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Optimal Bounds for the Mostar Index of Chemical Trees
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Abstract. Topological indices are the numerical values of a chemical graph 
which are uniquely defined for that graph. Topological indices play a pivotal role in 
Quantitative Structure-Property/Activity Relationship in-vestigations, offering a 
robust framework for elucidating intricate corre-lations between molecular 
architecture and physicochemical properties. They used to predict the bio-chemical 
activities of graphs. Topological in-dices constitute a specialized domain within 
chemical graph theory, hav-ing garnered significant attention in scholarly literature. 
Essentially, topo-logical indices provide a quantitative representation of molecular 
graphs, which can be visualized through various mathematical constructs, such as 
polynomials, numerical sequences, matrices, or singular values. Mostar index is 
one of the last distance based topological index. In this article, we discuss the 
Mostar index for chemical trees. Also we compute some upper bounds of 
chemical trees using Mostar index.
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1. INTRODUCTION

Graph theory originate in 1736 when Euler tried to solve the problem of Königsberg
bridge [1]. That problem is the hardest problem of that time. Euler tried his best to over-
come the problem by converting the 7 bridges of Königsberg with lines and the lands with
dots and represented it as a graph, but he didn’t succeed his goal. The work of Euler started
a new area of research. In the 19th century, mathematicians called this field as graph theory
and Euler became the father of graph theory.
The subdivision of mathematics that is developing and rapidly growing is graph theory.
That contributes in many fields like electrical networks, chemistry, computer science and
bioinformatics, etc., which is appreciable. Our research area is chemical graph theory.
Mathematical chemistry’s subset, chemical graph theory, provides a theoretical framework
for representing and analyzing molecular structures, bridging the gap between chemistry
and mathematics. It is combination of chemistry and graph theory. In it vertices of graph
are atoms and edges represents bond between these atoms [5].
This research focuses on finite, undirected graphs, which consist of two distinct sets: a set
of vertices (V ) and a set of edges (E), collectively denoted asG(V,E). Notably, each graph
can be uniquely represented through various mathematical constructs, including numerical
values, polynomials, matrices, relation tables, or topological indices. A topological index
is a function Top : Σ → R, where R represent the real numbers and Σ represents simple
graph which containing a characteristic that, if G1 and G2 are isomorphic then Top(G1) =
Top(G2) [9].
Topological indices constitute a specialized domain within chemical graph theory, having
garnered significant attention in scholarly literature. Essentially, topological indices pro-
vide a quantitative representation of molecular graphs, which can be visualized through
various mathematical constructs, such as polynomials, numerical sequences, matrices, or
singular values. These indices remain invariant under graph isomorphism, ensuring unique-
ness. Molecular graphs offer a concise and intuitive visualization of molecules and their
compounds, facilitating deeper understanding and analysis.

Topological descriptors play a pivotal role in Quantitative Structure-Activity/Property Re-
lationships (QSAR/QSPR) [14], as they facilitate the translation of complex molecular
graphs into concise numerical values. In addition to topological descriptors, beyond topo-
logical descriptors, researchers also examine various other physicochemical attributes of
carbon-based materials, encompassing structures such as nanotubes, hydrocarbons, nanocones,
and fullerenes, to glean a deeper understanding of their properties and behavior. The
unique characteristics of topological descriptors underpin their diverse applications in or-
ganic chemistry, biotechnology, and nanotechnology, enabling researchers to elucidate in-
tricate relationships between molecular structure and properties.

Cheminformatics represents the convergence of mathematics, chemistry, and computer sci-
ence, facilitating the analysis and interpretation of chemical data. A molecular descriptor
is a quantitative representation of a chemical structure’s topological features, encapsulated
in a numerical value. These descriptors draw on a range of theoretical frameworks, includ-
ing graph theory, information theory, and quantum mechanics. By leveraging molecular
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descriptors, researchers can design and optimize chemical compounds for various appli-
cations in pharmaceuticals, analytical chemistry, and medicinal chemistry [16]. Figure 1,
explains the tabular representation of molecular descriptor. The theory of topological in-

FIGURE 1. Tabular Representation of Molecular Descriptor

dices started in 1947 when Harry Wiener published his paper named as “Structural Deter-
mination of Paraffins Boiling Points” and the theory of topological indices started. Initially
“path number” is the name of this index and denoted by W . After that, it is recalled as
Wiener index [18]. Wiener index is written as,

W (G) =
∑

(u,v)⊆V (G)

d(u, v),

where d(u, v) denote the shortest-path distance between vertices u and v, where u, v ∈
V (G). Due to the success of the Wiener index, numerous related indices have been devel-
oped based on it [15].
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In case of trees, the Wiener index is defined as;

W (T ) =
∑

u,v∈E(T )

nunv.

Szeged index was first studied by Gutman [7], in 1994. The Szeged index is the altered
form of Wiener index. The Szeged index is defined as,

Sz(G) =
∑

u,v∈E(G)

nunv,

here nu denote the number of vertices closer to u than to v, and let nv be defined analo-
gously for v. The Szeged index shares similarities with the Wiener index; however, it often
provides more refined results. For instance, in trees, W (T ) = Sz(T ) [8].

The Mostar index of a graph G is defined by summing the absolute differences between
the partitions of vertices induced by each edge, i.e., |nu − nv| for every edge uv ∈ E(G).
Previous studies include Arockiaraj et al. [4], who investigated the Mostar indices of carbon
nanostructures; Hayat et al. [10], who derived extremal Mostar indices for cacti; and Hu et
al. [11], who computed the Mostar index of chemical interconnection networks. Formally,
the Mostar index is defined as:

Mo(G) =
∑

uv∈E(G)

|nu − nv|.

For the convenience of our work we represent |nu − nv| as φ(e).

2. MAIN RESULTS

The main goal of this article is to compute the mostar index of chemical trees. Also we
compute some of the upper bounds for the mostar index by using the diameter and path of
chemical trees. The theory of trees was started by Kirchhoff [13], in 1847. Kirchhoff is
physicist by profession, but he thought like a mathematician. He converted the whole elec-
tric network consisted on resistance and inductance etc., into its corresponding structure
of points and lines. By the matrix tree theorem of the Kirchhoff, Kirchhoff provided the
idea of number of spanning trees. In order to solve the simultaneous linear equations, he
developed the theory of trees which gives the current in each circuit of an electric network.
After that, Cayley extend his work in 1857 [6, 12]. A tree is said to be chemical tree if its
maximum degree is 4. Zolfi et al. [20], computed the extremal properties of chemical trees
for NK index. Zhang et al. [19] computed the topological indices for molecular graphs.
For study more about topological indices, see [2, 3]. All the notations used in this paper
are taken from the book of West [17].

2.1. Results for Chemical Trees.

Theorem 2.2. For any graph G with n vertices its Mostar index is even.

Proof. If G be any graph of n vertices then there arise two cases.
Case 1 If G is a graph with n number of vertices and n is even then G has n − 1 number
of edges which is odd. Here each edge gives even value of Mostar index because n is even.
So, the sum of even numbers odd times will give the value of Mostar index even.
Case 2 If G is a graph with n number of vertices and n is odd then G has n− 1 number of
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edges which is even. Here each edge gives odd value of Mostar index because n is odd and
we know that the sum of odd numbers even time is even. So, the sum of odd numbers even
times will give the value of Mostar index even.
Which is required. �

Theorem 2.3. For a graph G with n vertices, if e ∈ E(G) of G is a leaf then φ(e) attain
the value (n− 2).

Proof. For a graph G with n vertices and e = uv be any edge also e is a leaf of G then
nu = 1 because u is pendent vertex, so nv = n− 1. Therefore we have,

φ(e) = |nu − nv|,
φ(e) = |1− (n− 1)|,
φ(e) = |1− n+ 1|,
φ(e) = | − n+ 2|,
φ(e) = | − (n− 2)|,
φ(e) = n− 2,

which is required. �

Theorem 2.4. Let Tn be a chemical tree with n number of vertices and e = uv be an edge
then maximum value that an edge can obtain is n− 4.

Proof. Let Tn is chemical tree of order n and uv be an edge which is not a leaf then
maximum value of nu and nv is 2 and n − 2 respectively. So by the definition of Mostar
index we have,

φ(e) = |nu − nv|,
φ(e) = |2− (n− 2)|,
φ(e) = |2− n+ 2|,
φ(e) = | − n+ 4|,
φ(e) = | − (n− 4)|,
φ(e) = n− 4,

which is required. �

Theorem 2.5. For a chemical tree Tn, where l is the leaf and e is the edge of Tn then
Mo(e) ≤Mo(l).

Proof. Let Tn be the chemical tree where l is the leaf of Tn and e be the edge of Tn then
by using the Theorem 2.3 and 2.4 we can conclude that Mo(e) ≤Mo(l) with the equality
only holds if e = l. �

Theorem 2.6. For a linear tree Pn. The Mostar index of Pn is b (n−1)
2

2 c.

Proof. The linear tree Pn is also known as path graph where all the vertices has degree 2
except end vertices which are leafs as shown in Figure 2. The Mostar index of linear tree
is shown in Table 1, with the alternate second difference of 2 and 0.
There arises two cases.



95 Hafiza Sana Sattar, Saima Mushtaq and Zunera Shoukat

FIGURE 2. Linear Tree

n 1 2 3 4 5 6 7 8
Mo(Pn) 0 0 2 4 8 12 18 24

∆2 - 2 0 2 0 2 0 -

TABLE 1. Second difference table for Pn

When n is even. Then

n 2 4 6 8
Mo 0 4 12 24
∆2 - 4 4 -

TABLE 2. Second difference n is even

⇒Mo(Pn) =
n2

2
− n. (2. 1)

When n is odd. Then

n 1 3 5 7
Mo 0 2 8 18
∆2 - 4 4 -

TABLE 3. Second difference n is odd

⇒Mo(Pn) =
n2 − 2n+ 1

2
, (2. 2)

by combining the Mostar index of equations 2. 1 , 2. 2 , also Tables 2, 3 and using the
floor function. We get,

⇒Mo(Pn) = b (n− 1)2

2
c,

which is required. �
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Theorem 2.7. For a chemical tree Tn of order n with 3rd leaf at second vertex. Then
Mo(Tn) = b (n−1)

2+4
2 c.

Proof. For a chemical tree Tn of order n where n ≥ 4. Tn has three number of leafs where
3rd leaf is at second vertex as shown in Figure 3. The Mostar index of linear tree is shown
in Table 4, with the alternate second difference of 0 and 2.
There arises two cases.

FIGURE 3. Chemical Tree with 3 leafs

n 4 5 6 7 8 9 10 11
Mo(Tn) 6 10 14 20 26 34 42 52

∆2 - 0 2 0 2 0 2 -

TABLE 4. Second difference table for Tn

When n is even. Then

n 4 6 8 10
Mo 6 14 26 42
∆2 - 4 4 -

TABLE 5. Second difference n is even

⇒Mo(Tn) =
n2 − 2n+ 4

2
. (2. 3)

When n is odd. Then

⇒Mo(Tn) =
n2 − 2n+ 5

2
, (2. 4)

by combining the Mostar index of equations 2. 3 , 2. 4 , also Tables 5, 6 and using the
floor function. We get,

⇒Mo(Tn) = b (n− 1)2 + 4

2
c,
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n 5 7 9 11
Mo 10 20 34 52
∆2 - 4 4 -

TABLE 6. Second difference n is odd

which is required. �

Theorem 2.8. For a chemical tree Tn with n vertices having maximum path n − 2 with
diameter d and 3rd leaf at dd2e, then its Mostar index is maximum which is dn

2−5
2 e.

Proof. Let Tn be chemical tree of order n, n ≥ 4 with maximum path n − 2 and having
leaf at the (n

2 )
th vertex in case of even and (n+1

2 )
th vertex as shown if Figure 4. In case of

odd then two edges will have the same value of Mostar index and contribute 2φ(ei) in the
Mostar index.
In case of even the contribution of edges is,

FIGURE 4. Tree with 3 Leafs

Mo(Tn) = 3(n− 2) + 2(n− 4) + 2(n− 6) + ...+ 2(n− (n− 2)),

Mo(Tn) =
n2 − 4

2
.

In case of odd the contribution of edges is,

Mo(Tn) = 3(n− 2) + 2(n− 4) + 2(n− 6) + ...+ (n− (n− 1)),

Mo(Tn) =
n2 − 5

2
.

By combining the Mostar index of both cases and using the ceiling function. We get,
Mo(Tn) = dn

2−5
2 e. �

Theorem 2.9. For a chemical tree Tn with n vertices having maximum path n− 3 with di-
ameter d and 3rd, 4th leaf at dd2e, then its Mostar index is maximum which is b (n+1)2−12

2 c.

Proof. Let Tn be chemical tree of order n, n ≥ 5 with maximum path n−3 and having the
3rd and 4th leaf at the (n

2 )
th vertex as shown in Figure 5. In case of even and (n−1

2 )
th ver-

tex in case of odd then two edges will have the same value of Mostar index and contribute
2φ(ei) in the Mostar index.
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FIGURE 5. Tree with 4 Leafs

In case of even the contribution of edges is,

Mo(Tn) = 4(n− 2) + 2(n− 4) + 2(n− 6) + ...+ (n− (n− 2)),

Mo(Tn) =
n2 + 2n− 12

2
.

In case of odd the contribution of edges is,

Mo(Tn) = 4(n− 2) + 2(n− 4) + 2(n− 6) + ...+ 2(n− (n− 3)),

Mo(Tn) =
n2 + 2n− 11

2
.

By combining the Mostar index of both cases and using the floor function. We get,Mo(Tn) =

b (n+1)2−12
2 c. �

Theorem 2.10. For a chemical tree Tn with n vertices having maximum path n − 4. Tn
has diameter d with 3rd, 4th leaf at dd2e and 5th leaf at dd2 + 1e, then its Mostar index is

maximum which is d (n+2)2−29
2 e.

Proof. Let Tn be chemical tree of order n, n ≥ 7 with maximum path n − 4 and having
the 3rd, 4th leaf at dd2e with 5th leaf at dd2 + 1e as shown in Figure 6. Then two edges will
have the same value of Mostar index and contribute 2φ(ei) in the Mostar index.
In case of even the contribution of edges is,

FIGURE 6. Tree with 5 Leafs
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Mo(Tn) = 5(n− 2) + 2(n− 4) + 2(n− 6) + ...+ (n− (n− 4)) + (n− (n− 2)),

Mo(Tn) =
n2 + 4n− 24

2
.

In case of odd the contribution of edges is,

Mo(Tn) = 5(n− 2) + 2(n− 4) + 2(n− 6) + ...+ (n− (n− 1)),

Mo(Tn) =
n2 + 4n− 25

2
.

By combining the Mostar index of both cases and using the ceiling function. We get,
d (n+2)2−29

2 e. �

Theorem 2.11. For a chemical tree Tn with n vertices having maximum path n − 5. Tn
has diameter d with 3rd, 4th leaf at dd2e and 5th, 6th leaf at dd2 + 1e, then its Mostar index

is maximum which is b (n+3)2−48
2 c.

Proof. Let Tn be chemical tree of order n, n ≥ 8 with maximum path n − 5 and having
the 3rd, 4th leaf at dd2e with 5th, 6th leaf at dd2 + 1e as shown in Figure 7. Then two edges
will have the same value of Mostar index and contribute 2φ(ei) in the Mostar index.
In case of even the contribution of edges is,

FIGURE 7. Tree with 6 Leafs

Mo(Tn) = 6(n− 2) + 2(n− 4) + 2(n− 6) + ...+ 2(n− (n− 4)) + 2(n− (n− 2)),

Mo(Tn) =
n2 + 6n− 40

2
.

In case of odd the contribution of edges is,

Mo(Tn) = 6(n− 2) + 2(n− 4) + 2(n− 6) + ...+ (n− (n− 1)),

Mo(Tn) =
n2 + 6n− 39

2
.

By combining the Mostar index of both cases and using the floor function. We get, b (n+3)2−48
2 c.
�



Optimal Bounds for the Mostar Index of Chemical Trees 100

Theorem 2.12. For a chemical tree Tn with n vertices having maximum path n − 6. Tn
has diameter d with 3rd, 4th leaf at dd2e, 5th, 6th leaf at dd2 + 1e and 7th leaf at dd2 − 1e,
then its Mostar index is maximum which is b (n+4)2−72

2 c.

Proof. Let Tn be chemical tree of order n, n ≥ 10 with maximum path n − 6 and having
the 3rd, 4th leaf at dd2e with 5th, 6th leaf at dd2 + 1e and 7th leaf at dd2 − 1e as shown in
Figure 8. Then two edges will have the same value of Mostar index and contribute 2φ(ei)
in the Mostar index.
In case of even the contribution of edges is,

FIGURE 8. Tree with 7 Leafs

Mo(Tn) = 7(n− 2) + 2(n− 4) + 2(n− 6) + ...+ (n− (n− 4)) + (n− (n− 2)),

Mo(Tn) =
n2 + 8n− 56

2
.

In case of odd the contribution of edges is,

Mo(Tn) = 7(n− 2) + 2(n− 4) + 2(n− 6) + ...+ (n− (n− 1)),

Mo(Tn) =
n2 + 8n− 57

2
.

By combining the Mostar index of both cases and using the floor function. We get, b (n+4)2−72
2 c.
�

Theorem 2.13. For a chemical tree Tn with n vertices having maximum path n − 7. Tn
has diameter d with 3rd, 4th leaf at dd2e, 5th, 6th leaf at dd2 +1e and 7th,8th leaf at dd2−1e,
then its Mostar index is maximum which is b (n+5)2−100

2 c.

Proof. Let Tn be chemical tree of order n, n ≥ 10 with maximum path n − 6 and having
the 3rd, 4th leaf at dd2e with 5th, 6th leaf at dd2 + 1e and 7th,8th leaf at dd2 −1e as shown in
Figure 9. Then two edges will have the same value of Mostar index and contribute 2φ(ei)
in the Mostar index.
In case of even the contribution of edges is,

Mo(Tn) = 8(n− 2) + 2(n− 4) + 2(n− 6) + ...+ (n− (n− 4)) + (n− (n− 2)),

Mo(Tn) =
n2 + 10n− 76

2
.
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FIGURE 9. Tree with 8 Leafs

In case of odd the contribution of edges is,

Mo(Tn) = 7(n− 2) + 2(n− 4) + 2(n− 6) + ...+ 2(n− (n− 3)),

Mo(Tn) =
n2 + 10n− 75

2
.

By combining the Mostar index of both cases and using the floor function. We get, b (n+5)2−100
2 c.
�

n
Linear
Tree

Tree with
3 Leafs

Tree with
4 Leafs

Tree with
5 Leafs

Tree with
6 Leafs

Tree with
7 Leafs

Tree with
8 Leafs

10 40 48 54 58 60 62 62
11 50 58 66 70 74 76 78
12 60 70 78 84 88 92 94
13 72 82 92 98 104 108 112
14 84 96 106 114 120 126 130
15 98 110 122 130 138 144 150
16 112 126 138 148 156 164 170
17 128 142 156 166 176 184 192
18 144 160 174 186 196 206 214
19 162 178 194 206 218 228 238

TABLE 7. Comparison Table

For the comparison of Mostar index of different chemical trees, we computed it for different
values of n. As we can see from Table 7 for each increasing value of n the value of mostar
index increases for each case of chemical tree.
The above Figure 10 shows the comparison of the values of the mostar index for different

values of n taken from the Table 7 and we can clearly say that by each addition of leaf in a
chemical tree increases the value of mostar index.
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FIGURE 10. Graph Comparison

4. CONCLUSION

In this study, we have investigated several key properties of the Mostar index and derived
closed-form expressions for its computation in chemical trees. Additionally, we established
upper bounds for the Mostar index in specific cases by considering structural parameters
such as diameter and path length. Our findings contribute to a deeper understanding of the
Mostar indexs behavior in chemical graphs, which is essential for applications in quantita-
tive structure-activity relationships (QSAR) and molecular descriptor analysis.

The results obtained have significant implications beyond theoretical chemistry, partic-
ularly in fields such as data science, where graph-based indices are used for pattern recog-
nition and predictive modeling; electrical circuit design, where topological indices help
optimize network stability and efficiency; and computer science, particularly in algorithm
design for graph traversal and network analysis. Future research could explore the Mostar
index in more complex graph structures, dynamic networks, or its potential in machine
learning for molecular property prediction.

By refining the mathematical bounds and extending the applicability of the Mostar in-
dex, this work opens new avenues for interdisciplinary research, bridging graph theory with
practical computational and engineering challenges.
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