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Abstract. The flexible blade coating process is widely used in various in-dustries for the 
production of thin films on substrates. However, the analy-sis of coating process for non-
Newtonian fluids remains a challenging task due to their complex rheological behavior. In 
this work, we have used third order fluid along with flexible blade which is new and 
challenging because of the complexity of the non-linear equations, the surface being 
coated, decomposition of the functional material layers over complex geometries. The 
importance of our analysis is that it enables the optimization of the in-volved parameters 
which include gap height, blade angles, speed and most importantly fluid rheology. The 
perturbation approximation method with Levenberg–Marquardt neural network (LM–NN) 
is used to investigate the coating process of third order-fluids using lubrication 
approximation the-ory. The deformation of the blade during the coating process and 
behav-ior of fluid flow is represented in terms of system of nonlinear equations. 
Numerical solution has been obtained to analyze the blade flexibility and lubrication 
force on the coating process. For data training of LM–NN, 70 percent data is taken for 
training, 15 percent for validation and 15 per-cent data is used for testing. Our results 
show that the proposed method can accurately predict the coating thickness and the blade 
deformation for
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different values of the coating parameters. Additionally, various physical parameters 
which influence the fluid motion like flexibility and speed of blade, including its 
rheological characteristics are graphically analyzed. The findings of the study suggest 
that a better understanding of the com-plex process of blade coating for non-Newtonian 
fluids can be explained through perturbation methods along with neural networks 
approximation, which can improve the coating process applications on industrial level.

AMS (MOS) Subject Classification Codes: 70E20; 65M80; 68T07; 35Q30
Key Words: Blade coating analysis, perturbation approximation with Neural networks,
lubrication approximation theory, third order fluid.

1. INTRODUCTION

For the prevention of material corrosion and avoiding harmful atmospheric effects, coat-
ings are considered to be very useful. Coatings are also useful for materials decoration by
modifying material overall appearance, change in its color, polish and shining, and smooth-
ness. Coating plays an important role in many industrial processes like modification of sur-
face properties of a material, enhances its performance for the protection from corrosion
and avoid degradation. Coatings are engineered in such a way that makes them beneficial
for many industrial applications while conserving thermal stability optical transparency
and electrical conductivity. The fluid industry has been revolutionized with coating, which
enables the materials to maintain their properties in more challenging environments while
increasing the lifespan and reducing the cost for its maintenance. Electronic and photo-
voltaic industries mostly rely upon the this process which controls the microstructures to
produce high performance films.In order to design more efficient framework and to avoid
waste of material, our analysis helps to understand the complex relationship between sur-
face tension, material flow and substrate interaction. These aspects attracted the researchers
and industrialists towards various applications of blade coating process and built a linkage
between industry and the university. Blade coating along with flexibility is very important
in various coating industries but this technique faces several limitations, including achiev-
ing uniformly thin films, handling different ranges of viscosities and managing particles
of large sizes. Furthermore, blade clogging, defects in surface and setup complexities can
reduce the effectiveness of the work.

In order to address the key challenges in engineering and industry, recent research have
combined bioinspired and hybrid approaches. In this regard, a pioneer work related to
the blade coating flows has been presented by many authors [20,8,4] for Newtonian fluids.
Middleman [14] work and Ruschak [17] article described the process of blade coating. The
connection between coat weight and the angle of blade was elucidated by Booth [3]. The
Hwang [12] introduced power law fluid in the plane blade coater and introduced approxi-
mate flow solution. Dien and Elord [6] obtained the numerical solution of power law fluid.
Greener and Middleman [10] analyzed the viscoelastic fluid by using power law in roll
coating. Later on, Savage [19] fixed the errors created by Greener and Middleman [10].
Moreover, Ross et al. [16] used the plane coater to examine the behavior of power-law
fluid and analyzed that the pressure distribution and blade load increased or decreased, in
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the form of weak non-Newtonian fluid nature, depending on height ratio and blade shape
of the coater then Newtonian fluid values. Sinha and Singh [22] examined the model of
the roll coating for power law fluid. Furthermore, Corvalan and Saita [5] presented the
deformation of compressible substrate by using the finite element method. Sajid et al. [18]
analyzed that when the non-Newtonian parameters increased, then the pressure which was
present in the region of flow also increased, while the geometry of the flow was totally
distinct. For rigid blade coating, Siddiqui et al. [21] presented the mathematical model
for Williamson fluid. Lubrication approximation theory (LAT) was used to examine the
coating properties by Ali et al. [1] in which he calculated the properties of the fluid flow
under a different geometry of coating with same complex fluids and obtained the same
physical conclusions. Maxwell model of flow in blade coating was studied by Tichy [23]
who evaluated that the pressure can be decreased or increased by viscoelastic effects. Hsu
et al.

In [11] authors separated viscoelastic fluid and Newtonian forces in blade, which lubri-
cation theory was used, and then the results were experimentally and theoretically com-
pared. Rana et al [15] studied the blade coating process for Powel-Eyring fluid using LAT
analysis. Some more work on blade coating analysis using non-Newtonian fluid has been
studied by Bhatti et al [2]. Since we are using flexible blade in our study, some work re-
lated to flexible blade coater has been modelled and studied in [9, 13, 25]. Previously blade
coating for third order fluid with fixed blade has been studied by Bhatti et al. [2]. In order
to enhance the importance of this work from an industrial point of view, modelling for the
flexible blade is used and observed mathematically that the blade coating can be controlled
by increasing or decreasing the non- Newtonian parameter. The flexibility of the blade is
also very important for controlling the coating thickness. It means that coating of desired
thickness can be obtained and controlled by controlling the flexibility of the blade.

In order to study the fluids flow in confined spaces, the Lubrication approximation the-
ory (LAT) is an excellent mathematical tool for simplification of fluid flow in thin geome-
tries. This theory is related to geometries which involve narrow gaps, for example, bearings
which have moving surfaces with narrow gaps, micro channels and thin film coatings. Un-
der small aspect ratio and low Reynolds number assumptions, the Navier Stokes equations
are utilized for the derivation of simplified equations. It is assumed that the fluid film is
thinner than that of the confining surfaces, which lead us to constitute simplified equations
fluid flow which describes a balance between viscous stresses and pressure forces [26].
Thus, in our analysis of the process of blade coating, LAT has been employed for modeling
the non-Newtonian fluid flow between the blade and the substrate. Since the lubrication
forces are present between the fluid film and the blade, we can utilize LAT to provide
significant understandings of the coating thickness and blade deformation.

In present research, the coating process of third order fluid has been investigated by ap-
plying LAT by considering a flexible blade. The constitutive equations for motion which
describe the blade deformation and fluid motion are detailed in terms of a system of non-
linear differential equations. The solution of these equations has been obtained by a finite
difference scheme. The obtained results clearly state that the LAT predicts the blade de-
formation and coating thickness accurately for different coating parameter values. The
findings of the study suggest that a better understanding of the complex process of blade
coating for non-Newtonian fluids can be explained through perturbation methods along
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with neural networks approximation, which can improve the coating process applications
on industrial level.

Perturbation approximation is a mathematical technique used to approximate the solu-
tion to complex equations that cannot be solved exactly. This technique involves breaking
down the complex equation into simpler equations and then using a series expansion to
find an approximate solution [7, 24]. Perturbation approximation is widely used in various
fields of science and engineering, such as fluid mechanics, quantum mechanics, and non-
linear dynamics. In this paper a perturbation approximation method is used to analyze the
coating process of third order fluids using lubrication approximation theory. The proposed
method provides a new approach to analyzing the coating process of non-Newtonian fluids,
which can be challenging due to their complex rheological behavior. By applying pertur-
bation approximation, we can obtain an approximate solution to the equations that govern
the coating process of non-Newtonian fluids, which can be used to optimize the process for
various industrial applications.

2. PROBLEM FORMULATION AND CONSTITUTIVE EQUATIONS

The constitutive equations for continuity and momentum for an incompressible viscous
fluid flow and without the presence of body forces are given as under [2]:

∇.
−→
V = 0, (2. 1)

ρ
D
−→
V

Dt
= −∇P + divτ, (2. 2)

where
−→
V , represents the velocity profile, Pressure is denoted by P , τ represents the Cauchy

stress tensor, constant fluid density is represented by ρ,and D
Dt represents the material de-

rivative and we can also write it as

D
−→
V

Dt
=

∂
−→
V

∂t
+
(−→
V .∇

)−→
V (2. 3)

3. CONSTITUTIVE EQUATIONS

The extra stress tensor τ for third order fluid [2] is given as under:

τ = µ
−→
A 1+α1

−→
A 2+ α2

−→
A 1

2
+γ1

−→
A 3+γ2

(−→
A 1

−→
A 2 +

−→
A 2

−→
A 1

)
+ γ3

(
tr

(
−→
A 1

2
))

−→
A 1,

(3. 4)
where µ is the viscosity,α1 is the plasticity and α2 is the cross viscosity, γ1, γ2, γ3 are
material parameters and Rivlin-Ericksen tensors are represented by

−→
A 1,

−→
A 2,

−→
A 3 and are

defined as follows:

−→
A 1 = ∇

−→
V +

(
∇
−→
V
)T

, (3. 5)

−→
A 2 =

d

dt

−→
A 1 +

−→
A 1

(
∇
−→
V
)
+
(
∇
−→
V
)T−→

A 1, (3. 6)

−→
A 3 =

d

dt

−→
A 2 +

−→
A 2

(
∇
−→
V
)
+
(
∇
−→
V
)T−→

A 2. (3. 7)
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FIGURE 1. Geometry of the problem

4. STATEMENT AND THE GEOMETRY OF THE PROBLEM

The Fig. 1 represents a two-dimensional incompressible, isothermal and steady fluid
flow in flexible blade coa ter and is given in Cartesian coordinate system. The distribution
of the pressure loads the blade and as a result it deflects. The angle θ is taken as the
web angle constructed by the chord of L length which connects the edges having height
y = H1 and y = H0. At y = h(x), the blade is kept flexible at an angle sin θ = H1−H0

L .
The moving blade has length L, while the one edge of the blade at x = 0 with height H1

and the other edge at x = L with height H0. It is supposed that the LAT in the flow field is
effective. Figure 1 is given for detailed description.

5. APPLICATION OF LUBRICATION APPROXIMATION METHOD LAT

We initiate from the geometry of the problem with the LAT analysis and note that the
principal dynamical event is occurring in the nip of the blade. Since the distance between
blade and substrate is small at the nip as compared to the length of substrate, which is
negligible. Here fluid motion is considered in x-direction due to the fact that motion in
y-axis is small. Subsequently, it is appropriate to suppose that v ≪ u and ∂

∂x ≪ ∂
∂y , as a

result Eq. (2. 1) becomes, ∂u
∂x = 0, and here the velocity profile turns out

−→
V = [u (y) , 0].

The equation of continuity is satisfied.
Momentum equation in x-component is

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+

∂τxx
∂x

+
∂τxy
∂y

. (5. 8)

Momentum equation in y-component is

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+

∂τyx
∂x

+
∂τyy
∂y

. (5. 9)

Since ∂
∂x ≪ ∂

∂y, and
−→
V = [u (y) , 0] , which implies that ∂u

∂x = 0, so in the momentum
equation, the acceleration part disappears and on x-component the Eq. (5. 8) becomes

−∂p

∂x
+

dτxy
dy

= 0, (5. 10)
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and y-component Eq. (5. 9) takes the form

−∂p

∂y
+

dτyy
dy

= 0. (5. 11)

Using components of shear stress

τxy = τyx = µ
du

dy
+ 2(γ2 +

γ3
2
)

(
du

dy

)3

, (5. 12)

τyy = (2α1 + α2)

(
du

dy

)2

. (5. 13)

The generalized pressure P is given as follows:

P (x, y) = p (x, y)− (2α1 + α2)

(
du

dy

)2

. (5. 14)

Now making use of the Eq. (5. 12) and the Eq. (5. 13) into the Eq. (5. 10), we arrive at

µ
d2u

dy2
+ 2

(
γ2 +

γ3
2

) d

dy

(
du

dy

)3

=
∂P

∂x
. (5. 15)

Making use of the Eq. (5. 13) and the Eq. (5. 14) into the Eq. (5. 11), then it becomes
∂P

∂y
= 0. (5. 16)

The Eq. (5. 16) describes that pressure P depends on coordinate x only. Thus, by placing
γ = γ2 +

γ3

2 , Eq. (5. 15) becomes

µ
d2u

dy2
+ 2γ

d

dy

(
du

dy

)3

=
dP

dx
. (5. 17)

The Eq. (5. 17) will be studied subject to the following boundary conditions:

u =

{
U at y = 0,
0 at y = h (x) .

(5. 18)

6. NON-DIMENSIONAL FORM

In order to write the nonlinear differential equation given in Eq. (5. 17) and boundary
conditions given in Eq. (5. 18) in dimensionless form, we consider the following assump-
tions:

x∗ =
x

L
, y∗ =

y

L
, u∗ =

u

U
, P ∗ =

pH0
2

µUL
, h̃ =

h

H0
, γ∗ =

U2γ

µH0
, λ =

Q

UWH0
.

(6. 19)
Using these parameters in Eq. (5. 17) and finally, after neglecting the asterisk sign the Eq.
(5. 17) becomes

d2u

dy2
+ 2γ

d

dy

(
du

dy

)3

=
dP

dx
. (6. 20)

On integrating the Eq. (6. 20) we have

du

dy
+ 2γ

(
du

dy

)3

=
dP

dx
y + C. (6. 21)
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In the above equation, C is known as constant of integration that depends on the γ. By
using required assumptions, the dimensionless form of the boundary conditions is given a
follows:

u =

{
1 if y = 0,

0 if y = h̃ (x) .
(6. 22)

It should be noted that for flexible blade coater h̃(x) = β − β(k−1)(x)
k , and k = H1

H0
.

7. FLOW RATE

The volumetric flow rate per unit width can be calculated by using following formula,

Q

W
=

∫ h

0

u dy. (7. 23)

The width of web is W . The dimensionless final coating thickness is,

λ =

∫ h̃

0

u dy. (7. 24)

8. PROBLEM SOLUTION

To solve the Eq. (6. 21) along with Eq. (6. 22), we have used the perturbation method
because this equation is non-linear and difficult to solve exactly. This method relies on the
small parameter which is present in the problem to be perturbed for approximation. Let us
consider γ ≪ 1, and then we expand.

u = u0 + γu1,

p = p0 + γp1,
C = C0 + γC1,

λ = λ0 + γλ1,
dp
dx = dp0

dx + γ dp1.
dx

 (8. 25)

By using the values of Eq. (8. 25) into the Eq. (6. 21) and Eq. (6. 22) and then comparing
the same powers of γ, the following problems are acquired.

8.1. The problem of order zero. The problem of order zero is obtained by equating the
terms without γ which is given as,

du0

dy
=

dp0
dx

y + C0. (8. 26)

The boundary conditions for zero-order becomes,

u0 = 1 when y = 0,

u0 = 0 when y = h̃ (x) .

}
(8. 27)

The volumetric flow rate for zero-order becomes,

λ0 =

∫ h̃

0

u0 dy. (8. 28)

The solution of the zeroth order velocity profile using the boundary condition is,

u0 =
1

2

dp0
dx

(
y2 − h̃y

)
− y

h̃
+ 1. (8. 29)
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This solution is the same as obtained by Middleman [4]. Using Eq. (8. 29) in Eq. (8. 28),
integrating and simplification gives

λ0 =

(
− 1

12

dp0
dx

h̃3 +
h̃

2

)
. (8. 30)

This gives us the zero-order pressure gradient.

dp0
dx

=
6

h̃2
− 12

h̃3
λ0. (8. 31)

By using h̃ (x) = β − β(k−1)(x)
k in Eq. (8. 31) we have

dp0
dx

=
6(

β − β(k−1)(x)
k

)2 − 12(
β − β(k−1)(x)

k

)3λ0. (8. 32)

On integrating the above equation, we have

p0 =
6k(

β − β(k−1)(x)
k

)
β (k − 1)

− 6kλ0(
β − β(k−1)(x)

k

)2
β (k − 1)

+ C . (8. 33)

At the entrance and exit of the blade, we take pressure equal to zero,

p0 (0) = 0, p0 (1) = 0. (8. 34)

After simplifying we get,

λ0 =
β

(k + 1)
. (8. 35)

By using the boundary conditions and after simplification,

p0 =
6k2h̃β (k + 1)− 6λ0kβ (k − 1)− 6k2h̃2

h̃2β2 (k2 − 1)
. (8. 36)

8.2. The problem of order one. The problem of order one is given as,

du1

dy
+ 2

(
du0

dy

)3

=
dp1
dx

y + C1. (8. 37)

The boundary conditions for first-order problem become,

u1 = 0 if y = 0,

u1 = 0 if y = h̃ (x) .

}
(8. 38)

The volumetric flow rate for first order becomes,

λ1 =

∫ h̃

0

u1 dy. (8. 39)
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After solving the Eq. (8. 37) along with the boundary conditions, the velocity of first order
becomes,

u1 = 1
2
dp1

dx

(
y2 − h̃y

)
− 1

2

(
dp0

dx

)3 (
y4 − h̃3y

)
+ 1

3

(
y3 − h̃2y

)(
3h
(

dp0

dx

)3
+ 6

h̃

(
dp0

dx

)2)
−
(

3
4 h̃

2
(

dp0

dx

)3
+ 3
(

dp0

dx

)2
+ 3

h̃2

(
dp0

dx

))(
y2 − h̃y

)
.

(8. 40)

After solving, Eq. (8. 39) becomes,

λ1 = − h̃3

12

(
dp1
dx

)
+

h̃5

40

(
dp0
dx

)3

+
h̃

2

(
dp0
dx

)
. (8. 41)

Now by separating dp1

dx , from Eq. (8. 41) we have,

dp1
dx

=
3h̃

2

10

(
dp0
dx

)3

+
6

h̃2

(
dp0
dx

)
− 12λ1

h̃3
. (8. 42)

By using Eq. (8. 32) in Eq. (8. 42) we have,

dp1
dx

=
3h̃

2

10

(
6

h̃2
− 12

h̃3
λ0

)3

+
6

h̃2

(
6

h̃2
− 12

h̃3
λ0

)
− 12λ1

h̃3
. (8. 43)

Finally, the first-order pressure gradient becomes,

dp1
dx

=
504

5h̃
4 − 2304λ0

5h̃5
+

3888λ0
2

5h̃6
− 2592λ0

3

5h̃7
− 12λ1

h̃3
. (8. 44)

Now by using h̃ (x) = β − β(k−1)(x)
k , Eq. (8. 44) we have

dp1

dx =
504(β− β(k−1)(x)

k )
−4

5 − 2304λ0(β− β(k−1)(x)
k )

−5

5 +
3888λ0

2(β− β(k−1)(x)
k )

−6

5

− 2592λ0
3(β− β(k−1)(x)

k )
−7

5 − 12λ1

(
β − β(k−1)(x)

k

)−3

.

(8. 45)
After integrating Eq. (8. 45) we get,

p1 =
168k(β− β(k−1)(x)

k )
−3

5β(k−1) − 576kλ0(β− β(k−1)(x)
k )

−4

5β(k−1)

+
3888kλ0

2(β− β(k−1)(x)
k )

−5

25β(k−1) − 432kλ0
3(β− β(k−1)(x)

k )
−6

5β(k−1)

− 6kλ1

β(k−1)

(
β − β(k−1)(x)

k

)−2

+ C.

(8. 46)

At the entrance and exit of the blade we take pressure equal to zero,

p1 (0) = 0, p1 (1) = 0. (8. 47)

λ1 =
28(k2+k+1)

5β(k+1) − 96λ0(k2+1)
5β2 +

648λ0
2(k3+k+ 1

k+1 )
25β3

− 72λ0
3(k4+k2+1)

5β4 .
(8. 48)
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After using boundary conditions in Eq. (8. 46) first-order pressure becomes,

p1 =
168k(β− β(k−1)(x)

k )
−3

5β(k−1) − 576kλ0(β− β(k−1)(x)
k )

−4

5β(k−1)

+
3888kλ0

2(β− β(k−1)(x)
k )

−5

25β(k−1) − 432kλ0
3(β− β(k−1)(x)

k )
−6

5β(k−1)

− 6kλ1

β(k−1)

(
β − β(k−1)(x)

k

)−2

+ 6k
5β3(k−1)

( (
− 28

β + 96λ0

β2 − 648λ0
2

5β3

)
+ 72λ0

3

β4 + 5λ1

)
.

(8. 49)

By using h̃ = β− β(k−1)(x)
k in Eq. (8. 49) we get the expression for first-order pressure,

p1 = 168k
5h̃3(k−1)β

− 576kλ0

5h̃4(k−1)β
+ 3888kλ0

2

25h̃5(k−1)β
− 432kλ0

3

5β(k−1)h̃6

− 6kλ1

β(k−1)h̃2
+ 6k

5(k−1)β3

(
− 28

β + 96λ0

β2 − 648λ0
2

5β3 + 72λ0
3

β4 + 5λ1

)
.

(8. 50)

Thus, the approximate solution up to first order can be obtained as follows;

u = u0 + γu1. (8. 51)

Making use of the Eq. (8. 29) and Eq. (8. 30) into the Eq. (8. 51), the velocity up to the
first order is,

u =
(

1
2
dp0

dx

(
y2 − h̃y

)
− y

h̃
+ 1
)

+γ


1
2
dp1

dx

(
y2 − h̃y

)
− 1

2

(
dp0

dx

)3 (
y4 − h̃3y

)
+ 1

3

(
y3 − h̃2y

)(
3h̃
(

dp0

dx

)3
+ 6

h̃

(
dp0

dx

)2)
−
(

3
4 h̃

2
(

dp0

dx

)3
+ 3
(

dp0

dx

)2
+ 3

h̃2

(
dp0

dx

))(
y2 − h̃y

)
 .

(8. 52)
Pressure gradient up to first order is given as,

dp

dx
=

dp0
dx

+ γ
dp1
dx

. (8. 53)

Putting the Eq. (8. 32) and the Eq. (8. 41) into the Eq. (8. 53) we get,

dp
dx =

(
6
h̃2

− 12
h̃3

λ0

)
+γ
(

504

5h̃
4 − 2304λ0

5h̃5
+ 3888λ0

2

5h̃6
− 2592λ0

3

5h̃7
− 12λ1

h̃3

)
.

(8. 54)

The flow rate up to first order is given as below,

λ = λ0 + γλ1, (8. 55)

Using the Eq. (8. 35) and Eq. (8. 48) into the Eq. (8. 55), we have,

λ =

(
β

(k + 1)

)
+ γ

 28(k2+k+1)
5β(k+1) − 96λ0(k2−1)

5β2

+
648λ0

2(k3+k+ 1
k+1 )

5β3 − 72λ0
3(k4+k2+1)

5β4

 . (8. 56)

Pressure up to first order is given as,

p = p0 + γp1. (8. 57)
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We use the Eq. (8. 36) and Eq. (8. 46) into the Eq. (8. 57), to get,

p =
(

6k
h̃β(k−1)

− 6kλ0

h̃2β(k−1)
− 6k2

β2(k2−1)

)
+γ

 168k
5h̃3(k−1)β

− 576kλ0

5h̃4(k−1)β
+ 3888kλ0

2

25h̃5(k−1)β
− 432kλ0

3

5βh̃6(k−1)
− 6kλ1

βh̃2(k−1)

+ 6k
5β3(k−1)

(
− 28

β + 96λ0

β2 − 648λ0
2

5β3 + 72λ0
3

β4 + 5λ1

)  .

(8. 58)

9. OPERATING VARIABLES

After finding the velocity, pressure distribution, and pressure gradient all the captivating
engineering quantities are easily accessible. We compute the operating variables in the
given way.

9.1. Blade Loading. The pressure distribution loads the blade and makes it deflect. When
the blade is flexible, then the blade loading L can be calculated as

L =

∫ 1

0

pdx. (9. 59)

We use the Eq. (8. 58) into the Eq. (9. 59) to get,

L =

∫ 1

0



(
6k

h̃β(k−1)
− 6kλ0

h̃2β(k−1)
− 6k2

β2(k2−1)

)
+γ


168k

5(k−1)βh̃3
− 576kλ0

5h̃4β(k−1)
+ 3888kλ0

2

25h̃5β(k−1)

− 432kλ0
3

5(k−1)βh̃6
− 6kλ1

(k−1)βh̃2

+ 6k
5β3(k−1)

(
− 28

β + 96λ0

β2 − 648λ0
2

5β3 + 72λ0
3

β4 + 5λ1

)


dx.

(9. 60)

10. RESULTS AND DISCUSSION

In this paper, the theoretical study of the blade coating analysis for viscous fluid has been
studied using flexible blade. For the simplification of resultant equations, LAT is applied.
To find the theoretical result perturbation method has been used while some of the results
have been computed numerically.
Figs. 2 (a - f) represent the velocity profile for various values of non-Newtonian parameter
γ at different positions of the blade. In this case calculated validation checks are 1.9104e-
07 at 142 epochs, error histogram is 0.000173 at with 20 bins, gradient is 2.7567e-05, Mu
is 1e-10 and validation checks are 6 at 148 epochs.

For the validation of data set which the network achieved, the BVP represents the lowest
error. This value physically interprets how accurately the network generalized the unseen
data with high accuracy. The neural network suggests weights, architecture and algorithms
are well defined. The error histogram physically represents the error distribution for actual
target and predicted output. For spread and symmetry interpretation and observation of
whether the model is skewed, biases of making big errors in some defined ranges, the error
values are divided into 20 ranges (20 bins). The performance slop function is referred
by the gradient with respect to the weights. The small value of gradient (2.7567e-05)
means that the training has approached a minimum and no more changes in weights are
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required, since it will be negligible. To control the update size of weights, the damping
parameter Mu has been used. The very small value of Mu refers to an algorithm with
Gauss-Newton behaviour, while a smaller value of damping parameter Mu reflects that
the model has achieved its convergence and only fine tuned adjustments are needed at this
stage. The lowest valid error has been achieved by the model for its best performance,
which is shown by an epoch (one complete cycle through the entire dataset training). The
physical interpretation of ANN parameters is given as under.

Validation checks: Overfitting warning: training stops if error doesn’t improve.
Calculated validation: During training, the best validation error has been achieved
Error Histogram: Error spread representation: narrow with low peak error is pre-

sented here.
Gradient: Refers to how the error surface is steep; convergence= small gradient
Mu: A damping parameter
Epochs: Training iterations; critical to assess generalization and learning.

Whereas the Figs. 3 (a - f) have been sketched for various values of flexible parameter
β at different positions of the blade. It has been noticed that the fluid velocity decreases
by increasing the value of the non-Newtonian parameters. According to physical perspec-
tive, an increase in value of γ correlates to shear thickening effects, which increases the
fluid viscosity and decreases the fluid velocity. From these figures it is observed that with
increasing γ, the non-Newtonian character also increases, which increases shear thicken-
ing and causes the reduction in the fluid velocity, while by increasing the value of β, the
velocity of the fluid increases means if the blade is more flexible velocity of fluid is more,
while for less flexible blade velocity is also less physically it means that with more flex-
ibility more fluid can pass from the gap while if the blade is less flexible velocity of the
fluid is less so less fluid will pass from the gap. In this case calculated validation perfor-
mance are 1.022e-07 at 1000 epochs, error histogram is 4.43e-05 at with 20 bins, gradient
is 4.1156e-07, Mu is 1e-9 and validation checks are 0 at same number of epochs.

Hence in this analysis, the best performance has been achieved by the artificial neural
network which signifies an extremely low generalization error. On the unseen data, the
excellent predictive accuracy also achieved. The error histogram suggests unbiased and
consistent output across different samples because most prediction errors lie in a very nar-
row range. A concisely small value of gradient value shows that the performance of the
network surface has nearly been flattened. Thus, the model is very close to a global or local
minimum error function. The damping factor Mu confirms that the training algorithm has
been transitioned into fine-tuning mode. More precisely, it can be concluded that these pa-
rameters describe a well-generalized, optimally trained and highly stable model of neural
network.
Pressure for various values of β is depicted in Fig. 4(a - d), while pressure for various
values of γ is depicted in Fig. 5(a - d). It is observed that the pressure increases with
increasing γ, so we concluded that pressure is more for non-Newtonian fluid as compared
to Newtonian fluids, because by increasing the non-Newtonian parameter shear thickening
increases which inserts more pressure. From Fig. 4(a - d) it is clear that pressure decreases
by increasing the value of β, it means that by increasing the value of flexible parameter
there is more gap between the blade and the substrate so fluid can easily pass through this
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gap and hence exerts less pressure. In this case calculated validation performances are
3.8283e-07 at 84 epochs, error histogram is 0.000485 at with 20 bins, gradient is 8.4995e-
05, Mu is 1e-10 and validation checks are 6 at 90 epochs.
It is clear from the basic rheology that γ is related to shear thickening Figs. 5(a - d). There-
fore, an increase in γ will lead to higher effective viscosity, higher pressure and lower
velocity. On the other hand, β is related to the deformation. Higher β means that there is
wider area available for the fluid flow which perpetuates less pressure drop and higher ve-
locity rates. In this case calculated validation performances are 1.0683e-07 at 169 epochs,
error histogram is 0.000224 at with 20 bins, gradient is 6.3335e-06, Mu is 1e-8 and valida-
tion checks are 6 at 175 epochs.
All the results in the given paper from Figs. 2(a - f) to Figs. 5(a - d) and from Table 1 to
Table 4 can be deduced from the given discussion. Figs. (6 – 9) are statistical graphs of
physical analysis of numerical values tabulated in Table 4 and Table 5.

Table 1 and Table 2 show numerical values of solution including Epoch, elapsed time,
performance, gradient and µ for velocity and pressure distribution simultaneously.

Table 3 shows that the non-Newtonian parameter effects on the coating thickness and
blade loading. It is worth mentioning to observe that by increasing the non-Newtonian pa-
rameter values, the blade loading increases, and coating thickness also increases. So more
non-Newtonian fluid will exert more load compared to Newtonian fluid and the coating
thickness for non-Newtonian fluid is more as compared to Newtonian fluid. While Table 4
shows the effect of flexibility parameter on coating thickness and blade loading, it is clear
from the table that blade loading decreases by increasing the flexibility parameter, and coat-
ing thickness increases by increasing the flexibility parameter, it means more flexible blade
will reduce the blade loading and increase the coating thickness. We can control the blade
loading and coating thickness by changing these parameters and can get thickness of the
desired requirement. Figure 6-9 are there to present the pictorial representation of tabular
data.

For different values of the parameters α and β, a detailed numerical summary for per-
formance outcomes and training dynamics of an ANN model has been presented by Table
2. In the study of complex fluid dynamical profiles, it is crucial to reflect the efficiency
of ANN and convergence behaviour by supporting data. For various values of α and β
(each set of conditions), it is clear by the table that how effectively and quickly the network
adapts the accuracy. For instance, the network achieved the minimal error change at the
stopping point for lower gradient values, which indicates best convergence. Whereas the
smaller values of the damping parameter represent the transition of optimizer to fine-tuning
from large exploration near the optimum solution. Overall, the flexibility and robustness of
an artificial neural network which handles various physical situations associated with the
flow has been validated through this table to ensure that the developed model is precise as
well.

11. CONCLUSION

Here in this article blade coating analysis of non-Newtonian third order fluid has been
studied. In this case the flexible blade has been used. LAT analysis has been used for
the simplification of the equations. Basic governing equations are simplified using the
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a b

c d

e f
Fig 2 (a - f): The velocity profile at different positions of the blade for different values of
γ, error analysis and estimation of gradient, Mu and validations checks.
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a b

c d

e
f

Fig 3(a - f): The velocity profile at different position of the blade for different values, error
analysis and estimation of gradient, Mu and validations checks.
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a b

c
d

Fig 4(a – d): Pressure distribution for different values of β, error analysis and estimation
of gradient, Mu and validations checks.

lubrication approximation theory. We make use of perturbation technique and numerical
method for the investigation of the nature of steady state solution which exist.
The outcome of the present analysis in summarized form can be given as follows:

• Velocity of the fluid decreases by increasing the non-Newtonian parameter.
• Velocity of the fluid increases by increasing the flexibility parameter.
• Pressure increases by increasing the value of non-Newtonian parameter while it

decreases by increasing the value of the flexibility parameter.
• Blade loading and coating thickness increases by increasing the value of non- New-

tonian parameter.
• Blade loading decreases by increasing the value of flexibility parameter while coat-

ing thickness increases by increasing flexibility.
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a b

c d
Fig 5(a - d): Pressure distribution for different values of γ, error analysis and estimation of
gradient, Mu and validations checks.

The present results are more generalized than the results of Middleman [4]. By putting
the value of parameter of flexibility zero results of Middleman can be retrieved. Also,
previously the blade coating analysis of third order fluid has been studied [20]. Here in this
work, we have considered the blade coating analysis of third order fluid with flexibility.

It is clear that coating thickness can be increases or decreases by changing the value of
these parameter, it is very important from the industrial point of view. Desired thickness
can be obtained by changing and controlling these parameters.
This work can be extended by using the MHD effects. Here we have used the flexible blade
exponential blade can also be used. There are variety of non- Newtonian fluids in nature
as in coating industries different types of fluids are used. we can also extend this work by
using some other non- Newtonian fluids in the study.
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TABLE 1. Numerical estimation of training, validation, performance,
gradient, Mu and time for velocity profile.

S(1) Velocity for γ = 0.01 Velocity for γ = 0.03 Velocity for γ = 0.05
Initial
Value

Stopped
Value

Target
Value

Initial
Value

Stopped
Value

Target
Value

Initial
Value

Stopped
Value

Target
Value

Epoch 0 148 1000 0 728 1000 0 183 1000
Elapsed
Time

- 00:00:02 - - 00:00:08 - - 00:00:02 -

Performance 4.07 2.13e-07 0 8.34 8.56e-
08

0 2.26 9.46e-
08

0

Gradient 6.07 2.76e-05 1e-07 9.13 6.33e-
06

1e-07 3.95 1.59e-
06

1e-07

Mu 0.001 1e-10 1e+10 0.001 1e-09 1e+10 0.001 1e-08 1e+10
S(2) Velocity for β = 0.5 Velocity for β = 0.7 Velocity for β = 0.9

Initial
Value

Stopped
Value

Target
Value

Initial
Value

Stopped
Value

Target
Value

Initial
Value

Stopped
Value

Target
Value

Epoch 0 1000 1000 0 246 1000 0 1000 1000
Elapsed
Time

- 00:00:11 - - 00:00:03 - - 00:00:12 -

Performance 5.46 1.1e-07 0 7.62 5.59e-
07

0 2.32 1.15e-
06

0

Gradient 4.88 4.12e-07 1e-07 9.07 5.08e-
06

1e-07 3.27 4.51e-
06

1e-07

Mu 0.001 1e-09 1e+10 0.001 1e-07 1e+10 0.001 1e-08 1e+10
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TABLE 2. Numerical estimation of training, validation, performance,
gradient, Mu and time for pressure distribution profile.

S(1) Pressure distribution
for γ = 0.01

Pressure distribution
for γ = 0.05

Pressure distribution
for γ = 0.09

Initial
Value

Stopped
Value

Target
Value

Initial
Value

Stopped
Value

Target
Value

Initial
Value

Stopped
Value

Target
Value

Epoch 0 175 1000 0 968 1000 0 64 1000
Elapsed
Time

- 00:00:02 - - 00:00:10 - - 00:00:01 -

Performance 6.24 1.27e-07 0 18.5 7.21e-08 0 4.96 3e-07 0
Gradient 13.2 6.33e-06 1e-07 28.7 8.82e-06 1e-07 9.94 0.000106 1e-07
Mu 0.001 1e-08 1e+10 0.001 1e-10 1e+10 0.001 1e-09 1e+10
S(2) Pressure distribution

for β = 0.5
Pressure distribution
for β = 0.7

Pressure distribution
for β = 0.9

Initial
Value

Stopped
Value

Target
Value

Initial
Value

Stopped
Value

Target
Value

Initial
Value

Stopped
Value

Target
Value

Epoch 0 421 1000 0 90 1000 0 120 1000
Elapsed
Time

- 00:00:04 - - 00:00:01 - - 00:00:01 -

Performance 3.29 2.81e-07 0 7.61 3.87e-07 0 11.3 3.58e-07 0
Gradient 7.86 9.07e-07 1e-07 14.9 8.5e-05 1e-07 17.9 1.15e-05 1e-07
Mu 0.001 1e-08 1e+10 0.001 1e-10 1e+10 0.001 1e-10 1e+10

TABLE 3. Tabular form of results

γ λ L
0.001 0.72854 4.045500
0.002 0.74524 4.046500
0.003 0.76931 4.047500
0.004 0.78442 4.048500
0.005 0.80241 4.049500
0.006 0.82433 4.050500
0.007 0.84311 4.051500
0.008 0.86243 4.052500
0.009 0.88753 4.053500
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TABLE 4. Tabular form of results

β λ L
0.2 0.00421 64.713010
0.4 0.00532 16.1790026
0.6 0.00584 7.191223
0.8 0.00657 4.045500
1 0.00758 2.589480

6 7

8 9
Figure (6 - 9): Statistical graphs of physical analysis of numerical values tabulated in Table
4 and Table 5.
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