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Abstract. In 
the

 
following

 
manuscript,

 
we

 
are

 
addressing

 
the

 
question:“Which

 

amenability
 
property

 
of

 
dynamical

 
system

 
is

 
characterized

 
by

 
the

 
Schauder

 

fixed
 
point

 
property

 
(Sfpp)?”.

 
We

 
have

 
first

 
introduced

 
the

 
property

 
FC

 and
 

then
 
we

 
provided

 
suitable

 
answers

 
to

 
this

 
problem

 
for

 
the

 
respective

 
class

 

ELA 
(extremely

 
left

 
amenable)

 
of

 
semitopological

 
semigroups

 
by

 

developing
 
a
 
relation

 
between

 
properties

 
FC

 ,
 
FE

 and
 
Sfpp.
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1. INTRODUCTION

A well-known finding by Brouwer[1] is that any self-mapping that is continuously de-
fined for a unit closed ball in ℜn attains a fixed point, served as the catalyst for the exam-
ination of the presence of a fixed point regarding nonlinear maps as well. The following
more general fact is also produced by this result: any continuous map defined on a non-
empty compact convex subset of a Euclidean space surely attains an invariant point. Later,
Schauder [15] enhanced Brouwer’s findings by demonstrating the details that, in reality,
Brouwer’s theorem holds true even when ℜn is substituted with a normed space. Then we
have a Sfpp which states whenever (S,C, σ) is a jointly continuous map with a non-empty
compact convex set of a separated locally convex topological vector space then a common
fixed point for S in C exists. Related to this, we have another property FE which states
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that whenever (S,C, σ) is a jointly continuous map with a compact Hausdorff space, then
there exists a common fixed point for S in C. Mitchell [11] then proved that ELA of a
semitopological semigroup is described by the property FE .
In this article, we will prove that FE ⇒ FS then it is obviously natural to ask that ”Is there
any amenability property of a semitopological semigroup that is categorized by Sfpp FS?”
or ”Does FS ⇒ FE ?” We will attempt to address the above question by introducing an
additional property FC , followed by a promising approach to provide a concise solution to
the open problem published by Lau in [7].

2. NOTATIONS AND PRELIMINARIES

Let us recall some fundamental concepts which will be used in our work and which can
be found in [1, 15, 10, 13, 2].

Fixed Point. A point v ∈ V is known as a FP of mapping η : V → V if v = ηv. In other
words , it is the point which remains invariant or unchanged under given transformation.

Example 1. Let η be a self mapping on ℜ defined by η(x) = x2 and η(x) = −x, which
implies x = 0, 1 and x=0 are the FPs of the given functions respectively.

FP Property. Consider a Banach space S and a non-empty set N of S where N is closed,
bounded and contained within S. If a FP for any non-expansive mapping η : N → N are
in N , then it possesses the FP property.

Weak FP Property. Let S be a Banach space and any weakly compact convex subset N
of S has the FP property then N has weak FP property.

Left and Right Translation. For a semigroup σ , let l∞(σ) be the C∗-algebra of complex-
valued functions which are also bounded on σ having the supremum norm and multiplica-
tion which is point-wise. For every element s ∈ σ, k ∈ l∞(σ), if

lsk(t) = k(st) where t ∈ σ

then lsk is called the left translate of k by s. Similarly if

ϱsk(t) = k(ts) where s ∈ σ

then ϱsk is said to be the right translate of k by s.

Mean. Let T be a closed subspace of l∞(σ) containing constants and invariant under
translations. Then a linear functional w ∈ T∗ is called a mean if

∥w∥ = w(e) = 1,

h is referred to as a Left invariant imply if w(lth) = w(h) for all t ∈ σ, h ∈ T.Similarly w
is called Right invariant mean if w(ϱah) = w(h) for all a ∈ σ , h ∈ T.

Now, we are going to list some spaces as follows:
Cb(σ) denotes the space of all bounded continuous complex-valued functions defined on
σ.
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LUC(σ) is the space of all left uniformly continuous functions on σ, i.e. all g ∈ Cb(σ) in
this manner the mapping t 7→ ltg : σ 7→ Cb(σ).
AP(σ) is the space of all g ∈ Cb(σ) such that LO(g) = {ls(g) : s ∈ σ} is relatively
compact with respect to the norm topology of Cb(σ).
WAP(σ) is said to be space of all g ∈ Cb(σ) such that LO(g) = {ls(g) : s ∈ σ} is
relatively compact in the WT of Cb(σ).
m(σ) denotes the space of all bounded real-valued functions on σ.
β(σ) denotes the space of all multiplicative means on m(σ).

Semitopological Semigroup. If σ is a semigroup with the H.S topology is said to be a
semitopological semigroup if the mapping for every s ∈ σ v → uv and v → vu from σ
into itself are continuous.

Left Amenable.
The semitopological semigroup S is said to be left amenable if L.U.C(S) has a LIM.

Observe that if S is discrete then

L.U.C(S) = Cb(S) = l∞(S)

So both the definitions are same when S is discrete.

Left Reversible. If any two closed right ideals of the semitopological semigroup S have a
non-void intersection, then S is said to be left reversible. , i.e

aS
⋂
dS for whatever a, d ∈ S.

Dynamical System. A dynamical system consists of a pair (S, ϱ), where S is a semitop-
logical semigroup and ϱ is topological space together with separately continuous action of
S on ϱ. If the action is continuous then the dynamical system is said to be continuous.

Q-Nonexpansive Dynamical System. Dynamical system is Q-Nonexpansive Dynamical
System where Q is a family of seminorms if

q(sv − sw) ≤ (v − w) for every q ∈ Q, s ∈ S and v,w ∈ ϱ (2. 1)

Convex Hull. Let V be a vector space and G be a subset of V . The convex hull of G is
defined as the set

CH(G) = {
n∑
j=1

tjxj , xj ∈ G; tj ≥ 0;

n∑
j=1

;n ≥ 1}

Left Thick. Let σ
′

be a subset of a semigroup σ is called left thick in σ if for subset σ
′′ ⊆ σ

that is finite, there is some s
′′ ∈ σ so that σ

′′
s
′′ ⊆ σ

′
.

Example 2. Let σ
′

be the set of all integers greater than or equal to 100.Then

σ
′
= {100, 101, ...}
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Take a finite subset
σ

′′
= {−3, 7, 20}

We want s∗ ∈ Z such that

σ
′′
+ s∗ ⊆ σ

′

We need

−3 + s∗ ≥ 100, 7 + s∗ ≥ 100, 20 + s∗ ≥ 100

For s∗ = 103

{−3 + 103, 7 + 103, 0 + 103} = {100, 110, 123} ⊆ σ
′

The set {100, 101, ...} is left thick in semigroup Z.

Jointly Continuous Mapping. Let X,Y, and Z be topological spaces, and let

f : X × Y → Z

be a function. We say that f is jointly continuous(JC) if it is a continuous function from the
product space X × Y (equipped with the product topology) to the space Z.

Hausdorff Space. A topological space (R, ϱ) is called a Hausdorff space (HS) if for any
pair of distinct points s, t ∈ R, there exist two open sets P1 and P2 such that

s ∈ P1, t ∈ P2, and P1 ∩ P2 = ∅.

Topological Vector Space. Consider a vector space V over the field F and let ϱ be a
topology on V . Then (V, ϱ) is said to be a topological vector space(TVS) if it satisfies the
following conditions:

(1) The operation of addition is jointly continuous; that is, given any w, z ∈ V and
any ϱ-neighbourhood B of w + z in V , there exist ϱ-neighbourhoods C of w and
D of z in V such that

C +D ⊆ B.

(2) The operation of scalar multiplication

F ×R→ R

is jointly continuous; i.e., given any w ∈ R and k ∈ F and any ϱ-neighbourhood
B of kw in R, there exist a ϱ-neighbourhood C of w in V and a neighbourhood X
of k in F such that

XC ⊆ B.

Locally Convex Space. A TVS (V, ϱ) is called a LCS if it has a base of neighborhoods of
0 consisting of convex sets.
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3. SOME ASPECTS OF SCHAUDER FIXED POINT PROPERTY.

Within this section, first we intend to study Sfpp then we will prove it’s relation with
another fixed point property. To further extent we will discuss some examples related to
these fpp.

(FE) : Every JC mapping of S on a non-empty Hausdorff space that is compact attains
a fixed point that is common[11].

(FS) : Every JC mapping of S on a non-empty compact convex set ω in a separated
locally convex topological vector space has a common fixed point [8].

Above given property (FS) is called Sfpp.

A semigroup S is Extremely Left Amenable if and only if every extreme point of the
compact, convex set of left-invariant means is a multiplicative left-invariant mean[13].
Mitchell proved in [11] semitopological semigroup is referred as ELA if it has the FPP
FE .
The first examples of extremely amenable groups were provided by Herer and Christensen
[5]. They showed that certain abelian Polish groups of the form L0(µ,R), consisting of all
µ-measurable real-valued functions (where µ is a pathological submeasure), are extremely
amenable. Later, more general groups of the form L0(µ,G), with G a topological group,
were also shown to be extremely amenable. The first examples of extremely amenable
groups were provided by Herer and Christensen [5]. They showed that certain abelian
Polish groups of the form L0(µ,R), consisting of all µ-measurable real-valued functions
(where µ is a pathological submeasure), are extremely amenable. Later, more general
groups of the form L0(µ,G), with G a topological group, were also shown to be extremely
amenable.

Furthermore, Furstenberg–Weiss and independently Glasner [4] proved that the group
of measurable functions from the unit interval I , equipped with the Lebesgue measure λ,
to the unit circle T is extremely amenable. Farah and Solecki [3] extended this result by
demonstrating that L0(µ,G) is extremely amenable whenever G is a compact solvable
topological group and µ is a diffused submeasure. Later, Sabok [14] generalized these re-
sults to all solvable topological groups G together with diffused submeasures µ.
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Theorem 1. If the semigroup is ELA then it will possess property FS .

Proof. Suppose {Js : s ∈ S} be a JC representation of σ on a non-empty ω of a sep-
arated LCS which is compact and convex. Then we have a strong version of Tychnoff’s
Theorem [12] that implies for every representation {Js : s ∈ S} we have at least one fixed
point. Here we are considering the induced topology on K this implies K is a subspace(a
subspace of a topological space X is contained in X which is equipped with a topology
induced from that of X called subspace toplogy or relative topology) of a LC Hausdorff
TVS and a subspace of Hausdorff is Hausdorff. This implies that K is a Hausdorff sub-
space of LC Hausdorff TVS which is compact. Now by FE for every jointly continuous
representation {Js : s ∈ S} on K we have a common fixed point.

Example 3. The bicylic semigroup represented by S1 = ⟨a, b| ab = e⟩ is a semigroup pro-
duced by identity e and some other elements a and b such that ab = e has the semigroup
property FS but is not extremely left amenable(see[7]).

Proof. Elements of set S1 are of the type

s = bcad (3. 2)

for certain integer c ≥ 0 and d ≥ 0. If

bs = s. (3. 3)

Now from ( 3. 2 ) put s = bcad in ( 3. 3 ),we get

bc+1ad = bcad (3. 4)

Now multiplying ac and bd towards the left and the right, respectively, in the above equa-
tion,we get

b = e,

Which is a not true as given that S1 = ⟨a, b : ab = e⟩ if b = e then a.e = e which is
not possible. Hence S1 does not contains right zero element. This implies that S1 is not
extremely left amenable. Let σ denote a continuous representation of S1 over a non empty
set C which is convex. From Sfpp, say z is a fixed point of C.Then

b(ez) = (be)z = (eb)z = e(bz) = ez

a(ez) = a(bez) = (ab)ez = e.ez = e2z = ez.

Therefore, ez has become an invariant point in C that is common for every generator in-
cluding a, b and e. This presents that ez is a fixed point for S1 that is commom but S1 is
not ELA. This implies that FE does not holds in S1.
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Example 4. The free commutative cyclic semigroup has the fpp FS (see[7]).

Proof. Let Σ∗ be the free commutative semigroup on one generator Σ∗ = {ν}.Then

Σ∗ = {ν, νν, ννν, νννν...}

Let σ be the continuous representation of Σ∗ on non-empty set K which is compact and
convex.Then by Sfpp K contains fixed point for ν. i.e

νz = z

ν(νz) = ν(ν(z)) = νz = z

ννν(z) = νν(ν(z)) = νν(z) = ν(νν(z)) = νz = z,

...

In this way we will get the common fixed point in K for all elements of Σ∗. Hence z is a
common fixed point for Σ∗. This implies that Σ∗ has FS property.

Example 5. A group that is generated by one element has the fpp FS (see[7]).

Proof. Let B be a group generated by one element that is ∃ some g ϵ B s.t. B = ⟨g⟩. This
implies that g is the generator. Now, let σ be the continuous depiction ofB on a non-empty
compact and convex set, then by Schauder fixed point theorem H(g) ̸= ∅. Let z ϵ H(g),
i.e

g.z = z (3. 5)

For g ∈ B, then for some i ∈ I , g−1 ∈ B such that

g−1 = gi

g−1.z = gi.z

From the above, we get g−1.z = z.This implies that z ∈ H(g−1) ⇒ H(g) ⊆ H(g−1).
Similarly, H(g−1) ⊆ H(g) Hence, a group (finite or infinite) that is generated by one ele-
ment has the property FS .

Example 6. The semigroup (Q,+) has the Schauder fixed point property , where Q is the
set of all the rational numbers and Q+ is the set of all positive rational numbers (see[7]).

Proof. If Q+ acts on a set C which is compact and convex then the fixed point set
H(s) contains some element for every r ∈ Q+. It is clear that if r = zt for some in-
teger z, then H(t) ⊂ H(s). Let r1, r2, . . . , rn be finite element of Q+. It can be writ-
ten rj =

lj
zj
(j = 1, 2, . . . n), where zj and lj are integers. Let rj = 1

z1,z2,...,zk
then

all rj are multiples of r. So G(r) ⊂ G(rj) for all j. This implies that the collection
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γ = {G(r) : r ∈ Q+} that contains subsets of C which are compact has the finite intersec-
tion property. Therefore

⋂
r∈Q+

H(r) ̸= ϕ i.e Q+ has a fixed point that is common in C.

Example 7. A discrete group on z ≥ 2 does not have fixed point property (FS)(see[7].

Proof. It is enough to show the case z = 2. As for z = 2 the semigroup is isomorphic
to Z◦ × Z◦ where Z◦ is the semigroup of non negative integers with respect to addition
{0, 1, 2 . . .}(which is the discrete cyclic semigroup). Notably, two continuous functions
g and l exist, mapping the unit [0, 1] into itself and satisfying the commutative property
under composition function but do not have any common fixed point in [0,1] . Let the
representation of Z◦×Z◦ on [0,1] defined by ℸ(0,0) = id[0, 1], ℸ(1,0) = g, ℸ(0,1) = l then
Z◦ × Z◦ has no fixed point in [0,1] that is common although Z◦ has the fpp (FS).

4. AMENABILTY OF DYNAMICAL SYSTEM

In this section we will first introduce the property FC and then develop the relation
between the property Fs and Fc which will be helpful in proving our main result.
(FC) : Every JC representation of semitoplogical semigroup on a convex hull of non-

empty compact Hausdorff space has a fixed point that is common.
Now we will prove that FS implies FC .

Theorem 2. If a semitoplogical semigroup S has the Schauder fpp Fs then it has the fpp Fc.

Proof. Let C be a HS and {Gs : s ∈ S} be a JC representation of σ. Also let K be a sep-
arated L.C.S and C be a subspace of K. CH(C) is the convex hull of C . As C is compact
so CH(C) is also compact. This implies CH(C) is a compact set of a separated LCS. If
{Gs : s ∈ S} is JC for CH(C) then by Fs for every JC representation {Gs : s ∈ S} on
CH(C) we have a common fixed point.
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Theorem 3. Let σ be a semigroup then the following are
(1) Left invariant multiplicative mean exists in σ .
(2) For each pair of subsets σ1, σ2 ⊆ σ such that σ1 ∪ σ2 is left thick in σ, then atleast

one subset σ1 or σ2 must be a left thick in σ.
(3) For every finite family of subsets σi ⊆ σ so that σ =

⋃n
i=1 σi, it implies that at

least one of the subset σi is left thick in σ.
(4) Every JC representation of σ on a convex hull of non-empty compact HS has a

fixed point that is common for σ.
Proof. (1) =⇒ (2)

Let σ
′

be left thick in σ, where σ
′
= σ1

⋃
σ2. Let {σΥ} be the finite family of subsets

of σ, for each finite subset σΥ ∈ σ there exists sΥ ∈ σ such that σΥsΥ ⊆ σ
′
. As κ(σ)

is w∗ compactness, the net {ΩsΥ} has a subnet {Ωsδ} which is w∗-convergent to some
ν

′ ∈ κ(σ)[16].
For any s ∈ σ

l∗sν
′
= l∗s(w

∗limδ(Ωsδ)) = w∗limδ(l
∗
s(Ωsδ))

As l∗s is w∗-continuous so we can follow the second equality. Let h◦ ∈ n(σ) be the
characteristic function of σ

′
. Then

(l∗sν
′
, h◦) = limδ(l

∗
s(Ωsδ), h◦) = limδ(Ωsϵ, lsh◦)

= limδ(lsh◦)sδ) = limδh◦(ssδ) = 1

for each s ∈ σ. By (1), σ has a multiplicative left invariant mean ν. Suppose ν
′′ ∈ κ(σ)

be stated by ν
′′
= ν

⊙
ν

′
. Then ν

′′
is a left invariant mean by [[2], Corollary 2, p.529].

Furthermore, for each s ∈ σ

ν∗l h
◦(s) = (ν

′
, lsh◦) = (l∗sν

′
, h◦) = 1

hence ν
′
h◦ = e. Thus

ν
′′
h◦ = (ν, ν

′

lh◦) = (ν, e) = 1

Let h1 and h2 be the characteristic functions of σ1 and σ2 . As ν
′′

is multiplicative, it will
give zero on characteristic function. As ν

′′
h◦ = 1, it is not possible that ν

′′
h1 = 0 and

ν
′′
h2 = 0. So there must be at least one of the function hj where j = 1, 2, . . . satisfies

ν
′′
hi = 1. But if K is any set that is contained in left amenable semigroup σ, in this case

K is left thick in σ iff there exists left invariant mean on σ that assign the value 1 to the
characteristic function K [[10], Theorem 7]. So, there must exist at least one of subset σj
that is left thick in σ.
(2) =⇒ (3)
σ is left thick in itself, this implies that

⋃n
i=1 σi is left thick.Then by (b) there exist at least

one of the subset σi is left thick in σ.
(3) =⇒ (4)

Let ϕ : σ → π be a JC representation of σ onto π, a semigroup of continuous map of
CH(Z) into CH(Z), where Z is a compact HS. This implies that CH(Z) is also compact.
Let ϱ be a topology on CH(Z), such that CH(Z) is Hausdorff. This implies CH(Z) is
also compact Hausdorff space. Let z be point ofCH(Z).Now at first we will show that their
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exist yo ∈ CH(Z) such that for every open neighbourhood W of yo where W ⊆ CH(Z),
the set {s ∈ σ; (ϕs)y ∈W} is a left thick in σ.
Suppose that yo /∈ CH(Z). Then there exist an open neighbourhood of z for each z ∈
CH(Z) , the set Wz ⊆ CH(Z) such that the set σz where σz = {s ∈ σ;ϕ(s)y ∈ σz}
does not satisfy the condition to be left thick in σ. However, the family {Wz; z ∈ CH(Z)}
is open covering of CH(Z), CH(Z) is compact so ∃ a finite number of element z(j) ∈
CH(Z) such that CH(Z) =

⋃n
j=1 σz(j) which is contradicting (3). Hence yo ∈ CH(Z).

Let ϱ be the family of finite subsets of σ and χ the family of all open neighbourhoods of
yo. Let σ

′′

κ be subset of σ that is finite and letYρ be an open neighborhood of yo Further
{σ′

ρ} will designate the net left thick of σ defined as σ
′

ρ = {s ∈ σ;ϕ(s)y ∈ Yρ}. Let
Ψ = ϱ× χ the direct product set of ϱ and χ. For every ψ = (κ, ρ) ∈ Ψ, there exist sψ ∈ σ

such that σ
′′

κsψ ⊆ σρ by left thickness of σ
′

ρ in σ. For any s ∈ σ , the net{ssψ} is finally
in all σ

′

ρ, which means that the net {ϕ(ssψ)y} is finally in all open neighborhood Yρ of yπ .
Therefore yo = limψ(ϕ(ssψ)y) for all s ∈ σ. Let so be a particular element of σ. Then
for any s ∈ σ,

ϕ(s)yo = ϕ(s)limψ(ϕ(sosψ)y) = limψ(ϕ(s)ϕ(sosψ)y)

= limψ(ϕ(sosψ)y) = yo

we can follow the second equality as ϕ(s) is continuous and similarly as ϕ(s) is JC so we
can follow the third inequality. Hence yo is the required common point of family π that is
fixed.
(4) =⇒ (1)
Let C be the convex hull of α(σ), where α(σ) is compact HS with respect to w∗ topology.
For each s ∈ σ, define a map Gs : α(σ) → α(σ) by Gsν = l∗sν for ν ∈ α(σ). The set
ℑ = {Gs : s ∈ σ} forms a semigroup, jointly continuous to σ of α(σ) into itself. Let the
set ℑ = {Gs : s ∈ σ} be such that it forms a jointly continuous representation to C of C
into itself. As α(σ) is compact HS then C is also compact and let τ be discrete topology on
C then C is Hausdorff w.r.t τ .Now by (4), there exist νo ∈ C such that νo = Gsνo = l∗sνo
for all s ∈ S. i.e νo is a fixed point that is common in C. Now as α(σ) ⊆ C, so we
will show that νo ∈ α(σ). Let νo /∈ α(σ), as α(σ) is a compact HS then by property
FE ∃ some fixed point in α(σ) for ℑ = {Gs : s ∈ σ} that is common, this implies that
νo ∈ α(σ) ⊆ C. This shows that νo is a multiplicative invariant mean.

5. CONCLUSION

In this work, we examined the limitation that the fixed point property FS does not di-
rectly lead to amenability or to the property FE that characterizes extreme left amenabil-
ity.We have shown in examples that FS alone is insufficent. To overcome this issue, we
introduced an intermediate property FC to strengthen the connection between FS and FE .
Establishing the implications

FS =⇒ FC =⇒ FE =⇒ Extremely Left Amenable
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We obtain that FS implies FE indirectly via FC . Since FE already characterizes
extremely left amenable dynamical systems, provides a full dynamical characterization of
extreme left amenability

Property Implies Reason
FS FC Established in this work
FC FE Introduced to connect FSand FE
FE Extremely Left Amenable Classical implication
FS Extremely Left Amenable Follows indirectly via FC and FE

TABLE 1. Summary of implications between fixed point properties and
extreme left amenability

Credit authorship contribution statement:
Amna Kalsoom: Conceptualization, formal analysis, validation. Sana Siddique: Formal analysis, 
investigation, writing original draft, methodology. Maliha Rashid: Conceptualization, formal 
analysis, supervision, validation.

Declaration of competing interest:
The authors declare no conflicts of interest.

Funding
There is no specific funding for this research article.This work was supported and funded 
by all the authors equally.

REFERENCES
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