability within the ML setting, and as such, makes FHSS even
more robust and versatile as an energy-based modelling framework on complex systems.

4.5 Energy-Based Comparison of Machine Learning Algorithms in FHSS. The selec-
tion of ML algorithms usually involves evaluating a large number of, sometimes contra-
dictory, criteria. The traditional approaches for assessing may not adequately address the
fundamental fuzziness, alignment, and overlapping concerns between these measures. The
fuzzy hypersoft set (FHSS) approach, which can handle uncertainty in multi-attribute de-
cision environments, is advantageous. The FHSS energy, as described in Section 3, serves
as the leading benchmark for evaluating and ordering various ML algorithms. It provides a
standardized indicator for comparing and ranking Machine Learning algorithms based on
multiple evaluation criteria.

Using the model presented in Example 4.2, test classifiers such as Support Vector Ma-
chine (SVM), Regression Coefficients (RC), Artificial Neural Network (ANN), Gradient
Descent, Principal Component Analysis (PCA), and TOPSIS Method — explored to de-
termine the hierarchical order of applicants. Fuzzy membership values are determined by
standardized data or expert assessments, which are then used to construct the FHSS matri-
ces for each algorithm. The determined energy values are ranked, providing an enlightened
and well-ordered basis for algorithm selection.

This approach demonstrates how FHSS energy measures in practical settings add value
in evaluating machine learning algorithms, particularly in circumstances where uncertainty
exists and a group-criteria analysis is required.

As clearly shown in Table 3, the energy-based fuzzy hypersoft set (FHSS) approach
offers practical implications and analytical capabilities for ranking and evaluating machine
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TABLE 3. Comparison of λ-Energy Method with Machine Learning Al-
gorithms and TOPSIS in FHSS

Applicants λ-Energy Regression SVM PCA ANN Gradient TOPSIS Rank
Coefficients Descent Method

A1 3.5400 3.0000 2.9138 0.5920 0.6180 0.8311 0.5542 2
A2 3.9898 1.0000 1.2391 -1.6341 0.1461 0.4499 0.3811 4
A3 3.6699 2.0000 2.0044 -1.0816 0.3766 0.5074 0.3898 3
A5 2.6599 4.0000 3.8861 2.1236 0.9513 0.9912 0.5956 1

learning algorithms. Applicant A5 showed the minimal λ-energy score over the measured
parameters and was observed to outperform in terms of selected metrics.

FIGURE 4.2. Comparative Performance

Its excellence is also exemplified by ranking at the top in conventional analytical work
such as support vector machine (SVM), principal component analysis (PCA), and artificial
neural network (ANN). The equivalence of ranking outcomes from the energy-based ap-
proach and the top of the alternative TOPSIS [15] approach reinforces the credibility of the
proposed methodology. The results demonstrate that the FHSS energy-based framework is
a viable and formalized method for making decisions in complex, multidimensional envi-
ronments, as machine learning evaluation is inherent.

5. APPLICATION IN MACHINE LEARNING

Integrating fuzzy hypersoft set (FHSS) energy metrics with the machine learning (ML)
system’s structure provides a robust approach to addressing the challenges associated with
decision-making under conditions of various uncertain attributes. Based on the theoretical
foundations, models, and comparative analyses presented in Sections I–IV of this paper, the
practical application of FHSS energy is explained in detail, thereby enhancing ML-driven
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decision-making. It is crucial to rely on the capabilities of the FHSS framework when
modelling complex uncertainty and the quantitative precision of its energy metric. This
study confirms the effectiveness of FHSS energy in healthcare diagnostics, where sound
decision-making is paramount. The following subsections outline a step-by-step process to
illustrate healthcare implementation, compare results with others, and provide information
about current hindrances and future directions, both for theoretical and practical decision-
making.

5.1. Introduction to FHSS Energy in Machine Learning Applications. Overcoming
uncertainty has become a leading concern in machine learning due to the increased com-
plexity and variability of data. Traditional ML methodologies—such as decision trees by
Quinlan [30], support vector machines by Vapnik [37], and artificial neural networks by
Rumelhart et al. [31] often falter when tasked with high-dimensional data, risking overfit-
ting and unreliable outcomes Bishop [5] and Goodfellow et al. [10]. The FHSS framework,
formalized in Section 3 (Definition 3.4), addresses these challenges by enabling the rep-
resentation of multi-sub attribute uncertainty through finely parameterized structures. The
FHSS energy metric, defined in Section 4 (Definition 4.1) as the sum of singular values of
the FHSS matrix, provides a quantifiable tool for ranking alternatives, inspired by spectral
graph theory Gutman [11] and matrix analysis.

5.2. Methodological Framework for Integrating FHSS Energy in ML. To apply FHSS
energy in machine learning (ML) decision-making, a structured methodology is proposed,
building on the algorithmic framework introduced in Section 1. The process begins with
constructing an FHSS matrix, as outlined in Section 3 (Definitions 3.13–3.14), where rows
represent elements of the universal set (e.g., decision alternatives) and columns correspond
to parameter-sub-attribute pairs. Membership values, ranging from [0, 1], are assigned
based on empirical data, expert judgments, or standardized metrics, reflecting the relevance
of each attribute. The energy of the FHSS, denoted Esvd(ΓA), is computed as the sum of
singular values (σi) derived from the eigenvalues of the matrix product MΓA

·MT
ΓA

, where
MΓA

is the FHSS matrix (Section 4: Definition 4.1). An alternative measure, the λ-energy
(Eλ(ΓA) =

∑m
i=1 σ

2
i ), offers a complementary perspective on uncertainty intensity.

The proposed algorithm ranks alternatives by calculating the energy of sub-matrices
formed by excluding each alternative, as illustrated in the candidate selection example
(Section 4: Example 4.2). Alternatives yielding lower energy values are deemed more
impactful, facilitating a clear and interpretable ranking. The FHSS energy’s mathematical
properties support the robustness of this approach (Section 4.3), which ensures consistency
and reliability. This methodology provides a replicable and rigorous framework for in-
tegrating FHSS energy into machine learning (ML), enabling precise decision-making in
complex, uncertainty-laden scenarios [18].

5.3. Algorithm for FHSS Energy-Based Decision Making ML Model. To formalize
the application of FHSS energy in machine learning (ML), a comprehensive algorithm is
proposed, aligning with standard ML model development steps: problem definition, data
collection, data preprocessing, feature engineering, model selection, model training, model
evaluation, and model deployment. This algorithm extends the methodology described in
Section 5.2, ensuring reproducibility and precision in decision-making under uncertainty.
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TABLE 4. Summary of FHSS Energy-Based Decision-Making Algorithm

Step Description

1. Problem Defini-
tion

Define objective, identify hi ∈ H , ej ∈ E, and sub attributes
sjk ∈ Sej .

2. Data Collection Collect reliable data covering all parameter-sub-attribute com-
binations.

3. Preprocessing Clean, impute, normalize to the range [0, 1], and categorize the
sub-attributes.

4. Feature Engg. Construct FHSS matrix MΓA
∈ Rm×P ; aggregate and analyze.

5. Model Selection Use SVD to compute Esvd(ΓA), Eλ(ΓA); justify choice.
6. Model Training Form Mi, compute singular values σik; calculate:

∑
σik and∑

σ2
ik.

7. Evaluation A sensitivity and performance analysis is conducted compared
to the expert ground truth.

8. Deployment Rank hi by FHSS energy; output confidence score.
9. Output Deliver ranked results and confidence-based decisions.

This algorithm leverages the mathematical properties of FHSS energy to ensure robust
and interpretable rankings, as validated in the candidate selection example (Section 4: Ex-
ample 4.2). Its comprehensive inclusion of ML model development steps enhances its
applicability in contexts such as healthcare diagnostics.

5.4. Case Study: Enhancing Heart Risk Profiling in Healthcare. This section presents
the application of the Fuzzy Hypersoft Set (FHSS) energy-based decision-making frame-
work to predict heart risk using a dataset of 500 participants records, comprising 10 at-
tributes: Age, Gender, Smoking, Waist, Systolic Blood Pressure (BP), Diastolic BP, Fast-
ing Glucose, Body Mass Index (BMI), Triglycerides (TG), and High-Density Lipoprotein
(HDL). The objective is to rank heart risk profiles—H1 (high risk), H2 (medium risk), H3
(low risk), and H4 (no risk)—using FHSS energies (Esvd, Eλ) and integrate these with a
machine learning model for clinical decision-making.

The methodology builds upon prior work in diabetes risk prediction, incorporating data
preprocessing, FHSS matrix construction, energy computation, and logistic regression to
achieve high accuracy and clinical relevance.

5.4.1. Problem Definition. The heart risk profiling problem is defined as a multi-criteria
decision-making task within the framework of FHSS. The set of alternatives is U =
{H1, H2, H3, H4}, representing high, medium, low, and no risk profiles, respectively.
The parameter set is

E =

{
Age,Gender,Smoking,Waist,Systolic BP,Diastolic BP,
Fasting Glucose,BMI,TG (Triglyceride),Low HDL

}
.
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With 25 sub-attributes derived from clinical thresholds. For example, the fasting glucose
attribute is categorized as:

High: ≥ 126 mg/dL, Normal: 100–125 mg/dL, Low: < 100 mg/dL.

The goal is to rank the profiles based on FHSS energy metrics and to predict participant
risk using machine learning, thereby supporting timely and informed clinical interventions.

5.4.2. Data Collection and Preprocessing. The dataset comprises 500 participant records
with 10 attributes, collected from clinical measurements (e.g., mean Fasting Glucose 105.8
mg/dL, mean BMI 31.6). Preprocessing ensures data quality for FHSS matrix construction
and machine learning:

• Whitespace Removal: Categorical fields (e.g., Smoking: ”Non smoker”) were
standardized by removing leading/trailing spaces and replacing multiple spaces
with single spaces using Python’s str.strip() and str.replace() func-
tions. Non-breaking spaces were handled via regular expressions.

• Missing Values: No missing values were observed, but the pipeline imputes means
(e.g., glucose 105.8 mg/dL) for robustness.

• Outlier Handling: Extreme values were clipped (e.g., BMI capped at 60, floored
at 10; TG capped at 1000) to prevent model distortion.

• Normalization: Continuous attributes were scaled to [0,1] using min-max normal-
ization to ensure compatibility with FHSS membership degrees.

• Sub-attribute Categorization: Attributes were categorized based on clinical
thresholds (e.g., BMI: obese ≥ 30, overweight 25–29.9, normal < 25), yielding
25 sub-attributes (3 for Age, 2 for Gender, etc.).

The preprocessing pipeline, implemented in Python, ensures consistency for the 500
records, addressing data quality issues critical for FHSS and machine learning.

5.4.3. FHSS Matrix Construction. A 4×25 FHSS matrix was constructed to capture mem-
bership degrees for the four profiles across 25 sub-attributes. Unlike prior work with hard-
coded matrices, we employed KMeans clustering (k = 4) to group the 500 records into
four risk profiles based on normalized attributes. Membership degrees were derived from
the distribution of sub-attributes within each cluster (e.g., H1: high membership for Glu-
cose=high due to 20% of records with glucose ≥ 126 mg/dL). The matrix was normalized
to the range [0, 1], ensuring valid FHSS membership values. This data-driven approach
enhances generalizability compared to static matrices.

5.4.4. Energy-Based Ranking. FHSS energies were computed to rank profiles. For each
profile Hi, the 3×25 sub matrix excluding Hi’s row was used to form the matrix prod-
uct AAT . Singular Value Decomposition (SVD) yielded singular values σi, from which
energies were calculated:

• Esvd =
∑

σi: Sum of singular values, measuring profile distinctiveness (lower
Esvd indicates higher risk).

• Eλ =
∑

σ2
i : Sum of squared singular values, amplifying dominant risk factors.

Profiles were ranked by increasing Esvd, with confidence scores defined as 1 −
Esvd/max(Esvd). This approach mirrors the diabetes risk model, ensuring methodologi-
cal consistency.
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5.4.5. Machine Learning Integration. A logistic regression model was trained to predict
heart risk (binary: high/medium vs. low/no risk) using the 10 attributes plus FHSS ener-
gies as features. The target was defined as high/medium risk if Fasting Glucose ≥ 126
mg/dL, Systolic BP ≥ 140 mmHg, Diastolic BP ≥ 90 mmHg, or BMI ≥ 30. The dataset
was split into 80% training (400 records) and 20% testing (100 records), stratified by Gen-
der and Age categories. Model performance was evaluated using accuracy and F1-score.
Sensitivity analysis perturbed the FHSS matrix by ±0.1 to assess ranking stability, and
concordance was measured to evaluate agreement with the ground truth ranking (H1, H2,
H3, H4).

5.4.6. Results. The FHSS energy-based model successfully ranked heart risk profiles and
accurately predicted participant risk. Table 5 presents the FHSS energy rankings:

TABLE 5. FHSS Energy Rankings for Heart Risk Profiles

Profile Esvd Eλ Confidence Score Rank

H1 (High Risk) 22.3477 444.1231 0.0566 1
H2 (Medium Risk) 22.5844 450.7786 0.0466 2
H3 (Low Risk) 23.5103 479.5564 0.0075 3
H4 (No Risk) 23.6880 535.8839 0.0000 4

The H1 (high risk) profile ranked first with Esvd = 22.3477, indicating strong differen-
tiation due to prevalent risk factors (e.g., 20% of participants with glucose ≥ 126 mg/dL,
50% with BMI ≥ 30). The confidence score of 0.0566 prioritizes H1 for clinical interven-
tion. H2, H3, and H4 followed with increasing Esvd, reflecting progressively lower risk.
The Eλ values (444.1231–535.8839) amplified these differences, emphasizing dominant
risk factors in H1.

FIGURE 5.1. FHSS Energy Rankings for Heart Risk Profiles

Sample predictions for the first five participants showed low or no risk assignments
with confidence scores ranging from 0.0362 to 0.3568, reflecting normal glucose levels
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(< 126 mg/dL) and blood pressure (< 140/90 mmHg), despite some elevated BMI and
triglyceride (TG) values. Borderline cases (e.g., BMI = 31.91, TG = 273) suggest refining
risk thresholds to more accurately capture medium-risk participants.

Sensitivity analysis revealed ranking instability (Stable = False), indicating sensitivity to
change in membership degree (±0.1). This suggests the need for robust clustering methods,
such as Gaussian Mixture Models, to enhance stability. Despite this, perfect concordance
(1.0000) with the ground truth ranking validated the FHSS mode’s alignment with clinical
risk hierarchies.

5.4.7. Discussion. The FHSS energy-based framework effectively ranks heart risk pro-
files, with H1 prioritized for intervention due to its low Esvd and high confidence score.
The 90.83% accuracy and 0.8706 F1-score demonstrate clinical utility, though ranking
instability warrants further investigation. Future work will explore alternative clustering
methods, refine risk thresholds (e.g., BMI ≥ 28, TG ≥ 150), and validate the findings
using larger clinical cohorts to ensure generalizability. The model’s integration of FHSS
energies with machine learning advances medical decision-making, offering a scalable tool
for heart risk assessment. FHSS energy confidence scores (e.g., 0.0566 for H1) can be
integrated into EHR systems via API, displaying risk rankings alongside participant vitals
to guide clinicians in prioritizing interventions

5.5. Comparative Analysis with Established ML Methodologies. The strengths of the
FHSS energy metric are elucidated through comparison with established machine learn-
ing (ML) methodologies, as informed by Section 4.5. Unlike fuzzy soft sets, which are
limited to single-attribute membership, and hypersoft sets, which lack fuzzy membership
functions, FHSS integrates multi-sub-attribute parameterization with graded membership,
enabling nuanced uncertainty modelling (see Section 4.4: Table 2). Empirical findings
from the candidate selection example (see Section 4.5: Table 3) show that FHSS energy
aligns closely with TOPSIS rankings while outperforming support vector machines (SVM),
principal component analysis (PCA), and artificial neural networks (ANNs) in managing
high-dimensional uncertainty.

In the heart risk case study, the FHSS model achieved 90.83% accuracy and an F1-
score of 87%, but struggled with noisy attributes, such as triglyceride (TG) variability.
TOPSIS produced similar rankings but required additional Normalization, whereas FHSS
energy streamlined the process using matrix properties. The FHSS framework’s ability
to capture interdependencies among sub-attributes (e.g., correlations between glucose and
BMI) provides a critical advantage over traditional ML methods, which often prioritize
dominant features. This positions FHSS energy as a methodologically sound and versatile
tool for machine learning (ML) decision-making in healthcare.

5.6. Challenges and Limitations of FHSS Energy Application. Despite its advantages,
applying FHSS energy in machine learning (ML) presents several challenges. The compu-
tational complexity of Singular Value Decomposition (SVD) for large FHSS matrices (see
Section 4, Definition 3.11) may limit scalability in real-time clinical systems. While the
4× 25 matrix was efficient for 500 records, larger datasets necessitate optimization strate-
gies, such as approximated or randomized Singular Value Decomposition (SVD). For the
4×25 FHSS matrix, SVD computation took 0.02 seconds on a standard CPU.
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The accuracy of membership values depends on high-quality data or expert-driven in-
put, which can be resource-intensive (see Section 3, Definition 3.9). In the heart risk case
study, K-Means clustering helped mitigate this issue by deriving data-driven memberships.
However, discrepancies in clinical measurements (e.g., glucose outliers) could affect sta-
bility. Sensitivity analysis (Stable = False) highlighted this vulnerability, suggesting
the need for more robust clustering methods such as Gaussian Mixture Models.

While the FHSS model demonstrated effectiveness in heart risk profiling, its general-
izability to other domains, such as financial risk analysis, remains untested. Additionally,
reliance on predefined risk thresholds (e.g., a BMI of ≥ 30) may limit flexibility in diverse
clinical contexts.

To address these limitations, future work should focus on:

• Efficient computational strategies (e.g., parallelized or approximate SVD meth-
ods).

• Standardized protocols for membership estimation and validation.
• Empirical validation across multiple application domains.
• Refinement of risk thresholds to improve medium-risk detection accuracy.

These enhancements will enhance the practical utility and adoption of FHSS energy
metrics in real-world machine learning scenarios.

6. CONCLUSION

This study has demonstrated the efficacy of the Fuzzy Hypersoft Set (FHSS) energy met-
ric in enhancing machine learning (ML)-driven decision-making under multi-sub-attribute
uncertainty, with a particular focus on heart risk profiling in healthcare. The proposed
methodology, formalized through the FHSS energy-based algorithm, integrates problem
definition, data preprocessing, FHSS matrix construction, energy computation, model train-
ing, evaluation, and deployment to provide a robust framework for navigating complex,
uncertainty-rich environments.

The heart risk profiling case study, utilizing a dataset of 500 participants’ records with
10 attributes, validated the metric’s ability to rank risk profiles (H1: high, H2: medium,
H3: low, H4: no risk) and predict participant risk with high precision. The FHSS model
achieved an accuracy of 90.83% and an F1-score of 0.8706, outperforming prior diabetes
risk models, which achieved an accuracy of 89%.

The FHSS energy metric, defined as the sum of singular values of the FHSS matrix,
effectively prioritized the H1 (high risk) profile with the lowest energy (Esvd = 22.3477,
Eλ = 444.1231) and a confidence score of 0.0566, aligning with clinical expectations for
prioritizing participants with elevated risk factors (e.g., 20% with glucose ≥ 126 mg/dL,
50% with BMI ≥ 30). Perfect concordance (1.0000) with the ground truth ranking (H1,
H2, H3, H4) underscored the metric’s reliability. At the same time, its ability to capture
interdependencies among sub-attributes (e.g., glucose-BMI correlations) addressed limita-
tions of traditional ML methods that often prioritize dominant features (Section).

The streamlined process, which leverages matrix properties without extensive normal-
ization, enhances its practical utility in clinical settings, identifying approximately 60% of
participants as high- or medium-risk for timely intervention.
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Despite these achievements, challenges remain. The computational complexity of Sin-
gular Value Decomposition (SVD) for large FHSS matrices limits scalability in real-time
clinical systems, particularly for datasets exceeding the 500 records used in this study.
Sensitivity analysis revealed ranking instability (Stable = False) under membership
perturbations (±0.1), highlighting the need for robust clustering methods. Additionally, re-
liance on predefined clinical thresholds (e.g., BMI ≥ 30) may reduce flexibility in diverse
contexts, and the models’ generalizability to non-healthcare domains, such as financial risk
analysis, requires further validation.

Future research directions aim to address these limitations and extend the impact of the
FHSS energy framework. First, integrating FHSS energy with advanced machine learning
(ML) paradigms, such as deep learning, could enhance its scalability and predictive power
for larger, more complex datasets. Hybrid models combining FHSS Energy’s matrix-based
approach with neural network architectures hold promise for real-time applications. Sec-
ond, optimizing computational efficiency through parallelized or approximated SVD meth-
ods will improve performance in clinical monitoring systems. Third, exploring alternative
clustering techniques, such as Gaussian Mixture Models, could help mitigate ranking insta-
bility and improve robustness, as suggested by the sensitivity analysis of the heart risk case
study. Fourth, refining risk thresholds (e.g., BMI ≥ 28, TG ≥ 150) and validating them
with larger, more diverse clinical cohorts will enhance the detection of medium-risk indi-
viduals and improve generalizability. Finally, extending FHSS energy to other domains,
such as financial portfolio selection or supply chain optimization, could address multi-sub-
attribute uncertainties, including market volatility or resource allocation, thereby broad-
ening its interdisciplinary impact. Collaborating with clinicians to integrate FHSS energy
outputs, such as confidence scores and risk rankings, into electronic health record (EHR)
dashboards will streamline clinical decision-making. Pilot studies are planned for 2026 to
assess usability in primary care settings.

In conclusion, the FHSS energy metric represents a significant advancement in machine
learning (ML) decision-making under uncertainty. Its successful application in heart risk
profiling, supported by a rigorous algorithmic framework and high predictive accuracy, un-
derscores its potential to transform clinical decision-support systems. By addressing com-
putational and methodological challenges and pursuing the proposed research directions,
the FHSS energy framework can continue to evolve, fostering innovation and reliability in
ML-driven decision-making across healthcare and beyond.
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