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Abstract. In this paper, we formulate a reverse degree RDM-Polynomial
for graphs, along with differential operators and integral operators derived
from it. Reverse degree topological indices are also calculated using the
computed RDM-Polynomials. Numerical invariants known as topologi-
cal descriptors (TD’s) are essential for describing the molecular topology
of a particular molecular graph. This method has been utilized to de-
velop topological descriptors based on reverse degree. The present study
analyses and computes the relevant indices for triangular and rectangular
type-3 hex-derived networks. The results of this study provide researchers
and academics with new insights that pave the way for further research
and related discoveries.
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1. INTRODUCTION

A fascinating multidisciplinary area that combines graph theory with the chemical sci-
ences is called chemical graph theory [2]. Graph theory has been an essential tool for
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chemists, providing information through topological descriptors or indices [26]. Chemical
graphs, which give a structural depiction of chemical compounds, are frequently used to
simulate molecular structures. Vertices in this chemical graph represent the atoms, and
edges show the connections between them [15].

In recent years, cheminformatics, a field that connects mathematics, chemistry, and
information science, has seen tremendous growth [23]. To anticipate the biological and
physicochemical characteristics of chemical compounds, it facilitates the construction of
quantitative structure-activity relationships (QSAR’s) and quantitative structure-property
relationships (QSPR’s) [8]. Numerous indices, including the Wiener, Randic, Balaban, and
Zagreb indices, are used to predict and evaluate the chemical and physical characteristics
of chemical complexes [3].

In graph theory, it provides the source of fundamental symbols and terminology, such
as dλ, which denotes the degree of a vertex λ [12]. West et al. [24] define the degree of a
vertex as the number of edges incident to the vertex λ. This degree is represented by the
notation dλ or d(λ). TD, which stands for topological descriptors, are analytical techniques
used to study the structural properties of chemical graphs. Chemical graph structures are
converted into numerical values via these descriptors, which are graph invariants. In 1947,
Wiener introduced TD with an emphasis on trees. In his study, the usefulness of these
indices (W) in relating the physical characteristics of substances such as alcohols, alkanes,
and related compounds was emphasized [25].

The topological index of a chemical graph is a numerical value that helps character-
ize the physicochemical properties of that structure [1]. Graph-based topological indices
are generally grouped into three primary categories: degree-based, distance-based, and
counting-based indices [11].

In recent decades, QSPR studies of chemical structures have been extensively studied by
employing the outcomes of the graphs topological indices. This also significantly impacts
this area of study by contributing fruitful results [27]. This study has been enhanced by
computing various networks [22]. A successful approach to conducting QSAR and QSPR
investigations has been the use of a combination of topological indices and entropy mea-
sures [9]. It has been common practice to forecast the bioactivity of organic substances by
using physicochemical and topological indices [13].

The edges of chemical graphs show chemical bonds or interactions, while the vertices
indicate atoms or compounds. The structure of a graph is described by its topological de-
scriptors (TD), but certain graph features are measured by numerical graph invariants [14].
There has been a boom in studies in this area focussing on different molecular structures,
since QSPR investigations are more cost-effective than experimental compound assess-
ments [17].

In this paper, we compute reverse degree topological descriptors (TD) for various hex-
derived network configurations. The RDM-polynomial, which extends the framework
presented by Khan et al. [18], is a noteworthy addition of our work. It provides a new
analytical method for assessing TD.
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2. AIMS OF THE STUDY

The primary goal of this study is to provide the RDM-polynomial, a reverse degree-
based graph polynomial, in combination with differential and integral operators. These
operators are used to derive topological descriptors.

3. NOVELTY IN THE STUDY

We use a novel concept of reverse degree RDM-polynomial, which serves as a founda-
tion for deriving its differential and integral operators. These operators simplify the com-
putation of topological descriptors associated with the reverse degree of graph vertices. To
implement our approach, we generated molecular graphs for THDN3 and RHDN3, illus-
trated in Figure 4 and Figure 5.

4. MATERIAL AND METHODOLOGY

FIGURE 1. Hexagonal Meshes (a)HM2 and (b)HM3

4.1. Layout of third type hexagonal-derived networks. A hexagonal mesh can be formed
by utilizing a complete graph of order 3, commonly referred to as M3 in chemical graph
theory. These M3 graphs are widely known as oxide graphs in chemistry. When several
M3 graphs are combined, as shown in Figure 1, it results in the formation of more complex
network structures. By joining sixM3 graphs, one obtains the two-dimensional mesh graph
HM2, as demonstrated in Figure 1 (a). Furthermore, placing M3 graphs around HM gen-
erates the three-dimensional mesh graph HM3, depicted in Figure 1 (b). This technique,
first revisited by Chen et al. [7], involves enclosing each hexagon within an M3 graph to
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produce a hexagonal mesh structure. Notably, there is no known representation of a one-
dimensional hexagonal mesh graph. In related work, Abbas et al. [4] studied the metric
dimensions for hexagonal boron nitride, while Arnawa et al. and Fitriani et al. [5] high-
lighted the use of worksheet-based problems to demonstrate concepts in calculus. Balal et
al. [6] provided an insightful discussion on various topological structures. Hex-derived net-
works, a product of the Hex algorithm, have significantly transformed the field of chemistry
by aiding in the prediction of chemical interactions through machine learning models. They
are crucial for enhancing protein-ligand interaction studies, speeding up the drug discovery
process, and improving the virtual screening of potential compounds. These networks are
invaluable tools that contribute to accelerating breakthroughs in molecular and pharmaceu-
tical research. For computer scientists, understanding and calculating the multiplicative
topological characteristics of hex-derived networks is an essential task, as it enhances the
understanding of complex network topologies and facilitates the development of advanced
computational algorithms.

4.2. Algorithmic methodologies. A simple graph is defined as one that has neither loops
nor numerous edges. Chemical structures can be efficiently modelled using a basic graph
G, which is described by its vertex set V(G) and edge set E(G). The number of edges that
connect to a vertex ϕ is its degree, represented by d(ϕ). Kulli [20] proposed the idea of a
vertex’s reverse degree, which is described as

RD(ϕ) = δ(G)− d(ϕ) + 1,

where d(ϕ) represents the degree of vertex ϕ, RD(ϕ) is reverse degree of the vertex δ(G)
is the maximum degree of any vertex in the graph G.

We consider the set RD = {(l,m ∈ N×N) : 1 ≤ l ≤ m ≤ χ}. For a pair of vertices ϕ
and ψ with reverse degrees RD(ϕ) = l and RD(ψ) = m, we define RD(l,m) = {ϕψ ∈
E(G) : RD(ϕ) = l,RD(ψ) = m}.

Deutsch and Klavzar first proposed the idea of the M-Polynomial in 2014 [10]. The
closed-form structure of several degree-based topological indices can be found using this
polynomial [21]. M-Polynomial is recently studied by Khan et al. [19] . Building on this
concept, we introduced a novel notion of a polynomial, namely, a reverse degree-based
RDM-Polynomial, which was previously introduced by Hakami et al. [16] as follows:

RD M(G; ν, κ) =
∑
l≤m

µ(l,m)ν
lκm,

where ν and κ are variables corresponding to the earlier studies on M-Polynomials [16],
and µ(l,m) counts the number of edges ϕψ ∈ E(G) such that {RD(ϕ),RD(ψ)} = {l,m}.

The formulas connecting the RDM-Polynomial to the RD topological descriptors are
given in Table 1.

The operators in Table 1 are defined as follows
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Topological index Formula From RDM(G)
RDM1 (Dν + Dκ)(RD M(G))

∣∣
ν=κ=1

RDM2 (DνDκ)(RD M(G)
∣∣
ν=κ=1

RDF (D2
ν + D2

κ)(RD M(G)
∣∣
ν=κ=1

RDHM1 (Dν + Dκ)
2(RD M(G)

∣∣
ν=κ=1

RDHM2 (DνDκ)
2(RD M(G)

∣∣
ν=κ=1

RDσ (Dν − Dκ)
2(RD M(G))

∣∣
ν=κ=1

RD
mM2 (IνIκ)(RD M(G)

∣∣
ν=κ=1

RDReZG3 (DνDκ)(Dν + Dκ)(RD M(G)
∣∣
ν=κ=1

RDSDD (DνIκ + IνDκ)(RD M(G)
∣∣
ν=κ=1

RDH 2JIν(RD M(G)
∣∣
ν=κ=1

RDI IνJDνDκ(RD M(G)
∣∣
ν=κ=1

RDA I3νQ−2JD3
νD3

κ(RD M(G)
∣∣
ν=κ=1

TABLE 1. Formula for deriving topological descriptors from RDM-Polynomial

Dν = ν
∂(RD M(G; ν, κ))

∂ν
(4. 1)

Dκ = κ
∂(RD M(G; ν, κ))

∂κ
(4. 2)

Iν =

∫ ν

0

1

z
(RD M(G; z, κ))dz (4. 3)

Iκ =

∫ κ

0

1

z
(M(G; ν, z))dz (4. 4)

J(g(ν, κ)) = g(ν, ν) (4. 5)
Qα = ναg(ν, κ) (4. 6)
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FIGURE 2. Flow Chart for computation of RDM-Polynomial

FIGURE 3. Flow Chart for computation of Topological Descriptors
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5. RESULTS

This section presents the findings of the study, beginning with the derivation of analytical
formulas for various reverse degree-based topological descriptors associated with different
Hex-derived network structures. Figures 4-5 illustrate the structures of the hex-derived
networks of interest. We adopt the notation HDN3 to represent hex-derived networks,
THDN3 for triangular type-3 hex-derived network structures, and RHDN3 for rectangular
type-3 hex-derived network structures.

5.1. Triangular Type-3 Hex-Derived Network (THDN3). Consider THDN3 as the third
variation of the triangular hex-derived network with a dimension of n ≥ 4. The network
THDN3, formed by a hexagon and arranged in a triangular shape, is illustrated in Figure 5.
The edges of this network are categorized into six groups based on the degree of the vertices
at each end. The Reverse degree-based edge division of the triangular type-3 hex-derived
network is described in Table 2, using Figure 4.

FIGURE 4. Structure of THDN3
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RDE(λ,τ) Cardinality
E(15,15) (3r2 − 6r + 9)
E(15,9) (18r − 30)
E(15,1) (6r2 − 30r + 36)
E(9,9) (3r − 6)
E(9,1) (6r − 18)
E(1,1) ( 32r

2 − 21
2 r + 18)

TABLE 2. RD edge division of THDN3
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RDM-Polynomial for THDN3

Let THDN3 represent the graph of a triangular type-3 hex-derived network. Let RD(l,m)
denote the collection of all edges characterized by the reverse degree of their end vertices
ν and κ, and µl,m denote the count of edges in RD(l,m).

RD(l,m) = {ϕψ ∈ E(G) : RD(ϕ) = l, RD(ψ) = m}
RD(15, 15) = {ϕψ ∈ E(G) : RD(ϕ) = 15, RD(ψ) = 15}
RD(15, 9) = {ϕψ ∈ E(G) : RD(ϕ) = 15, RD(ψ) = 9}
RD(15, 1) = {ϕψ ∈ E(G) : RD(ϕ) = 15, RD(ψ) = 11}
RD(9, 9) = {ϕψ ∈ E(G) : RD(ϕ) = 9, RD(ψ) = 9}
RD(9, 1) = {ϕψ ∈ E(G) : RD(ϕ) = 9, RD(ψ) = 1}
RD(1, 1) = {ϕψ ∈ E(G) : RD(ϕ) = 1, RD(ψ) = 1}
From Figure 4 and Table 2, it is clear that
µ(15,15) = (3r2−6r+9), µ(15,9) = (18r−30), µ(15,1) = (6r2−30r+36), µ(9,9) = (3r−6),

µ(9,1) = (6r − 18), µ(1,1) = ( 32r
2 − 21

2 r + 18)

The RDM-Polynomial of HDN3 is computed as follow

RD M(THDN3) =
∑
l≤m

µ(l,m)ν
lκm

= µ(15,15)ν
15κ15 + µ(15,9)ν

15κ9 + µ(15,1)ν
15κ1 + µ(9,9)ν

9κ9 + µ(9,1)ν
9κ1 + µ(1,1)ν

1κ1

Putting values of µ(l,m), we get

RD M(THDN3; ν, κ) = (3r2 − 6r + 9)ν15κ15 + (18r − 30)ν15κ9 + (6r2 − 30r + 36)ν15κ1

+ (3r − 6)ν9κ9 + (6r − 18)ν9κ1 + (
3

2
r2 − 21

2
r + 18)ν1κ1 (5. 7)

• The differential operators for THDN3

Employing Table 1 with operators ( 4. 1 ) and ( 4. 2 ) on equation ( 5. 7 ), we get

Dν(RD M(THDN3; ν, κ)) = (45r2 − 90r + 135)ν15κ15 + (270r − 450)ν15κ9 + (90r2 − 450r + 540)ν15κ1

+ (27r − 54)ν9κ9 + (54r − 162)ν9κ1 + (
3

2
r2 − 21

2
r + 18)ν1κ1 (5. 8)

and

Dκ(RD M(THDN3; ν, κ)) = (45r2 − 90r + 135)ν15κ15 + (18r − 30)ν15κ9 + (6r2 − 30r + 36)ν15κ1

+ (27r − 54)ν9κ9 + (6r − 18)ν9κ1 + (
3

2
r2 − 21

2
r + 18)ν1κ1 (5. 9)

• The integral operators for THDN3

Employing Table 1 with operators ( 4. 3 ) and ( 4. 4 ) on equation ( 5. 7 ), we get
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Iν(RD M(THDN3; ν, κ)) =
1

15
(3r2 − 6r + 9)ν15κ15 +

1

15
(18r − 30)ν15κ9 +

1

15
(6r2 − 30r + 36)ν15κ1

+
1

9
(3r − 6)ν9κ9 +

1

9
(6r − 18)ν9κ1 + (

3

2
r2 − 21

2
r + 18)ν1κ1 (5. 10)

and

Iκ(RD M(THDN3; ν, κ)) =
1

15
(3r2 − 6r + 9)ν15κ15 +

1

9
(18r − 30)ν15κ9 + (6r2 − 30r + 36)ν15κ1

+
1

9
(3r − 6)ν9κ9 + (6r − 18)ν9κ1 + (

3

2
r2 − 21

2
r + 18)ν1κ1 (5. 11)

• Topological Indices of THDN3 using RDM-Polynomial
Reverse 1st Zagreb Index of THDN3

Considering Table 1, the addition of equation ( 5. 8 ) and equation ( 5. 9 ) yields

RDM1(THDN3) = (Dν + Dκ)(RD M(THDN3; ν, κ))
∣∣
ν=κ=1

RDM1(THDN3) = 189r2 − 135r − 126

Reverse 2nd Zagreb Index of THDN3

Apply differential operator on equation ( 5. 9 ) alongwith Table 1 at ν = κ = 1, we have

RDM2(THDN3) = (DνDκ)(RD M(THDN3; ν, κ))
∣∣
ν=κ=1

RDM2(THDN3) =
1533

2
r2 +

1833

2
r − 2115

Reverse Forgotten Index of THDN3

Considering Table 1, apply differential operators to equations ( 5. 8 ) and ( 5. 9 ), and upon
adding at ν = κ = 1, we obtain

RDF (THDN3) = (D2
ν + D2

κ)(RD M(THDN3; ν, κ))
∣∣
ν=κ=1

RDF (THDN3) = 2709r2 − 3015r + 594

Reverse Hyper 1st Zagreb Index of THDN3

Employing differential operator on equation ( 5. 8 ) and equation ( 5. 9 ) along with Table
1 at ν = κ = 1, we get

RDHM1(THDN3) = (Dν + Dκ)
2(RD M(THDN3; ν, κ))

∣∣
ν=κ=1

RDHM1(THDN3) = 4242r2 − 1182r − 3636

Reduced Hyper 2nd Zagreb Index of THDN3

Employing differential operator D2
ν on equation ( 5. 9 ) along with Table 1 at ν = κ = 1,

we get

RDHM2(THDN3) = (D2
νD2

κ)(RD M(THDN3; ν, κ))
∣∣
ν=κ=1

RDHM2(THDN3) =
306453

2
r2 +

75417

2
r − 123831
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Reverse Sigma Index of THDN3

Employing differential operator on equation ( 5. 8 ) and equation ( 5. 9 ) along with Table
1 at ν = κ = 1 and after some simplification, we get

RD σ(THDN3) = (Dν − Dκ)
2(RD M(THDN3; ν, κ))

∣∣
ν=κ=1

RD σ(THDN3) = 1176r2 − 4848r + 4824

Reverse Second Modified Zagreb Index of THDN3

By applying Integral operators on equation ( 5. 11 ) along with Table 1 at ν = κ = 1

RD
mM2(THDN3) = (IνIκ)(RD M(THDN3; ν, κ))

∣∣
ν=κ=1

RD
mM2(THDN3) =

287

150
r2 − 15781

1350
r +

12247

675

Reverse Redefined Third Zagreb Index of THDN3

By adding equation ( 5. 8 ) and equation ( 5. 9 ) and apply differential operators along with
Table 1 at ν = κ = 1, we get

RDReZG3(THDN3) = (DνDκ)(Dν + Dκ)(RD M(HDN3; ν, κ))
∣∣
ν=κ=1

RDReZG3(THDN3) = 21693r2 + 15513r − 38142

Reverse Symmetric Division Degree Index of THDN3

Apply differential operator ( 4. 1 ) and integral operator ( 4. 3 ) on equation ( 5. 9 ) and
equation ( 5. 11 ) respectively along with Table 1 at ν = κ = 1, we have

RD SDD(THDN3) = (DνIκ + IνDκ)(RD M(THDN3; ν, κ))
∣∣
ν=κ=1

RD SDD(THDN3) =
497

5
r2 − 5753

15
r +

1762

5

Reverse Harmonic Index of THDN3

Apply operator ( 4. 6 ) on equation ( 5. 7 ) then operating integral operator Iν ( 4. 3 ) along
with Table 1 at ν = κ = 1, we have

RDH(THDN3) = 2IνJRD M(THDN3; ν, κ)
∣∣
ν=κ=1

RDH(THDN3) =
49 r2

20
− 697 r

60
+

49

3

Reverse Inverse Sum Index of THDN3

Apply differential operator Dν( 4. 1 ) on equation ( 5. 9 ) then operating integral operator
Iν( 4. 3 ) along with Table 1 at ν = κ = 1, we have

RD I(THDN3) = IνJDνDκ(RD M(THDN3; ν, κ))
∣∣
l=1

RD I(THDN3) =
231 r2

8
+

1671 r

40
− 1017

10

5.2. Rectangular Type-3 Hex-Derived Network RHDN3. Figure 5 illustrates the n-
dimensional, type-3 rectangular hex-derived network RHDN3. In the rectangular hex-
derived network RHDN3, the number of end vertices determines how the edge set is
divided into nine parts. Based on Figure 5, Table 3 outlines the RD edge division for
RHDN3.
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FIGURE 5. Structure of RHDN3

RDE(λ,τ) Cardinality
E(15,15) (6r2 − 12r + 10)
E(15,12) 8
E(15,9) (24r − 44)
E(15,1) (12r2 − 48r + 48)
E(12,9) 4
E(12,1) 2
E(9,9) (4r − 10)
E(9,1) (8r − 20)
E(1,1) (3r2 − 16r + 21)

TABLE 3. RD edge division of RHDN3

RDM-Polynomial for RHDN3

Let RHDN3 be a graph of a rectangular type-3 hex-derived network. Let RD(l,m) denote
the collection of all edges characterized by the reverse degree of their end vertices ν and κ,
and µ(l,m) denote the count of edges in RD(l,m).

RD(l,m) = {ϕψ ∈ E(G) : RD(ϕ) = l, RD(ψ) = m}
RD(15, 15) = {ϕψ ∈ E(G) : RD(ϕ) = 15, RD(ψ) = 15}
RD(15, 12) = {ϕψ ∈ E(G) : RD(ϕ) = 15, RD(ψ) = 12}
RD(15, 9) = {ϕψ ∈ E(G) : RD(ϕ) = 15, RD(ψ) = 9}
RD(15, 1) = {ϕψ ∈ E(G) : RD(ϕ) = 15, RD(ψ) = 11}
RD(12, 9) = {ϕψ ∈ E(G) : RD(ϕ) = 12, RD(ψ) = 9}
RD(12, 1) = {ϕψ ∈ E(G) : RD(ϕ) = 12, RD(ψ) = 1}
RD(9, 9) = {ϕψ ∈ E(G) : RD(ϕ) = 9, RD(ψ) = 9}
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RD(9, 1) = {ϕψ ∈ E(G) : RD(ϕ) = 9, RD(ψ) = 1}
RD(1, 1) = {ϕψ ∈ E(G) : RD(ϕ) = 1, RD(ψ) = 1}
From Figure 5 and Table 3, it is clear that

µ(15,15) = (6r2−12r+10), µ(15,12) = 8, µ(15,9) = (24r−44), µ(15,1) = (12r2−48r+48),
µ(12,9) = 4 , µ(12,1) = 2 , µ(9,9) = (4r − 10), µ(9,1) = (8r − 20), µ(1,1) = (3r2 − 16r + 21)

The RDM-Polynomial of HDN3 is computed as follows:

RD M(HDN3) =
∑
l≤m

µ(l,m)ν
lκm

Putting values of µ(l,m), we get

RD M(RHDN3; ν, κ) = (6r2 − 12r + 10)ν15κ15 + 8ν15κ12 + (24r − 44)ν15κ9

+ (12r2 − 48r + 48)ν15κ1 + 4ν12κ9 + 2ν12κ1

+ (4r − 10)ν9κ9 + (8r − 20)ν9κ1

+ (3r2 − 16r + 21)ν1κ1 (5. 12)

• The differential operators for RHDN3

Using Table 1 along with operators ( 4. 1 ) and ( 4. 2 ) applied on equation ( 5. 12 ), we get

Dν(RD M(RHDN3; ν, κ)) = (90r2 − 180r + 150)ν15κ15 + 120ν15κ12 + (360r − 660)ν15κ9

+ (180r2 − 720r + 720)ν15κ1 + 48ν12κ9 + 24ν12κ1 + (36r − 90)ν9κ9

+ (72r − 180)ν9κ1 + (3r2 − 16r + 21)ν1κ1 (5. 13)

and

Dκ(RD M(RHDN3; ν, κ)) = (90r2 − 180r + 150)ν15κ15 + 96ν15κ12 + (216r − 396)ν15κ9

+ (12r2 − 48r + 48)ν15κ1 + 36ν12κ9 + 2ν12κ1 + (36r − 90)ν9κ9

+ (8r − 20)ν9κ1 + (3r2 − 16r + 21)ν1κ1 (5. 14)

• The integral operators for RHDN3

Utilizing Table 1 along with operators ( 4. 3 ) and ( 4. 4 ) applied on equation ( 5. 12 ), we
get

Iν(RD M(RHDN3; ν, κ)) =
1

15
(6r2 − 12r + 10)ν15κ15 +

8

15
κ12

+
1

15
(24r − 44)ν15κ9 +

1

15
(12r2 − 48r + 48)ν15κ1

+
1

3
ν12κ9 +

1

6
ν12κ1 +

1

9
(4r − 10)ν9κ9 +

1

9
(8r − 20)ν9κ1

+ (3r2 − 16r + 21)ν1κ1 (5. 15)

and
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Iκ(RD M(RHDN3; ν, κ)) =
1

15
(6r2 − 12r + 10)ν15κ15

+
2

3
ν15κ12 +

1

9
(24r − 44)ν15κ9 + (12r2 − 48r + 48)ν15κ1

+
4

9
ν12κ9 + 2ν12κ1 +

1

9
(4r − 10)ν9κ9

+ (8r − 20)ν9κ1 + (3r2 − 16r + 21)ν1κ1 (5. 16)

• Topological Indices of RHDN3 using RDM-Polynomial
Reverse First Zagreb Index of RHDN3

Adding equation ( 5. 13 ) and equation ( 5. 14 ) along with Table 1 at ν = κ = 1, we get

RDM1(RHDN3) = (Dν + Dκ)(RD M(RHDN3; ν, κ))
∣∣
ν=κ=1

RDM1(RHDN3) = 378r2 − 432r

Reverse Second Zagreb Index of RHDN3

Apply differential operator on equation ( 5. 14 ) in view of Table 1 at ν = κ = 1, we get

RDM2(RHDN3) = (DνDκ)(RD M(RHDN3; ν, κ))
∣∣
ν=κ=1

RDM2(RHDN3) = 1533r2 + 200r − 2043

Reverse Forgotten Index of RHDN3

In view of Table 1 apply differential operators on equation ( 5. 13 ) and ( 5. 14 ) and after
adding at ν = κ = 1, we have

RDF (RHDN3) = (D2
ν + D2

κ)(RD M(RHDN3; ν, κ))
∣∣
ν=κ=1

RDF (RHDN3) = 5418r2 − 7632r + 2808

Reverse Hyper 1st Zagreb Index of RHDN3

Applying differential operator on equation ( 5. 13 ) and equation ( 5. 14 ) along with Table
1 at ν = κ = 1 and after some simplification, we have

RDHM1(RHDN3) = (Dν + Dκ)
2(RHDN3; ν, κ))

∣∣
ν=κ=1

RDHM1(RHDN3) = 8484r2 − 7232r − 1278

Reduced Hyper 2nd Zagreb Index of RHDN3

After applying differential operator D2
ν on equation ( 5. 14 ) along with Table 1 at ν = κ =

1, we get

RDHM2(RHDN3) = (D2
νD2

κ)(RD M(RHDN3; ν, κ))
∣∣
ν=κ=1

RDHM2(RHDN3) = 306453r2 − 154024r − 45915

Reverse Sigma Index of RHDN3

Applying differential operator on equation ( 5. 13 ) and equation ( 5. 14 ) along with Table
1 at ν = κ = 1 and after some simplification, we have

RD σ(RHDN3) = (Dν − Dκ)
2(RD M(RHDN3; ν, κ))

∣∣
ν=κ=1

RD σ(RHDN3) = 2352r2 − 8032r + 6894
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Reverse Second Modified Zagreb of RHDN3

By applying Integral operators on equation ( 5. 16 ) along with Table 1 at ν = κ = 1

RD
mM2(RHDN3) = (IνIκ)(RD M(RHDN3; ν, κ))

∣∣
ν=κ=1

RD
mM2(RHDN3) =

287 r2

75
− 36728 r

2025
+

3535

162

Reverse Redefined Third Zagreb Index of RHDN3

By adding equation ( 5. 13 ) and equation ( 5. 14 ) and apply differential operators along
with Table 1 at ν = κ = 1, we get

RDReZG3(RHDN3; r, t) = (DνDκ)(Dν + Dκ)(RD M(RHDN3; ν, κ))
∣∣
ν=κ=1

RDReZG3(RHDN3; r, t) = 43386r2 − 8240r − 31614

Reverse Symmetric Division Degree Index of RHDN3

Apply differential operator ( 4. 1 ) and integral operator ( 4. 3 ) on equation ( 5. 12 ) and
equation ( 5. 16 ) respectively along with Table 1 at ν = κ = 1, we have

RD SDD(RHDN3) = (DνIκ + IνDκ)(RD M(RHDN3; ν, κ))
∣∣
ν=κ=1

RD SDD(RHDN3) =
994 r2

5
− 28976 r

45
+

47893

90

Reverse Harmonic Index of RHDN3

Apply operator ( 4. 6 ) on equation ( 5. 12 ) then operating integral operator Iν ( 4. 3 )
along with Table 1 at ν = κ = 1 , we have

RDH(RHDN3) = 2IνJRD M(RHDN3; ν, κ)
∣∣
ν=κ=1

RDH(RHDN3) =
49 r2

10
− 844 r

45
+

49558

2457

Reverse Inverse Sum Index of RHDN3

Apply differential operator Dν ( 4. 1 ) on equation ( 5. 14 ) then operating integral operator
Iν( 4. 3 ) and operator ( 4. 6 ) respectively along with Table 1 at ν = κ = 1, we have

RD I(RHDN3) = IνJDνDκ(RD M(RHDN3; ν, κ))
∣∣
l=1

RD I(RHDN3) =
231 r2

4
+

86 r

5
− 28460

273

6. NUMERICAL COMPUTATION AND GRAPHICAL COMPARISON FOR HEX-DERIVED
NETWORKS

The numerical values of RD based topological descriptors (TD’s) for THDN3 are pro-
vided in Table 4 and Table 5. For computational reasons, we consider values of r ranging
from 4 to 12. We additionally displayed a visual depiction of these numerical calculations
in Figure 6. As the values of r increased, there was a progressive increase in the values of
RD based on topological descriptors (TD’s).
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r RD M1 RD M2 RD F RDHM1 RDHM2 RD σ

4 2358 13815 31878 59508 2478627 4248
5 3924 21630 53244 96504 3895374 9984
6 5868 30978 80028 141984 5618574 18072
7 8190 41859 112230 195948 7648227 28512
8 10890 54273 149850 258396 9984333 41304
9 13968 68220 192888 329328 12626892 56448
10 17424 83700 241344 408744 15575904 73944
11 21258 100713 295218 496644 18831369 93792
12 25470 119259 354510 593028 22393287 115992

TABLE 4. Computed data of topological descriptors for THDN3

r RD
mM2 RDReZG3 RD SDD RDH RD I

4 1.99 370998 408.66 9.06 527.40
5 7.528 581748 919.73 19.5 829.05
6 16.88 835884 1629.6 34.83 1188.45
7 30.07 1133406 2538.26 55.06 1605.60
8 47.08 1474314 3645.73 80.2 2080.50
9 67.92 1858608 4952 110.23 2613.15
10 92.58 2286288 6457.06 145.16 3203.55
11 121.07 2757354 8160.93 185 3851.70
12 153.38 3271806 10063.6 229.73 4557.60

TABLE 5. Computed data of topological descriptors for THDN3
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FIGURE 6. Graphical representation of Computed numerical values of
RDT Ds of THDN3
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The numerical values of RD based topological descriptors (TD’s) for RHDN3 are pro-
vided in Table 6 and Table 7. For computational purposes, we considered values of r
ranging from 4 to 12. A graphical depiction of these numerical values is presented in Fig-
ure 7. As the values of r increased, the values of RD based topological descriptors (TD’s)
increased proportionally.

r RD M1 RD M2 RD F RDHM1 RDHM2 RD σ

4 4320 23285 58968 105538 4241237 12398
5 7290 37282 100098 174662 6845290 25534
6 11016 54345 152064 260754 10062249 43374
7 15498 74474 214866 363814 13892114 65918
8 20736 97669 288504 483842 18334885 93166
9 26730 123930 372978 620838 23390562 125118
10 33480 153257 468288 774802 29059145 161774
11 40986 185650 574434 945734 35340634 203134
12 49248 221109 691416 1133634 42235029 249198

TABLE 6. Computational values of topological indices for RHDN3
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r RD
mM2 RDReZG3 RD SDD RDH RD I

4 10.50 629602 1137.30 23.55 888.5509
5 26.80 1011836 2282.59 48.89 1425.5009
6 50.76 1480842 3825.48 84.04 2077.9509
7 82.37 2036620 5765.97 128.98 2845.9009
8 121.63 2679170 8104.06 183.73 3729.3509
9 168.55 3408492 10839.74 248.27 4728.3009
10 223.11 4224586 13973.03 322.61 5842.75
11 285.33 5127452 17503.92 406.75 7072.70
12 355.21 6117090 21432.41 500.70 8418.15

TABLE 7. Numerical values of topological descriptors for RHDN3
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7. CONCLUSION

This paper introduces the concept of the RDM-Polynomial, derived from the reverse
degrees of a graph. From this, differential and integral operators are extracted, which fa-
cilitate the formulation of reverse degree-based TD’s. For the structures of THDN3 and
RHDN3, this study presents the corresponding RDM-Polynomials.

RD M(THDN3; ν, κ) = (3r2 − 6r + 9)ν15κ15 + (18r − 30)ν15κ9

+ (6r2 − 30r + 36)ν15κ1

+ (3r − 6)ν9κ9 + (6r − 18)ν9κ1

+ (
3

2
r2 − 21

2
r + 18)ν1κ1

RD M(RHDN3; ν, κ) = (6r2 − 12r + 10)ν15κ15 + 8ν15κ12 + (24r − 44)ν15κ9

+ (12r2 − 48r + 48)ν15κ1 + 4ν12κ9 + 2ν12κ1 + (4r − 10)ν9κ9

+ (8r − 20)ν9κ1 + (3r2 − 16r + 21)ν1κ1

We computed eleven topological indices, alongside differential and integral operators, us-
ing the RDM-Polynomial. Both numerical and visual evaluations of these indices were
carried out. These results are expected to inspire researchers to explore new outcomes for
alternative molecular structures using this methodology.

This manuscript presents key findings regarding the eleven RD topological descriptors
for hex-derived molecular network structures. Given the extensive nature of our findings,
we provide a detailed numerical and graphical analysis of these descriptors for various ini-
tial values of the employed parameters, as shown in Tables 4-7 and Figures 6-7. Based
on the results and comparisons, each calculated topological index is either a positive or
negative descriptor for characterizing the three different hex-derived network structures.
These descriptors are ranked hierarchically according to their values, which are determined
through mathematical computations, numerical analysis, and graphical analysis. The fol-
lowing order of inequality shows which topological descriptor is most strongly correlated
with the structure of THDN3 and RHDN3:
RDHM2 > RDReZG3 > RDHM1 > RDF > RDM2 > RDσ > RDM1 >
RDSDD > RDI > RDH > RD

mM2
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LIST OF ABBREVIATIONS

Abbreviation Description
RD Reverse Degree
RDM -Polynomial Reverse Degree Polynomial
TD Topological Descriptor
THDN3 Triangular Type-3 Hex-Derived

Network
RHDN3 Rectangular Type-3 Hex-Derived

Network
TABLE 8. List of abbreviations
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