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28 November, 2025 Abstract. Predicting the melting points of boronic acids is crucial for

guiding synthetic strategies and understanding their physicochemical be-
haviors. In this study, we introduce a novel bond-distance summation
descriptor, a concise 20-component vector that numerically encodes the
molecular structure by summing atomic numbers over the shortest paths
from the boron atom. We benchmarked this descriptor against four es-
tablished feature extraction methods Coulomb Matrix, Mordred, Morgan
Fingerprints, and Molecular ACCess System (MACCS) and evaluated the
predictive accuracy of five machine learning models: Decision Tree, Ran-
dom Forest, XGBoost, LightGBM, and Support Vector Machine. Despite
having far fewer features than the high-dimensional Mordred and Mor-
gan representations, our 20-length descriptor achieves competitive results,
particularly when paired with XGBoost, which consistently exhibits supe-
rior performance in terms of Mean Absolute Error (MAE) and R? score.
These findings underscore the potential of a concise, interpretable descrip-
tor for effective melting point prediction, paving the way for the future
integration of this scheme into broader cheminformatics applications.
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1. INTRODUCTION

The accurate prediction of physicochemical properties, such as melting points, is a cor-
nerstone challenge in computational chemistry and materials science. Melting points pro-
vide essential insight into a compound’s stability, phase behavior, and potential applica-
tions, and they play a pivotal role in areas ranging from drug discovery to material design.
Traditional experimental methods for determining melting points are often laborious and
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resource-intensive, which has spurred the development of computational approaches capa-
ble of predicting these properties with greater efficiency.

Among the various classes of organic compounds, boronic acids have attracted signifi-
cant attention due to their unique chemical properties and broad applications in medicinal
chemistry, organic synthesis, and materials science. Characterized by the presence of a
boron-containing functional group, —B(OH )2, boronic acids are integral to Suzuki cou-
pling reactions and other key chemical transformations [17, 22, 23]. Their versatile reac-
tivity and potential therapeutic applications, including enzyme inhibition and anticancer
activity, have been widely explored [14, 17, 18].

However, the accurate prediction of melting points remains challenging because of the
complex interplay of molecular structure, intermolecular interactions, steric effects, and
crystal packing. Traditional quantitative structure-property relationship (QSPR) models,
such as group contribution methods and geometry based approaches, often struggle with
these complexities [10, 18, 23]. Recent advances in machine learning (ML) offer a promis-
ing alternative, enabling the capture of non-linear relationships between molecular features
and melting points that are difficult to model using conventional methods [1,2, 7, 8, 11, 21].

Beyond general organic compounds, boronic acids have also been evaluated in context-
specific QSPR studies involving melting and boiling points [6, 28]. Other approaches,
such as hybrid ML-QSPR pipelines, offer enhanced transferability [9, 12]. Boronic acid-
containing compounds have also been considered in molecular design for anticancer agents
and deep eutectic solvents, demonstrating the broad predictive utility of ML in such areas
[5, 18, 24].

In this study, we introduce a novel bond-distance summation descriptor that aggregates
atomic numbers along all shortest paths from a reference boron atom to atoms at predefined
bond-distance thresholds (e.g., 2, 3) by applying multipliers for double, triple, and aromatic
bonds (2, 3, and 1.5, respectively). This descriptor is concise, consisting of a fixed-length
vector of only 20 components; however, it captures the subtle electronic and steric effects
that govern melting behavior. We benchmark this descriptor against established molecular
representations including Coulomb Matrix, Mordred 3D descriptors, Morgan fingerprints,
and MACCS fingerprints (which contain 166 descriptors) while the other methods typically
yield feature sets exceeding one thousand descriptors [7, 16, 20, 26, 30].

Our work employs five different ML algorithms Decision Tree (DT), Random Forest
(RF), XGBoost, LightGBM, and Support Vector Regression (SVR) to model the melt-
ing points of boronic acids. We compared the performance of our bond-distance summa-
tion descriptor with established representations using these algorithms, demonstrating that
our concise 20-component descriptor achieves competitive accuracy. Recent studies have
demonstrated the potential of ML in catalysis, crystal structure prediction, solvent screen-
ing, reaction yield optimization, and melting point estimation [3, 4, 9, 11, 18, 27, 29, 31,
32].



654 Muhammad Zia Afzal, Shahid Saeed Siddiqi

The ability of descriptors to reflect electronic, steric, and intermolecular interactions in-
cluding hydrogen bonding and 7-stacking is crucial in modeling melting points of boronic
acids [11, 17]. Traditional descriptors often include topological indices, volume-based pa-
rameters, and dipole moments [18, 19]. Our summation descriptor provides an interpretable
yet concise representation, avoiding the curse of dimensionality while maintaining physical
relevance.

Furthermore, methodological advances such as active learning [15], deep neural net-
works [9], and literature-bias-aware ML models [7] have revealed important design rules
that improve generalization. Ensemble learning and hybrid representations continue to
outperform single-model baselines in tasks like thermal property prediction and molecular
screening [13, 25, 28].

This study aims to enhance the precision in predicting boronic acids’ melting points and
to showcase the effectiveness of the newly developed bond-distance summation descriptor.

2. METHODOLOGY

2.1. Data Collection. The dataset was sourced from https://organoborons.com/,
containing information on 605 boronic acids with recorded melting points.

2.2. Molecular Descriptor Calculation. In our descriptor scheme, each component of
the descriptor vector is calculated by summing the atomic numbers along all shortest paths
from the reference boron atom to all atoms exactly d bonds away. For each bond along a
path, the atomic number is multiplied by a factor depending on the bond order:

e Non-aromatic single bond: x1
e Non-aromatic double bond: x2
e Non-aromatic triple bond: x3
e Aromatic bond: x1.5

All atoms, including hydrogens, are explicitly included in the bond-distance summation
to ensure that both heavy-atom and peripheral hydrogen contributions to the local elec-
tronic and steric environment are represented. The bond-distance summation and descriptor
generation were implemented using in-house Python scripts built upon RDKit cheminfor-
matics routines, enabling reproducibility through a deterministic graph traversal procedure.

Physically, this descriptor encodes how the atomic number and bond order propagate
outward from the boron center, effectively capturing both the electronic effects (through
heavier atoms and bond multiplicities) and steric effects (through molecular topology and
branching). This design allows the descriptor to reflect the cumulative structural influence
of substituents and bonding environment on the melting point of boronic acids.

We will detail the method for acquiring the descriptor of 4-Trifluoromethylphenylboronic
acid as depicted in Figure la:
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(A) 4-Trifluoromethylphenylboronic acid (B) Highlighted 4-bond paths

FIGURE 1. Schematic representation of the molecular structure and
bond-path analysis for 4-trifluoromethylphenylboronic acid. (a) shows
the complete molecular structure with the boronic acid functional group
(-B(OH);) and the trifluoromethyl substituent (-CF3) on the aromatic
ring. (b) highlights the four-bond connectivity paths extending from
the central boron atom through the aromatic framework, which form the
basis for computing atom-centered topological descriptors in the study.
The red-highlighted atoms and bonds indicate the atomic environment
captured within a four-bond distance, used to encode the boron-centered
local structure during descriptor generation.

Figure 1b illustrates the atoms situated four bonds distant from Boron, considering these
four shortest pathways:

Path 1: (12768) 54+ 6+6 x 1.5+ 6 x 1.5+ 1 = 30,
Path 2: (12349) 5+ 6+ 6 x 1.5+ 6 x 1.5+ 1 = 30,
Path 3: ( )

Path 4: (12345) 546+ 6 x 1.5+ 6 x 1.5+ 6 x 1.5 = 38.

12765)5+6+6 x 1.54+6 x 1.5 4+ 6 x 1.5 = 38,

Thus, the descriptor value for the 4-bond component is:
30 4+ 30 + 38 4 38 = 136.

Since the longest descriptor length over our entire dataset is 20, every descriptor vector is
defined to have 20 components. For molecules with a maximum bond distance less than
20, the remaining components are padded with 0.

Figure 2 illustrates this fixed-length descriptor, with the first five components corre-
sponding to bond distances 2, 3, 4, 5, and 6 (here, 68, 100, 136, 88, and 318, respectively),
and the remaining positions filled with 0.
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68 100 || 136 88 318 0 e 0

Descriptor Vector (length 20)

FIGURE 2. Compound description for 4-(Trifluoromethyl)phenylboronic acid

Notice that the descriptor value for a bond at a distance of one remains consistently
identical; therefore, it has been omitted. The descriptor’s representation is unaffected by
the labeling of vertices, thus ensuring it is invariant under permutations.

3. MACHINE LEARNING METHODOLOGY

To predict the melting points of Boronic Acids, we perform a comparative analysis
using five different machine learning models:

Decision Tree (DT)

Random Forest (RF)

XGBoost

LightGBM

Support Vector Machine (SVM)

These models were selected for their robust performance in handling non-linear re-
lationships and high-dimensional molecular descriptors. Our objective is to compare
different descriptor extraction methods including our custom bond-distance summation de-
scriptor, Mordred 3D descriptors, MACCS fingerprints, Coulomb matrices, and various
configurations of Morgan fingerprints while evaluating the performance of different ma-
chine learning models (DT, RF, XGBoost, LightGBM, and SVR) in predicting melting
points.

3.1. Model Selection and Justification.

o Decision Tree (DT): A rule-based model that serves as a baseline, providing in-
sights into how simple partitioning can capture descriptor-melting point relation-
ships.

o Random Forest (RF): An ensemble of multiple decision trees that reduces vari-
ance and enhances robustness by aggregating predictions over bootstrapped sam-
ples.

o XGBoost: A boosting algorithm that iteratively refines weak learners using reg-
ularization and parallelization, thereby improving performance.

e LightGBM: A gradient boosting framework optimized for speed and large feature
spaces. Its leaf-wise tree growth strategy improves efficiency.

e Support Vector Machine (SVM): Although not tree-based, Support Vector Re-
gression (SVR) is included for its ability to model complex, non-linear relation-
ships via the RBF kernel.
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By systematically comparing these models in conjunction with different descriptor ex-
traction methods, we aim to determine the most effective approach for predicting melting
points.

3.2. Visual Representation of the Models. Figure 3 provides a general overview of tree-
based algorithms. The diagram starts with a basic Decision Tree and illustrates how ensem-
ble methods (Bagging and Boosting) extend this basic model into more robust algorithms
like Random Forest, XGBoost, and LightGBM.

Decision Tree

Ensemble Methods

Random Forest XGBoost LightGBM

FIGURE 3. General Representation of Tree-Based Algorithms

Figure 4 illustrates a basic decision tree structure, showing how the root node is split
into internal nodes and ultimately leads to leaf nodes that provide the final predictions.
This simple decision tree forms the foundation for the more complex ensemble techniques
described above.

Root: Is zy < t1?

Node: o < t2?
Leaf: Prediction y1 Leaf: Prediction y2

FIGURE 4. Decision Tree Diagram

Node: z3 < t3?

[Leaf: Prediction y3] [Leaf: Prediction y4]
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Short Explanation of the Decision Tree Diagram. The decision tree diagram shows:

o A Root Node initiating the decision process.
o Internal Nodes splitting the data based on specific thresholds.
o Leaf Nodes that yield the final predictions.

This structure underpins more advanced ensemble methods such as Random Forest, XG-
Boost, and LightGBM.

Our study utilizes a novel bond-distance summation descriptor, which numerically en-
codes molecular structure, and compares it against established representations (Mordred
3D descriptors, MACCS fingerprints, Coulomb matrices, and various Morgan fingerprint
configurations). All models are trained on the same dataset (80% training and 20% valida-
tion) and evaluated using standard metrics (MAE and R? Score).

Figure 5 shows the various descriptor extraction methods, with our bond-distance sum-
mation descriptor highlighted. Figure 6 illustrates the complete machine learning pipeline?from
descriptor extraction and dataset splitting to the training of multiple models (DT, RF, XGB,
LGBM, and SVR) and their subsequent evaluation.

MACCS Mordred
Fingerprint 3D Descriptors
N

Morgan Fingerprint
Coulomb Molecular Variations:
Matrix Structure Radius 2
nBits: 512

Our Own Scheme
Bond-Distance
Summation

FIGURE 5. Descriptor Extraction Methods: Our bond-distance summa-
tion descriptor is compared against established representations.

4. RESULTS AND DISCUSSION

This section presents a comparative analysis of the five descriptors (Coulomb Matrix,
Mordred, Morgan Fingerprint, MACCS, and our Bond-Distance Summation Descriptor)
across multiple machine learning models. Table 1 summarizes the Mean Absolute Errors
(MAE), while Table 2 reports the corresponding R? values. Lower MAE values indicate
more accurate predictions, whereas higher R? values signify better explanatory power of
the model with respect to the observed melting points.
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Bond-Distance Summation
Descriptor Extraction

Dataset Split
(80% Train, 20% Test)

b

Input Features

b

SVR

DT

XGB

LGBM

b

Evaluation
(MAE, R?)

FIGURE 6. Pictorial Representation of the Machine Learning Pipeline
for Melting Point Prediction.

e MAE (Table 1): The mean absolute error (MAE) values clearly indicate that the
XGBoost regressor consistently provides the most accurate melting point predic-
tions across nearly all descriptor types. Among all tested molecular representa-
tions, the Mordred descriptor produces the lowest MAE values overall, achieving
7.26 °C when coupled with XGBoost. This can be attributed to Mordred?s exten-
sive feature set, which captures a diverse range of 2D and 3D structural, topologi-
cal, and physicochemical attributes relevant to thermodynamic properties.

The proposed Bond-Distance Summation Descriptor (referred to as “Descrip-
tor” in Table 1) performs competitively, yielding MAE values comparable to the
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Coulomb Matrix and better than MACCS fingerprints in several models. This sug-
gests that our descriptor successfully encodes local electronic and steric informa-
tion centered around the boron atom, which plays a pivotal role in determining the
intermolecular interactions and packing efficiency that influence melting points.

Classical models such as Decision Trees (DT) and Random Forests (RF) achieve
moderate accuracy but show higher variability across descriptor types. Light-
GBM performs well for Mordred and Coulomb Matrix but less consistently for
Morgan and MACCS, potentially due to its sensitivity to sparse or binary fea-
ture distributions. In contrast, Support Vector Machines (SVM) exhibit signifi-
cantly higher MAE values across all representations, likely reflecting limitations
of kernel-based methods in capturing nonlinear structure-property relationships in
high-dimensional molecular spaces.

e R? (Table 2): The coefficient of determination (R?) results reinforce the MAE
trends, demonstrating that the XGBoost model provides the best fit to experimen-
tal melting point data. XGBoost achieves R = (.89 for both Mordred and the
proposed descriptor, indicating that these feature spaces effectively explain a large
portion of the observed variance in melting points.

The Coulomb Matrix and the new Bond-Distance Summation Descriptor per-
form comparably, with R? values around 0.82, confirming that both capture essen-
tial molecular-level interactions influencing phase-transition behavior. Notably,
the relatively strong performance of the new descriptor compared to conventional
fingerprints (Morgan and MACCS) highlights its chemical interpretability and its
ability to retain key structure-property relationships centered on the boron atom.

Models based on ensemble methods (RF, LGBM, and XGBoost) consistently
outperform simpler or kernel-based algorithms, emphasizing the advantage of gradient-
boosting frameworks in optimizing nonlinear regressions with complex descriptor
sets. Overall, these findings demonstrate that coupling our physically inspired de-
scriptor with modern boosting algorithms yields performance on par with widely
used, high-dimensional descriptors like Mordred, while maintaining a more inter-
pretable and chemically meaningful feature representation.

Overall, XGBoost demonstrates the best performance among the tested models, con-
sistently yielding lower MAE and higher R? scores across most descriptors. To further
illustrate the predictive capability of XGBoost, Figure 7 compares observed vs. predicted
melting points for each descriptor under XGBoost. The blue data points represent predic-
tions closely matching the diagonal reference line, whereas red points indicate higher de-
viations. As shown, Mordred and our Bond-Distance Summation Descriptor exhibit closer
clustering around the diagonal, reflecting strong predictive performance.

In summary, these results confirm that:

(1) XGBoost stands out for its balance of accuracy (MAE) and explanatory power
(R?).

(2) The Mordred and Bond-Distance Summation Descriptor consistently rank among
the top performers, highlighting their suitability for capturing relevant molecular
features.
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TABLE 1. Comparison of mean absolute errors (MAE, in °C) for differ-
ent regression models trained on various molecular descriptors. Lower
MAE indicates higher predictive accuracy.

Mordred MACCS

Descriptor

TABLE 2. Coefficient of determination (R?) values for the same models
and descriptors, showing the proportion of variance in melting points
explained by each model.

Mordred MACCS Descriptor
DT 0.80 0.81 0.74 0.77
RF 0.86 0.81 0.78 0.77

LGBM 0.89 0.69 0.68 0.68

XGBoost 0.89 0.85 0.76 0.82

SVM 0.61 0.63 0.64 0.61

(3) The Coulomb Matrix and Morgan Fingerprints also provide competitive perfor-
mance in some cases, whereas MACCS tends to lag behind, particularly in terms
of MAE.

4.1. Hyperparameter Tuning and Model Optimization. To ensure robust and unbiased
estimation of the predictive performance of the XGBoost regressor across all molecular
descriptor types, a nested cross-validation (CV) framework was implemented. The outer
CV loop was used for model evaluation, while the inner CV loop performed random hy-
perparameter search with early stopping for hyperparameter optimization.

4.1.1. Experimental Setup. All experiments were executed using the XGBoost regressor
(XGBRegressor) configured for regression with a squared error objective. To avoid over-
fitting and to ensure computational reproducibility, a fixed random seed (RANDOM_STATE
= 42) was used throughout.

The nested CV procedure was defined as follows:

e Outer loop: 5-fold cross-validation for independent model evaluation.
o Inner loop: 3-fold cross-validation for hyperparameter optimization using random
search.



662 Muhammad Zia Afzal, Shahid Saeed Siddiqi
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FIGURE 7. Comparison of predicted and experimental melting points
for boronic acids using five descriptor sets (Coulomb Matrix, Mordred,
Morgan, MACCS, and composite). Blue points denote accurate predic-
tions (< 30°C error), red points indicate outliers, and the dashed line
represents the ideal parity line.

o Evaluation metric: Mean Absolute Error (MAE) was used for optimization and
comparison.

e Early stopping: 30 rounds of no improvement on the validation loss triggered
early termination during training.

Prior to training, all datasets were standardized to remove missing values and low-
variance features using a variance threshold of 1 x 10~°. For high-dimensional descrip-
tors such as Mordred, the feature set was further reduced to the number of samples using
correlation-based feature selection to accelerate model convergence.

4.1.2. Hyperparameter Search Space. Random search was conducted over the following
XGBoost hyperparameters:

n_estimators € {200, 400,800}
max_depth € {3,5,7,9}

learning.rate € {0.01,0.03,0.05,0.1}
subsample € {0.6,0.8,1.0}

colsample bytree € {0.6,0.8,1.0}
reg_alpha € {0.0,1.0} (LI regularization)
reg_lambda € {1.0,3.0} (L2 regularization)

Each outer fold evaluated the mean and standard deviation of validation MAE across 50
randomly sampled configurations from this parameter space. The best-performing config-
uration was retrained on the full outer training set and evaluated on the outer test split.
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4.1.3. Model Performance Summary. The aggregated results of nested cross-validation for
all descriptor types are summarized in Table 3. Mordred descriptors achieved the best over-
all performance, with the lowest mean MAE (38.14) and highest R? score (0.46), indicat-
ing their strong correlation with melting point prediction. The Coulomb matrix descriptor
yielded the weakest performance, suggesting limited expressivity for boronic acid systems.

TABLE 3. Summary of Nested Cross-Validation Results for XGBoost
Across Different Descriptor Types.

Descriptor MAEpean MAEgq RMSEean Rﬁlean
MACCS 39.65 2.40 52.85 0.37
Morgan 38.44 1.44 51.41 0.41
Coulomb Matrix 47.33 4.13 60.86 0.17
Mordred 38.14 3.86 49.21 0.46
Descriptor 44.40 3.50 58.32 0.24

4.1.4. Per-Fold Optimization Details. Table 4 lists representative hyperparameter configu-
rations selected during nested CV for each descriptor type. These results demonstrate that
the model typically favored shallow trees (max_depth = 3—7) and moderate learning
rates (0.03-0.05) across most descriptor sets, balancing bias-variance trade-offs efficiently.

TABLE 4. Representative Fold-wise Hyperparameter Settings and MAE
Values (Example Shown for Mordred Descriptors).

Fold MAE RMSE R? BestInner MAE max depth learning rate subsample

1 34.07 4585 048 36.15 5 0.05 1.0
2 3927 4885 0.38 35.87 5 0.03 0.8
3 3509 4393 0.53 35.58 5 0.03 0.6
4 4384 5726 045 34.71 3 0.05 0.8
5 3841 50.17 046 35.77 9 0.05 0.6

4.1.5. Discussion. The nested cross-validation approach effectively reduced bias and vari-
ance in model performance estimates, particularly by avoiding information leakage be-
tween hyperparameter tuning and evaluation. Among the tested molecular representations,
the 3D Mordred descriptors provided the highest predictive accuracy for boronic acid melt-
ing points, followed closely by Morgan fingerprints. The custom graph-based descriptor
(Boron_En) also demonstrated competitive performance, highlighting the role of bond
path information centered around the boron atom. These results validate the use of hybrid
molecular descriptors combined with tree-based ensemble learning for accurate thermo-
chemical property prediction.
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4.2. Statistical Analysis of Descriptor Performance. To determine whether the predic-
tive performance of XGBoost models trained on different descriptor sets differed signifi-
cantly, statistical significance testing was carried out. Since the absolute prediction errors
did not follow a normal distribution (as confirmed by the Shapiro-Wilk test, p < 0.05 for
all descriptors), non-parametric statistical methods were employed.

The Friedman test, a non-parametric alternative to repeated-measures ANOVA, was
used to compare the mean ranks of absolute errors across all descriptor-based models. Upon
observing a statistically significant Friedman statistic (p < 0.05), post-hoc pairwise com-
parisons were conducted using the Nemenyi test to identify which descriptor pairs differed
significantly.

All statistical analyses were implemented in Python (version 3.12) using the SciPy and
scikit-posthocs libraries. Visualization of error distributions and mean performance
differences was performed using Matplotlib and Seaborn. The resulting figures pro-
vide a graphical summary of model performance dispersion and descriptor-wise ranking in
melting point prediction of boronic acids.

4.2.1. Error Distribution and Normality Testing. Figure 8 illustrates the distribution of ab-
solute prediction errors for all descriptors. The Mordred and CoulombMatrix descriptors
exhibit notably lower median errors, suggesting superior predictive power compared to the
MACCS and Morgan fingerprints.

To assess whether the errors followed a normal distribution, the Shapiro-Wilk test was
applied to each descriptor’s error distribution. The results (p = 0.0000 for all cases) indi-
cated significant deviation from normality, thus justifying the use of non-parametric statis-
tical methods for further analysis.

4.2.2. Friedman and Post-hoc Nemenyi Tests. A Friedman test, which is a non-parametric
alternative to repeated-measures ANOVA, was conducted to evaluate whether statistically
significant differences exist among descriptor performances. The test produced a statistic
of 1246.7412 with a p-value of 0.000000, confirming significant performance differences
(p < 0.05) across descriptors.

Subsequently, a Nemenyi post-hoc test was carried out to identify pairwise differences.
Table 5 presents the pairwise p-values, showing that Mordred and CoulombMatrix descrip-
tors significantly outperformed MACCS and Morgan fingerprints, while their differences
with the proposed Descriptor set were also statistically significant.

4.2.3. Average Error Comparison. Figure 9 displays the average absolute errors for each
descriptor type. The Mordred descriptor achieved the lowest mean error (7.26 °C), fol-
lowed by CoulombMatrix (9.43 °C), indicating their robustness in capturing structure-
property relationships. The summary of mean and standard deviation of absolute errors
is reported in Table 6.
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Absolute Error Distributions of XGBoost Across Descriptors
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FIGURE 8. Absolute error distributions of XGBoost models trained on

different descriptors.

TABLE 5. Pairwise Nemenyi post-hoc test p-values among descriptor

erTors.

MACCS Morgan Coulomb Matrix Mordred Descriptor
MACCS 1.0000  0.1254 0.0000 0.0000 0.00003
Morgan 0.1254  1.0000 0.0000 0.0000 0.00000
Coulomb Matrix  0.0000  0.0000 1.0000 0.00000 0.0000
Mordred 0.0000  0.0000 0.00000 1.0000 0.0000
Descriptor 0.00003  0.00000 0.0000 0.0000 1.0000

Average Error Comparison Across Descriptors (XGBoost)

Mordred_Error

CoulombMatrix_Error

Descriptor_Error

Morgan_Error

MACCS_Error

k T T T T T T T T
0 2 4 6 8 10 12 14 16
Mean Absolute Error (°C)

FIGURE 9. Average error comparison across descriptors using XGBoost

models.
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TABLE 6. Summary of mean and standard deviation of absolute errors
across descriptors.

Descriptor Mean Error (°C) Std. Dev. (°C)
MACCS 16.71 26.19
Morgan 13.84 19.82
CoulombMatrix 9.43 25.84
Mordred 7.26 20.60
Descriptor 11.42 25.13

4.2.4. Interpretation. The results demonstrate that the differences in model performance
across descriptor types are statistically significant. Specifically, Mordred and CoulombMa-
trix descriptors yield consistently lower prediction errors, indicating their effectiveness in
encoding chemically relevant information for boronic acid melting point prediction. Con-
versely, MACCS and Morgan fingerprints, while simpler, were less capable of capturing
fine structural variations.

Overall, the statistical evaluation confirms that descriptor selection has a significant im-
pact on predictive accuracy, with complex 3D and bond-energy-based descriptors outper-
forming conventional fingerprint methods.

5. CONCLUSION

In this study, we compared five different molecular descriptors Coulomb Matrix, Mor-
dred, Morgan Fingerprints, MACCS, and our novel Bond-Distance Summation Descriptor
across a range of machine learning models for predicting the melting points of boronic
acids. Despite MACCS having only 166 descriptors, the other three established methods
(Coulomb Matrix, Mordred, and Morgan) each generate well over a thousand descriptors.
In contrast, our bond-distance summation approach uses a fixed-length vector of just 20
components.

The results demonstrated XGBoost consistently achieved superior predictive accuracy,
as evidenced by lower Mean Absolute Errors (MAE) and higher R? scores compared to
other algorithms. Mordred and Bond-Distance Summation Descriptor performed partic-
ularly well in capturing key molecular features relevant to melting point prediction. De-
spite having a comparatively small descriptor length, our 20-component vector produced
results competitive with high-dimensional descriptors such as Coulomb Matrix, Mordred,
and Morgan. MACCS, which has 166 predefined keys, generally exhibited less robust
performance in terms of MAE, underscoring the importance of descriptor richness or rele-
vance.

Overall, these findings highlight the potential of a concise, interpretable descriptor to
compete effectively against more complex, higher-dimensional representations. Our results
show that a compact 20-component descriptor can yield reasonable predictive performance
compared to high-dimensional representations. These findings contribute to the growing
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body of work at the intersection of machine learning and cheminformatics, paving the way
for the development of efficient computational tools for the design and synthesis of boronic
acid derivatives in pharmaceutical and industrial applications. Future research can explore
hybrid approaches that combine the simplicity of our bond-distance summation descriptor
with complementary features, potentially enhancing both interpretability and predictive
power in melting point prediction and related cheminformatics tasks.
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