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Abstract. In this paper, we investigate a nonlinear partial differential
equation (NLPDE) known as the (2+1)-D Zoomeron model. This model
is widely used in fluid dynamics, SONAR (Sound Navigation and Rang-
ing) systems, optical fiber communication, and various other mathemat-
ical, physical, and technological fields. The exact solutions are obtained
with the help of two advanced methodologies, the Sardar sub-equation
technique and a new extended algebraic technique, that can offer a variety
of soliton solutions with unique dynamic characteristics. These method-
ologies are efficient in understanding the complex behavior of the model.
Traveling wave solutions are obtained in the paper with the help of Math-
ematica software, to explain a sound and effective new mathematical ap-
proach. The generated solutions cover a wide range of phenomena. These
techniques give results in the form of plane wave solutions, hyperbolic
solutions, periodic solutions, mixed periodic solutions, shock wave solu-
tions, exponential solutions, and trigonometric solutions. Moreover, to
understand the behavior of the obtained results, draw it in 3D, 2D as well,
and contour from. The research outcomes increase the model’s accuracy
and demonstrate the new concept’s value in learning technical physical
systems. The next study in the domains of theoretical physics and applied
mathematics is made possible by this work.
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1. INTRODUCTION

Solitons are an interesting phenomenon in nonlinear science. They occur due to the deli-
cate interaction of a medium’s dispersive and nonlinear properties. Solitary waves can arise
as a result of nonlinear effects, which enable waves to interact, and dispersive effects, which
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cause waves of various frequencies to move at different speeds, can counteract dispersion
and keep the soliton’s shape as it propagates [26, 19]. In the context of optical fibers,
solitons are solitary waves that propagate through the fiber while retaining their amplitude
and shape [8]. Solitons offer an effective solution to signal deterioration in long-distance
underwater communications [14]. Additionally, SONAR (Sound Navigation and Ranging)
systems may find use for solitons. SONAR systems use sound waves to detect and locate
objects underwater [17]. In optical fiber and telecommunication systems [39, 4, 2].

To find the exact solutions various techniques are utilized. Many different kinds of non-
linear problems have developed in the field of nonlinear science, featuring models such
as He’s Variational Method [27], the (F-expansion) method [30], Hirota bilinear forms
[24], the new extended generalized Kudryashov method [41], and the 1st Integral Method
[43]. Utilizing the extended tanh-function technique [40], Semi-analytical methods [5], the
function method [15], new auxiliary method [6], simple direct method [23], the ( 1

G′ ) tech-
nique [11], Lie symmetry analysis [21], tanh method [38], bilinear residual network method
[45], modified auxiliary equation method [20], bilinear neural network [44], G

G′ method-
ology [13], Jacobi elliptic function method [32], homogeneous balance method [29], the
Miura transformation [22], cubic B-spline [28] and Wronskian determinant technique [33].
These methods provide exact soliton solutions, offering insights into the model’s behav-
ior across various scenarios. Techniques such as the Bäcklund Transformations, Hirota’s
Direct Method, and the Inverse Scattering Transform allow for a thorough investigation of
soliton dynamics in a variety of mathematical and physical contexts [25, 46, 31, 1].

In this manuscript, to obtain the exact soliton solutions two methodologies are applied.
Namely, the Sardar sub-equation technique and the new extended direct algebraic approach.
These models give results in the form of shock solutions, singular solutions, mixed complex
solitary-shock solutions, mixed singular solutions, mixed shock-singular solutions, mixed
trigonometric solutions, complex solutions, trigonometric solutions, mixed trigonometric
solutions, periodic and mixed periodic solutions, single and mixed wave compositions, and
mixed hyperbolic solutions. The Sardar sub-equation method includes four cases, each
with five to six sets of conditions. The advantage of this technique is that it is easy to
solve and gives exact solutions in some steps and these solutions also satisfy the original
equation. The other model is a new extended direct algebraic method. It consists of twelve
cases with different cases and each case has four to five numerous sets. This method is
beneficial for both new and experienced investigators as it provides accurate solution solu-
tions quickly and easily. Its effectiveness, simplicity of use, and accessibility enable fast
understanding and analysis, offering insightful information in a variety of fields. The mo-
tivation for our outcomes is that it can be used in are often employed in systems for optical
fiber communication. Here are some applications and uses of our outcomes, in optical fiber
communication, one of the primary benefits of solitons is their long-range shape and inten-
sity maintenance, which allows for reliable information transfer. Results are employed in
water wave and optical systems, and they can also occur in some kinds of sound systems.
Also helpful in SONAR systems, which use sound waves for underwater navigation and
detection. Certain ideas on nonlinear wave propagation and solitons may have an impact
on the development and functionality of cutting-edge SONAR systems.

The paper is divided into different sections. In Section 2, we explain the analytical
method and explore some beneficial factors of the new extended direct algebraic technique
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and Sardar sub-equation method. Section 3 focuses on developing solitary wave solutions,
accompanied by a clear graphic representation. Moving on to Section 4, to present and
discuss the results. The final part of the paper is a conclusion summarising the entire
research.

2. GOVERNING MODEL

A focus of research is the (2+1)-D Zoomeron model, which presents an extensive array
of nonlinear dynamics that resist considered mathematical models. soliton solution of the
(2+1)-dimensional Zoomeron equation [18]. Mathematical methods for a reliable treat-
ment. By exposing the interactions between the velocities of solitons generated for this
equation and the impacts of gradient flow directions, it seeks to obtain a physically dis-
tinct viewpoint. Furthermore, with the assistance of bilinear formalism, a direct method is
utilized for obtaining solitary wave and rogue wave solutions employing certain auxiliary
functions [10]. As such, there have simply been two different types of solitons. The first is
called an accelerated soliton, which originates from one side in a distant time and returns
to that side at the same speed in the distant future. The second was a trapped soliton, which
oscillated repeatedly in the same direction around a fixed point in space. Boomeron was
the first, and Trappon was the second. This led to the derivation of the classical Zoomeron
equation [16]. The non-linear partial differential Zoomeron equation is,(

Fxy

F

)
tt

−
(
Fxy

F

)
xx

+ 2
(
F2
)
xt

= 0, (2. 1)

were, F(x,y, t) represents the magnitude of a soliton, x, and y denote the positional
components, and t represents the time component. In this study, we execute an in-depth
examination of the (2+1)-D Zoomeron equation, utilising new mathematical methods to
identify the complex solutions that emerge in this enlarged framework. Our intention is to
make an important addition to the rapidly evolving field of nonlinear dynamics by provid-
ing both theoretical understanding of the behaviour of waves and solitons and prospective
applications in a variety of interdisciplinary fields. We seek to learn more about dynamic
systems in higher dimensions and discover new aspects of nonlinear processes as we work
through the difficulties of the (2+1)-D Zoomeron equation [37].

3. REPRESENTATION OF THE ANALYTICAL METHODS

The suggested approach is efficaciously relevant to complex non-linear utilize systems:

A(F,Fx,Ft,Fxt,Fxx, ...) = 0, (3. 2)

where, A is the polynomial function in F, and F(x, t)is in fact an undefined function. Its
impartial variables are temporal and spatial.

C(K,K′,K′′, ...) = 0. (3. 3)

By simply taking the use of the given transformation:

F(x, t) = K(δ), (3. 4)
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were, δ = ψx− ϕt.
To set up a travelling wave transformation to reap the effects of Eq. ( 2. 1 ).

F(x, t) = K(δ), δ = x+ ϵ0y − ϵ1t. (3. 5)

where, ϵ0 is constant and ϵ0 is wave speed. Applying the formerly mentioned travelling
wave transformation inside Eq. ( 3. 2 ), and get the ODE,

ϵ0
(
ϵ21 − 1

)
K

′′
− 2ϵ1K3 −QK = 0. (3. 6)

3.1. Sardar sub-equation method. Consider Eq. ( 3. 3 ) have the solutions as follow
[3, 35]:

V(ζ) =
M∑
j=0

[
ΛjΩ

j(ζ)

]
, (3. 7)

where Λj(0 ≤ j ≤M) are constants.

(Ω
′
(ζ))2 = G+ FΩ2(ζ) + Ω4(ζ)), (3. 8)

where G and F are real constants and Eq.( 3. 8 ) yields the sets of solutions as:
Case 1: When F > 0 and G = 0, then

Ω±
1 (ζ) = ±

√
−Fpqsechpq(

√
Fζ), (3. 9)

Ω±
2 (ζ) = ±

√
−Fpqcscpq(

√
Fζ), (3. 10)

where,

sechpq(ζ) =
2

peζ + qeζ
, cschpq(ζ) =

2

peζ + qeζ
. (3. 11)

Case 2: When F < 0 and G = 0, then

Ω±
3 (ζ) = ±

√
−Fpqsechpq(

√
−Fζ), (3. 12)

Ω±
4 (ζ) = ±

√
−Fpqcscpq(

√
−Fζ), (3. 13)

where,

sechpq(ζ) =
2

peiζ + qe−iζ
, cschpq(ζ) =

2i
peiζ + qe−iζ

. (3. 14)

Case 3: When F < 0 and G=a2

4b then,

Ω±
5 (ζ) = ±

√
−F

2
tanhpq(

√
−F

2
ζ), (3. 15)

Ω±
6 (ζ) = ±

√
−F

2
cothpq(

√
−F

2
ζ), (3. 16)

Ω±
7 (ζ) = ±

√
−F

2
(tanhpq(

√
−2Fζ)± i

√
pqsechpq(

√
−2Fζ)), (3. 17)
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Ω±
8 (ζ) = ±

√
−F

2
(cothpq(

√
−2Fζ)± i

√
pqcschpq(

√
−2Fζ)), (3. 18)

Ω±
9 (ζ) = ±

√
−F

8
(tanhpq(

√
−F

8
ζ) + cothpq(

√
−F

8
ζ)), (3. 19)

where,

tanhpq(ζ) =
peζ − qe−ζ

peζ + qe−ζ
, cothpq(ζ) =

peζ + qe−ζ

peζ − qe−ζ
. (3. 20)

Case 4: When F > 0 and G=a2

4 then,

Ω±
10(ζ) = ±

√
F

2
tanhpq(

√
F

2
ζ), (3. 21)

Ω±
11(ζ) = ±

√
F

2
cotpq(

√
F

2
ζ), (3. 22)

Ω±
12(ζ) = ±

√
F

2
(tanpq(

√
2Fζ)±√

pqsecpq(
√

2Fζ)), (3. 23)

Ω±
13(ζ) = ±

√
F

2
(cotpq(

√
2Fζ)±√

pqcscpq(
√
2Fζ)), (3. 24)

Ω±
14(ζ) = ±

√
F

8
((tanpq(

√
F

8
ζ) + cotpq(

√
F

8
ζ)), (3. 25)

where,

tanpq(ζ) = −ipe
iζ − qe−iζ

peiζ + qe−iζ
, cotpq(ζ) = i

peiζ + qe−iζ

peiζ − qe−iζ
. (3. 26)

3.1.1. Applications of Sardar sub-equation Method: To achieve the soliton wave structures
of (2+1) D Zoomeron Model, the SSM is applied on Eq. ( 3. 6 ). By balance rule on terms
of K′′

and K3 in Eq. ( 3. 6 ), gives Q = 1, so Eq. ( 3. 7 ) changes to

V (ζ) = e0 + e1Ω(ζ), (3. 27)

where e0, e1 are constants. Replacing the Eq.( 3. 27 ) along with Eq. ( 3. 8 ) into Eq. ( 3.
6 ), and gets the set of equations in ϵ0, ϵ1, and Q. On resolving the system of equations, to
attain

Q = Fϵ0(ϵ
2
1 − 1), e0 = 0, e1 = ±

√
ϵ0(ϵ21 − 1)

ϵ1
. (3. 28)
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Case 1: When F > 0 and G = 0 then,

K±
1 (x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
±
√
−Fpqsechpq(

√
Fζ), (3. 29)

K±
2 (x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
±
√
−Fpqcscpq(

√
Fζ). (3. 30)

Case 2: When F < 0 and G = 0 then,

K±
3 (x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
±
√
−Fpqsechpq(

√
−Fζ), (3. 31)

K±
4 (x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
±
√

−Fpqcscpq(
√
−Fζ). (3. 32)

Case 3: When F < 0 and G=a2

4b then,

K±
5 (x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
±
√

−F
2
tanhpq(

√
−F

2
ζ), (3. 33)

K±
6 (x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
±
√
−F

2
cothpq(

√
−F

2
ζ), (3. 34)

K±
7 (x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
± i

√
pqsechpq(

√
−2Fζ)), (3. 35)

K±
8 (x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
± i

√
pqcschpq(

√
−2Fζ)), (3. 36)

K±
9 (x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
± (

√
−F

8
(tanhpq(

√
−F

8
ζ) + cothpq(

√
−F

8
ζ)))(3. 37)

Case 4: When F > 0 and G=a2

4 then,

K±
10(x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
±
√
F

2
tanhpq(

√
F

2
ζ), (3. 38)

K±
11(x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
±
√
F

2
cotpq(

√
F

2
ζ), (3. 39)
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K±
12(x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
± (

√
F

2
(tanpq(

√
2Fζ)±√

pqsecpq(
√

2Fζ))), (3. 40)

K±
13(x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
± (

√
F

2
(cotpq(

√
2Fζ)±√

pqcscpq(
√
2Fζ))), (3. 41)

K±
14(x, y, t) = ±

√
ϵ0(ϵ21 − 1)

ϵ1
± (

√
F

8
((tanpq(

√
F

8
ζ) + cotpq(

√
F

8
ζ))). (3. 42)
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(A) Three-dimensional visual-
ization

(B) Contour visualization (C) Two-dimensional visualiza-
tion

(D) Three-dimensional visual-
ization

(E) Contour visualization (F) Two-dimensional visualiza-
tion

(G) Three-dimensional visual-
ization

(H) Contour visualization (I) Two-dimensional visualiza-
tion

FIGURE 1. The solution K1(x, y, t) is represented in 3D ,2D and contour
plot.
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(A) Three-dimensional visual-
ization

(B) Contour visualization (C) Two-dimensional visualiza-
tion

(D) Three-dimensional visual-
ization

(E) Contour visualization (F) Two-dimensional visualiza-
tion

(G) Three-dimensional visual-
ization

(H) Contour visualization (I) Two-dimensional visualiza-
tion

FIGURE 2. The solution of K13(x, y, t) is represented in 3D, 2D, and
contour plots.
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3.2. New extended direct algebraic method. Suppose that Eq. ( 3. 3 ) has the solution
of the form given in Eq. ( 3. 4 ) [7, 12],

K(δ) =

n∑
i=0

[
ri(Z(δ))i

]
, (3. 43)

and

Z′(δ) = ln[ϱ]
(
α+ ßZ(δ) + ℓZ2(δ)

)
, ϱ ̸= (0, 1), (3. 44)

Eq. ( 3. 44 ) has extended roots in several families by selecting parameters where α, ß, and
ℓ represent the actual values.

Group 1: When ß2 − 4αℓ < 0, and ℓ ̸= 0,

Z1(δ) = − ß

2ℓ
+

√
−X

2ℓ
tanϱ

(√
−X

2
δ

)
, (3. 45)

Z2(δ) = − ß

2ℓ
−

√
−X

2ℓ
cotϱ

(√
−X

2
δ

)
, (3. 46)

Z3(δ) = − ß

2ℓ
+

√
−X

2ℓ

(
tanϱ

(√
−Xδ

)
±
√
mn secϱ

(√
−Xδ

))
, (3. 47)

Z4(δ) = − ß

2ℓ
+

√
−X

2ℓ

(
cotϱ

(√
−Xδ

)
±

√
mn cscϱ

(√
−Xδ

))
, (3. 48)

Z5(δ) = − ß

2ℓ
+

√
−X

4ℓ

(
tanϱ

(√
−X

4
δ

)
− cotϱ

(√
−X

4
δ

))
. (3. 49)

Group 2: When ß2 − 4αℓ > 0, and ℓ ̸= 0,

Z6(δ) = − ß

2ℓ
−

√
X

2ℓ
tanhϱ

(√
X

2
ℓ

)
, (3. 50)

Z7(δ) = − ß

2ℓ
−

√
X

2ℓ
cothϱ

(√
X

2
ℓ

)
, (3. 51)

Z8(δ) = − ß

2ℓ
+

√
X

2ℓ

(
− tanhϱ

(√
Xδ
)
± i

√
mnsechϱ

(√
Xδ
))

, (3. 52)

Z9(δ) = − ß

2ℓ
+

√
X

2ℓ

(
− cothϱ

(√
Xδ
)
±

√
mncschϱ

(√
Xδ
))

, (3. 53)

Z10(δ) = − ß

2ℓ
−

√
X

4δ

(
tanhϱ

(√
X

4
δ

)
+ cothϱ

(√
X

4
δ

))
. (3. 54)
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Group 3: When αℓ > 0 and ß = 0,

Z11(δ) =

√
α

ℓ
tanϱ

(√
αℓδ
)
, (3. 55)

Z12(δ) = −
√
α

ℓ
cotϱ

(√
αℓδ
)
, (3. 56)

Z13(δ) =

√
α

ℓ

(
tanϱ

(
2
√
αℓδ
)
±

√
mn secϱ

(
2
√
αℓδ
))

, (3. 57)

Z14(δ) =

√
α

ℓ

(
− cotϱ

(
2
√
αℓδ
)
±

√
mn cscϱ

(
2
√
αℓδ
))

, (3. 58)

Z15(δ) =
1

2

√
α

ℓ

(
tanϱ

(√
αℓ

2
δ

)
− cotϱ

(√
αℓ

2
δ

))
. (3. 59)

Group 4: When αℓ < 0 and ß = 0,

Z16(δ) = −
√
−α
ℓ
tanhϱ

(√
−αℓδ

)
, (3. 60)

Z17(δ) = −
√

−α
ℓ
cothϱ

(√
−αℓδ

)
, (3. 61)

Z18(δ) =

√
−α
ℓ

(
− tanhϱ

(
2
√
−αℓδ

)
± i

√
mnsechϱ

(
2
√
−αℓδ

))
, (3. 62)

Z19(δ) =

√
−α
ℓ

(
− cothϱ

(
2
√
−αℓδ

)
±

√
mncschϱ

(
2
√
−αℓδ

))
, (3. 63)

Z20(δ) = −1

2

√
−α
ℓ

(
tanhϱ

(√
−αℓ
2

δ

)
+ cothϱ

(√
−αℓ
2

δ

))
. (3. 64)

Group 5: When ß = 0 and α = ℓ,

Z21(δ) = tanϱ (αℓ) , (3. 65)

Z22(δ) = − cotϱ (αℓ) , (3. 66)

Z23(δ) = tanϱ (2αℓ)±
√
mn secϱ (2αℓ) , (3. 67)

Z24(δ) = − cotϱ (2αℓ)±
√
mn cscϱ (2αℓ) , (3. 68)
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Z25(δ) =
1

2

(
tanϱ

(α
2
δ
)
− cotϱ

(α
2
δ
))

. (3. 69)

Group 6: When ß = 0 and ℓ = −α,

Z26(δ) = − tanhϱ (αδ) , (3. 70)

Z27(δ) = − cothϱ (αδ) , (3. 71)

Z28(δ) = − tanhϱ (2αδ)± i
√
mnsechϱ (2αδ) , (3. 72)

Z29(δ) = − cotϱ (2αδ)±
√
mn cschϱ (2αδ) , (3. 73)

Z30(δ) = −1

2

(
tanhϱ

(α
2
δ
)
+ cothϱ

(α
2
δ
))

. (3. 74)

Group 7: When ß2 = 4αℓ,

Z31(δ) =
−2α(ßδ ln[ϱ] + 2)

ß2δ ln[ϱ]
. (3. 75)

Group 8: When α = pq, (q ̸= 0), ß = p, and ℓ = 0,

Z32(δ) = ϱpδ − q. (3. 76)

Group 9: When ß = ℓ = 0,

Z33(δ) = αδ ln[ϱ]. (3. 77)

Group 10: When ß = α = 0,

Z34(δ) =
−1

ℓδ ln[ϱ]
. (3. 78)

Group 11: When α = 0 and ß ̸= 0,

Z35(δ) = − mß

ℓ (coshϱ (ßδ)− sinhϱ (ßδ) +m)
, (3. 79)

Z36(δ) = − ß (sinhϱ (ßδ) + coshϱ (ßδ))

ℓ (sinhϱ (ßδ) + coshϱ (ßδ) + n)
. (3. 80)

Group 12: When ℓ = pq, (q ̸= 0), ß = p, and α = 0,

Z37(δ) = − mϱpδ

m− qnϱpδ
, (3. 81)

sinhϱ(δ) =
mϱδ − nϱ−δ

2
, coshϱ(δ) =

mϱδ + nϱ−δ

2
,
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tanhϱ(δ) =
mϱδ − nϱ−δ

mϱδ + nϱ−δ
, cothϱ(δ) =

mϱδ + nϱ−δ

mϱδ − nϱ−δ
,

sechϱ(δ) =
2

mϱδ + nϱ−δ
, cschϱ(δ) =

2

mϱδ − nϱ−δ
,

sinϱ(δ) =
mϱiδ − nϱ−iδ

2i
, cosϱ(δ) =

mϱiδ + nϱ−iδ

2
,

tanϱ(δ) = −imϱ
iδ − nϱ−iδ

mϱiδ + nϱ−iδ
, cotϱ(δ) = i

mκiδ + nϱ−iδ

mϱiδ − nϱ−iδ
,

where, X = ß2 − 4αℓ and m,n > 0 are variables experiencing constant deception.

3.2.1. Application of new extended direct algebraic method. There is an assumed new
expanded direct algebraic method. To generate a traveling wave transformation to obtain
effects of Eq. ( 2. 1 ).

F(x, t) = K(δ), δ = x+ ϵ0y − ϵ1t. (3. 82)

Utilizing the formerly mentioned travelling wave transformation inside Eq. ( 3. 2 ), and get
the ODE,

ϵ0
(
ϵ21 − 1

)
K

′′
− 2ϵ1K3 −QK = 0. (3. 83)

By using the balancing rule K3 and K′′
to get J = 1, so the predicted solution in Eq.( 3. 5

) is truncated as,

K(δ) = a0 + a1Z(δ). (3. 84)

Next, put the solution from Eq. ( 3. 84 ) into Eq. ( 3. 83 ) and calculate the coefficients for
the various powers.

Z(δ)0 : ϵ0a1ß (ln (ϱ))
2
α ϵ1

2 − ϵ0a1ß (ln (ϱ))
2
α− 2, ϵ1 a0

3 −Qa0,

Z(δ)1 : ϵ0a1ß
2 (ln (ϱ))

2
ϵ1

2 − ϵ0a1ß
2 (ln (ϱ))

2
+ 2 ϵ0a1ℓ (ln (ϱ))

2
α ϵ1

2 − 2 ϵ0a1ℓ (ln (ϱ))
2
α

− 6 ϵ1 a0
2a1 −Qa1,

Z(δ)2 : 3 ϵ0a1ß (ln (ϱ))
2
ℓ ϵ1

2 − 3 ϵ0a1ß (ln (ϱ))
2
ℓ− 6 ϵ0 a0a1

2,

Z(δ)3 : 2 ϵ0a1ℓ
2 ln (ϱ)

2
ϵ1

2 − 2 ϵ0a1ℓ
2 ln (ϱ)

2 − 2 ϵ1 a1
3.

(3. 85)

The system explained in Eq.( 3. 85 ) is solved with the help of the Mathematica.
Class 1:

[
a1 = ±2ι

√
Q

2ϵ1X
ℓ, a0 = ±ι

√
Q

2ϵ1X
ß, ϵ0 =

2Q

X ln ϱ2(1− ϵ21)

]
. (3. 86)

To obtain the general solution for Eq.( 2. 1 ), insert Eq.( 3. 86 ) into Eq. ( 3. 84 ):
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K(x, y, t) = ±ι
√

Q

2ϵ1X
ß± 2ι

√
Q

2ϵ1X
ℓ[Z(δ)], (3. 87)

where,

X = ß2 − 4αℓ. (3. 88)

To decide on solutions for the use of (NEAM), we consciousness entirely on the primary
set and punctiliously discover all answers in diverse cases as defined below:

Set 1: If ß2 − 4αℓ < 0, and ℓ ̸= 0, the following describes how mixed trigonometric
solutions are formed.

K1(x, y, t) = ∓
√

Q

2ϵ1
tanϱ

(√
−X

2
(x+ ϵ0y − ϵ1t)

)
, (3. 89)

K2(x, y, t) = ±
√

Q

2ϵ1
cotϱ

(√
−X

2
(x+ ϵ0y − ϵ1t)

)
, (3. 90)

K3(x, y, t) = ∓
√

Q

2ϵ1

(
tanϱ

(√
−X (x+ ϵ0y − ϵ1t)

)
±
√
mn secϱ

(√
−X (x+ ϵ0y − ϵ1t)

))
,

(3. 91)

K4(x, y, t) = ∓
√

Q

2ϵ1

(
cotϱ

(√
−X (x+ ϵ0y − ϵ1t)

)
±
√
mn cscϱ

(√
−X (x+ ϵ0y − ϵ1t)

))
,

(3. 92)

K5(x, y, t) = ∓1

2

√
Q

2ϵ1

(
tanϱ

(√
−X

4
(x+ ϵ0y − ϵ1t)

)
− cotϱ

(√
−X

4
(x+ ϵ0y − ϵ1t)

))
.

(3. 93)

Set 2: If ß2 − 4αℓ > 0, and ℓ ̸= 0, the obtain solutions in the various forms mentioned
below.
When a shock solution is obtain as,

K6(x, y, t) = ∓ι
√

Q

2ϵ1

(
tanhϱ

(√
X

2
(x+ ϵ0y − ϵ1t)

))
. (3. 94)

Accordingly, the singular solution is,

K7(x, y, t) = ∓ι
√

Q

2ϵ1

(
cothϱ

(√
X

2
(x+ ϵ0y − ϵ1t)

))
. (3. 95)
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To find a complex mixed solitary wave solution,

K8(x, y, t) = ±ι
√

Q

2ϵ1

(
− tanhϱ

(√
X (x+ ϵ0y − ϵ1t)

)
± i

√
mnϱ

(√
X (x+ ϵ0y − ϵ1t)

))
.

(3. 96)

This is the method used to obtain the mixed singular result,

K9(x, y, t) = ±ι
√

Q

2ϵ1

(
− cothϱ

(√
X (x+ ϵ0y − ϵ1t)

)
±
√
mnϱ

(√
X (x+ ϵ0y − ϵ1t)

))
.

(3. 97)

We get mixed shock singular solutions in the following format,

K10(x, y, t) = ∓ ι

2

√
Q

2ϵ1

(
tanhϱ

(√
X

4
(x+ ϵ0y − ϵ1t)

)

+ cothϱ

(√
X

4

(
x+ ϵ0y − ϵ1t

)))
,

(3. 98)

Set 3: If αℓ > 0 and ß = 0, In the form of trigonometric expressions, we have the
solution,

K11(x, y, t) = ±
√
Q

2ϵ
tanϱ

(√
αℓ (x+ ϵ0y − ϵ1t)

)
, (3. 99)

K12(x, y, t) = ∓
√
Q

2ϵ
cotϱ

(√
αℓ (x+ ϵ0y − ϵ1t)

)
. (3. 100)

These solutions initiate the mixed trigonometric solutions,

K13(x, y, t) = ±
√

Q

2ϵ1

(
tanϱ

(
2
√
αℓ (x+ ϵ0y − ϵ1t)

)
±
√
mn secϱ

(
2
√
αℓ (x+ ϵ0y − ϵ1t)

))
,

(3. 101)

K14(x, y, t) = ±
√

Q

2ϵ1

(
− cotϱ

(
2
√
αℓ (x+ ϵ0y − ϵ1t)

)
±
√
mn cscϱ

(
2
√
αℓ (x+ ϵ0y − ϵ1t)

))
,

(3. 102)

K15(x, y, t) = ±1

2

√
Q

2ϵ1

(
tanϱ

(√
αℓ

2
(x+ ϵ0y − ϵ1t)

)

− cotϱ

(√
αℓ

2
(x+ ϵ0y − ϵ1t)

))
.

(3. 103)
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Set 4: If αℓ < 0 and ß = 0, we obtain solutions identified in the form of shock solutions,

K16(x, y, t) = ±
√

Q

2ϵ1
tanhϱ

(√
−αℓ (x+ ϵ0y − ϵ1t)

)
, (3. 104)

The way to obtain the unique solution is as follows,

K17(x, y, t) = ±
√

Q

2ϵ1
cothϱ

(√
−αℓ (x+ ϵ0y − ϵ1t)

)
, (3. 105)

The unique solutions for complex combinations are generated as,

K18(x, y, t) = ±
√

Q

2ϵ1

(
− tanhϱ

(
2
√
−αℓ (x+ ϵ0y − ϵ1t)

)
± i

√
mnϱ

(
2
√
−αℓ (x+ ϵ0y − ϵ1t)

)
,

(3. 106)

K19(x, y, t) = ±
√

Q

2ϵ1

(
− cothϱ

(
2
√
−αℓ (x+ ϵ0y − ϵ1t)

)
±
√
mnϱ

(
2
√
−αℓ (x+ ϵ0y − ϵ1t)

))
,

(3. 107)

K20(x, y, t) = ±1

2

√
Q

2ϵ1

(
tanhϱ

(√
−αℓ
2

(x+ ϵ0y − ϵ1t)

)
+ cothϱ

(√
−αℓ
2

(x+ ϵ0y − ϵ1t)

))
.

(3. 108)

Set 5: If ß = 0 and α = ℓ, we examine periodic and mixed periodic set solutions by
analysing the category of periodic and mixed periodic solutions,

K21(x, y, t) = ±
√
Q

2ϵ
(tanϱ (ℓ (x+ ϵ0y − ϵ1t))) , (3. 109)

K22(x, y, t) = ∓
√

Q

2ϵ1
(cotϱ (ℓ (x+ ϵ0y − ϵ1t))) , (3. 110)

K23(x, y, t) = ±
√

Q

2ϵ1

(
tanϱ (2ℓ (x+ ϵ0y − ϵ1t))

±
√
mn secϱ (2ℓ (x+ ϵ0y − ϵ1t))

)
,

(3. 111)

K24(x, y, t) = ±
√

Q

2ϵ1

(
− cotϱ (2ℓ (x+ ϵ0y − ϵ1t))

±
√
mn cscϱ

(
2ℓ (x+ ϵ0y − ϵ1t)

))
,

(3. 112)
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K25(x, y, t) = ±1

2

√
Q

2ϵ1

(
tanϱ

(
ℓ

2
(x+ ϵ0y − ϵ1t)

)
− cotϱ

(
ℓ

2
(x+ ϵ0y − ϵ1t)

))
.

(3. 113)

Set 6: If ß = 0 and ℓ = −α, to produce the single and mixed-wave compositions in the
following category,

K26(x, y, t) = ±ι
√

Q

2ϵ1
tanhϱ (α (x+ ϵ0y − ϵ1t)) , (3. 114)

K27(x, y, t) = ±ι
√

Q

2ϵ1
cothϱ (α (x+ ϵ0y − ϵ1t)) , (3. 115)

K28(x, y, t) = ∓ι
√

Q

2ϵ1

(
− tanhϱ (2α (x+ ϵ0y − ϵ1t))

± i
√
mnϱ

(
2α (x+ ϵ0y − ϵ1t)

))
,

(3. 116)

K29(x, y, t) = ∓ι
√

Q

2ϵ1

(
− cotϱ (2α (x+ ϵ0y − ϵ1t))

±
√
mnϱ

(
2α (x+ ϵ0y − ϵ1t)

))
,

(3. 117)

K30(x, y, t) = ± ι

2

√
Q

2ϵ1

(
tanhϱ

(α
2
(x+ ϵ0y − ϵ1t)

)
+ cothϱ

(α
2
(x+ ϵ0y − ϵ1t)

))
.

(3. 118)

The (Set 7), (Set 8), (Set 9), and (Set 10) have constant results.

Set 11: If α = 0 , ß ̸= 0, The following gives the mixed hyperbolic solution,

K35(x, y, t) = ±ι
√

Q

2ϵ1[
1−

(
2m

ℓ (coshϱ (ß (x+ ϵ0y − ϵ1t))− sinhϱ (ß (x+ ϵ0y − ϵ1t)) +m)

)] (3. 119)

K36(x, y, t) = ±ι
√

Q

2ϵ1[
1− 2

(
ß (sinhϱ (ß (x+ ϵ0y − ϵ1t)) + coshϱ (ß (x+ ϵ0y − ϵ1t)))

ℓ (sinhϱ (ß (x+ ϵ0y − ϵ1t)) + coshϱ (ß (x+ ϵ0y − ϵ1t)) + n)

)]
,

(3. 120)
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Set 12: If ℓ = pq, (q ̸= 0), ß = p, and α = 0, In the following, we derive the plane
solution,

K37(x, y, t) = ±ι
√

Q

2ϵ1

[
1−

(
2mϱp(x+ϵ0y−ϵ1t)

m− qnϱp(x+ϵ0y−ϵ1t)

)]
. (3. 121)
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(A) Three-dimensional visual-
ization

(B) Contour visualization (C) Two-dimensional visualiza-
tion

(D) Three-dimensional visual-
ization

(E) Contour visualization (F) Two-dimensional visualiza-
tion

(G) Three-dimensional visual-
ization

(H) Contour visualization (I) Two-dimensional visualiza-
tion

FIGURE 3. K18(x, t) visual representations of the solution are provided
in contour plots, two dimensions (2D), and three dimensions (3D).
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(A) Three-dimensional visual-
ization

(B) Contour visualization (C) Two-dimensional visualiza-
tion

(D) Three-dimensional visual-
ization

(E) Contour visualization (F) Two-dimensional visualiza-
tion

(G) Three-dimensional visual-
ization

(H) Contour visualization (I) Two-dimensional visualiza-
tion

FIGURE 4. K35(x, t) visual solutions are provided in two dimensions
(2D), three dimensions (3D), and contour plots..
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4. RESULTS AND DISCUSSION

The researchers examined the most notable applications of the (2+1)-D Zoomeron Model.
The Sardar sub-equation method and the new extended direct algebraic method will find
considerable value in the results of this paper.
Figure. 1 represents the composite multi-crested solutions with decay and bright soliton at
variation in e1 = 0.6, e1 = 0.06, and e1 = 0.006 and fixed the values e0 = 0.2, F = 0.3,
p = 0.1, and q = 0.1. For more visualization, contour plots and 3D, while 2D shows a soli-
ton solution. These solutions describe wave packets that initially form multiple crests but
gradually diminish in amplitude over time, resembling energy dissipation in optical fibers
or plasma waves, where nonlinearity and dispersion balance each other.
Figure. 2 represents the periodic solitary wave with different amplitude, by changing the
values of e0 = 0.009, e0 = 0.09, e0 = 0.9 and fixed the values e0 = 0.7, F = 0.7,
p = 0.1, and q = 0.1. For more visualization, contour plots, in 3D, while 2D shows a soli-
ton solution. Periodic solitary waves with different amplitudes, appear in fluid dynamics
and nonlinear optics. These waves maintain a repetitive oscillatory pattern and can model
water waves in deep oceans or light pulses in photonic devices.
Figure. 3 illustrates the flat kink behavior of soliton solution with the parametric values
α = 0.001, l = 0.01, n = 0.3, m = 0.5, Q = 5, at wave velocity ϵ1 = 0.01, as increasing
the value of wave velocity same behavior can be seen. For more visualization, contour
plots and bright soliton can be seen, while 2D shows a bright singular soliton solution.
Kink behavior of soliton solutions, which represents a topological wave transition between
two distinct states. Such structures are observed in magnetic domain walls, Bose-Einstein
condensates, and signal propagation in nerve fibers.
Figure. 4 illustrates the anti-bell-shaped soliton structure with parametric values β = 0.8,
Q = 0.5, m = 0.9, Q = 5 by increasing the wave velocity, the same behavior is observed,
and the contour shows a dark soliton while 2D shows a dark singular soliton. These struc-
tures can be related to dark solitons in optical media, electron density depletion in plasmas,
or structural deformations in solid-state materials.

The (2+1)-dimensional Zoomeron equation plays a crucial role in explaining wave be-
havior in disciplines such as material physics, optics, and acoustics, where understanding
nonlinear interactions is essential. The visual representations generated in this study offer
critical insights into these complex wave phenomena, aiding in the interpretation of soliton
structures and their potential applications. These graphical depictions not only enhance our
comprehension of nonlinear wave mechanics but also provide a foundation for develop-
ing advanced technologies in wave-based communication, laser pulse shaping, and energy
transport systems.

Comparison of different solution types obtained in this study using the Sardar sub-
equation approach and the new extended direct algebraic method.



564 Umair Asghar

TABLE 1. Comparison of obtained solutions.

Methods Solution Type Characteristics

Sardar Sub-Equation Approach
Composite multi-crested
solutions with decay
and bright soliton

Localized,
decaying at infinity

Sardar Sub-Equation Approach
Periodic solitary wave
with different amplitude

Oscillatory with
varying amplitudes

New extended direct
algebraic method Flat kink soliton

Smooth transition
between two states

New extended direct
algebraic method Anti-bell-shaped soliton

Inverted profile
of flat kink

TABLE 2. Comparison of obtained solutions with previously reported
results in the literature.

Reference Method Solutions

Ullah et. al [34] Extended Jacobian elliptic function
Bright-dark breather waves
Singular breather waves

Yang et. al [36] Modified rational expansion method
Bright soliton
Dark soliton
Periodic soliton

Batool et. al [9] (G′

G2 )-expansion method Exact solutions

Zeng et. al [42] New extended auxiliary equation approach
Singular soliton
Periodic soliton

Novelty in This Work SSEM
NEDAM

New interaction patterns
and wave structures
Introduced anti-flat kink
and decay soliton solutions
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5. CONCLUSION

In this study, the Sardar sub-equation approach and a new extended direct algebraic
method are employed to investigate the (2+1)-dimensional Zoomeron model equation,
yielding a diverse set of solitary and traveling wave solutions. The accuracy of the ob-
tained results is rigorously verified using the computational software Mathematica. The
findings underscore the reliability and efficiency of both methodologies. The study reveals
a variety of novel wave structures, including anti-peaked decay solitons, periodic solitary
waves with varying amplitudes, flat kink solutions, and anti-flat kink solutions. These re-
sults provide valuable insights into nonlinear wave behavior, with significant implications
for applications in optics, fluid dynamics, and material science.

A key contribution of this work is the application of the new extended direct algebraic
method to the study of obliquely interacting surface waves, offering a fresh perspective on
nonlinear wave interactions. The graphical representations presented through 3D, 2D, and
contour plots further enhance the comprehension of these intricate waveforms, contributing
to both theoretical and applied research in wave propagation phenomena. Future research
may extend these methodologies to fractional-order nonlinear equations, facilitating the
study of nonlocal and memory-dependent systems. Additionally, exploring multi-soliton
interactions and collision dynamics within the framework of the Zoomeron model presents
an exciting avenue for further investigation.
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