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Abstract. Multi-criteria group decision-making (MCGDM) is a significant 
procedure because it facilitates and enhances decision-making (DM) by 
incorporating diverse variables and professional viewpoints, producing more 
adequate results. A set of flexibility to manage confusion and un-predictable 
information is improved by adding probability which makes choices more 
predictable. The present work suggests a technique that utilizes fuzziness to 
handle MCGDM issues that frequently arise in cybersecurity risk assessment. 
This strategy overcomes the fundamental difficulties in privacy and security 
information by using the probabilistic uncertain linguistic q-rung orthopair 
fuzzy set (PULq-ROFS). Comparedwith other fuzzy collections, such as 
statistical tentative, linguistically in-tuitionistic, and linguistically Euclidean 
imprecise collections that effec-tively include erratic and non-
erraticproblems, the PULq-ROFS provides multiple characteristics. To 
advance this framework, we propose two new operators the PULq-ROF 
einstein weighted average (PULq-ROFEWA) and PULq-ROF Einstein order 
weighted average (PULq-ROFEOWA) that efficiently integrate the statistical 
lexical choice data. These operations introduce a creative concept within the 
PULq-ROF context. Furthermore, by applying the entropy technique, we 
determine the relative weights of parameters based on their informational 
contribution to the study. 
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 In addition, we employ the combinative distance-based assessment 
(CODAS) method to evaluate choices according to their distance from the 
least op-timal solution, thereby ensuring a more accurate and reliable 
decision-making procedure. The suggested PULq-ROF-CODAS 
technique effi-ciency is illustrated by its implementation in cybersecurity 
risk assess-ments, where managing ambiguities and communication 
judgment are critical. The results support the theoretical frameworks 
capacity to rank cybersecurity threats based on significance while 
maintaining agreement between specialist perspectives and collective 
evaluations, ultimately con-tributing to stronger and more well-planned 
cybersecurity mechanisms.

AMS (MOS) Subject Classification Codes: 03E72;94D05,90B50;90C31
Key Words: PULq-ROFS, PULq-ROFEWA operator, PULq-ROFEOWA operator, CO-
DAS method.

1. INTRODUCTION

A crucial area of research that concentrates on locating, evaluating, and reducing possi-
ble safety hazards in the digital world is cybersecurity risk assessments. Controlling safety 
hazards is a major concern for enterprises due to a rising incidence of assaults and ex-
panding modern backdrops. It is frequently difficult for conventional protection models 
to allow for statistical differences in specialist judgments, translational bias, and confu-
sion. Examples of cyber attacks include antivirus assaults, fake emails, hacking, intrusions 
by employees, and advanced persistent threats (APTs). These threats often target critical 
records. To effectively investigate threats, enterprises need to adopt complex decision-
making frameworks. These frameworks also help execute protection methods as attackers 
techniques evolve. Safety monitoring assessments protect private information. They also 
ensure client trust, organizational resilience, and regulatory compliance. Emerging tech-
nological hazards are unpredictable as well as complicated, therefore rendering it difficult 
for conventional safety frameworks to handle them. For this purpose, vulnerability iden-
tification techniques must incorporate artificial intelligence (AI) and deep learning (DL). 
More complex threat evaluation techniques, including probabilistic and fuzzy reasoning, 
can improve the effectiveness of vulnerability identification. The expansion of vulnera-
bilities caused by the increasing number of connected gadgets has made strict constraints 
on access and protection techniques mandatory. Furthermore, malicious acts by insiders 
are a permanent issue, emphasizing the significance of regular monitoring and safety ed-
ucation initiatives for employees. By adopting creative measures, enterprises can prevent 
potential cyber crises before they fully develop. Real-time threat assessment enables timely 
interventions. A strong cyber defense plan guarantees that companies can minimize oper-
ational interruptions and quickly bounce back from safety incidents. Effective processes 
for verification and frequent staff education are essential because hacking and social me-
dia manipulation assaults are still common. 

U. Ahmad et al.
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 The critical network is particularly targeted by advanced persistent threats (APTs), which 
highlights the significance of a multi-layered protection plan. Frequent safety inspections 
and hacking investigations are necessary for enterprises. These processes help identify 
system flaws and stay ahead of malicious crim-inals. The safety of information is made 
even stronger by computer system improvements like multiple logins and zero trust 
infrastructure. For successful control and elimination of cyber hazards, a well-organized 
crisis management plan is essential.

Due to the erratic character of human behavior and the complexity of situations, it is a 
tough challenge for specialists to represent their skills as contexts. Specialists cannot 
convey their opinions by providing accurate scores, regardless of whether the assessment 
data obtained from them is imprecise or insufficient. To capture the qualities of a 
qualitative assessment, Herrera and Martinez [12] developed linguistic term sets (LTSs). 
Therefore, specialists may use a unique linguistic term (LT) to present the assessment of 
knowledge enabled by the LT [14]. 

There are occasions when specialists are unable to clearly describe their studies with a 
single LT, and we face uncertainty between several LTs. For illustration, while determining 
the sustainability of a life insurance policy, a specialist may use any LT that is part of LTS, 
ρ={p0 : very bad, p1 : bad, p2 : moderately bad, p3 : moderate, p4 : slightly good, p5 : good, 
p6 : very good} to indicate the assessment. If the specialist feels that the approach is indeed 
slightly good, it can be described as {p4}. Also, if the specialist feels that the approach is 
indeed very good, it can be described as {p6}. 

Due to their expertise and the complexity of the decision-making (DM) environment 
[15], specialists may provide multiple evaluation levels for similar DM problems.
Rodriguez et al.[24] presented a hesitating fuzzier linguistics terminology set (HFLTS) 
that allows specialists to indicate their opinions with multiple LTS. The HFLTS assigns 
identical values to each object, which could not be correct in practice. Although 
specialists may have different kinds of experience or choice for possible LTS, it can be 
concluded that the weights of linguistic evaluations cannot be ignored in actual DM 
concerns [1]. For example, the rating information includes probabilistic information in 
addition to LTS if an expert is 70 percent convinced that a life insurance plan is good and 
30 percent convinced that such a plan is moderate.

To solve these issues, Pang et al. [22] developed probabilistic linguistic term sets 
(PLTSs) that contained a few potential LTS as well as related probability information. 
Those who make decisions apply PLTS [27] to represent their assessment data and as-sess 
difficulties. It provides data sets together with probabilities for all linguistic terms that 
might be used. The DMs can generate a variety of linguistic terms for an item (alter-native 
or attribute) by using PLTSs, as well as display actual probabilistic data of such a collection 
of values. We can obtain complete and reliable details well about DM opinions in this 
technique [22]. Suppose N ={m−2 : very bad, m−1 : bad, m0 : general, m1 : excellent, m2 : 
very excellent}, and a specialist is asked to assess a students potential.
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He/she may assert that 50 percent of the time the individuals potential is excellent and 40 
percent of the time it is very excellent. Furthermore, it might be expressed as Capability 
(person)={excellent(0.5), very excellent(0.4)}, that is O(ρ) = {m1(0.5), m2(0.4)}. Fur-
thermore, it can explain that a group makes decisions. For example, let M={n−2 : very 
little, n−1 : little, n0 : general, n1 : large, n2 : very large}, and 100 clients are asked to 
evaluate the probability that a plan will succeed. If 56 clients perceive it to be large and 
24 believe it to be general, while the remaining clients remain silent, this condition can be 
determined by the possibility of achievement (task) ={general(24 percent), large(56 per-
cent)}, that is Y(ρ) = {n0(0.24), n1(0.56)}. Furthermore, under consideration of PLTSs 
benefits and variety of uses, it acts as the essential assessment results. The two illustrations 
represent the PLTSs imprecise probabilistic ranges. The PLTS must generate an appropriate 
distribution of possibilities for data blending, the PLTS needs to be adjusted for normality 
[25].

In some real-world scenarios, DMs may lack precise or complete information. They 
may therefore present their assessments using uncertain linguistic concepts [31] within 
group decision-making (GDM) procedures. Moreover, such uncertain linguistic concepts 
are distinct from one another, and each linguistic expression also exists at a specific rate. 
Lin et al. [19] constructed on the basis of unclear linguistic concepts and PLTSs to de-
velop the PULTS approach for dealing with inconsistent linguistic assessments in DM. To 
develop the popular level and the target variable, Xie et al. [30] developed the PUL prefer-
ence relation (PULPR) and the normalized PULPR. Scoring each uncertain linguistic term 
demonstrates the richness of data in the presence of multiple ULTs. It also provides a prob-
abilistic model for analysis. The related probabilities of UL variables in a PULTS might be 
considered as the concepts of appearing for the ULTs [28]. To express their analyzed data, 
few DMs can offer PULTSs. For example, a high-ranking DM utilizes the intensity of 
relaxation in a vehicle the way of given LTs A={a−3 : very poor, a−2 : poor, a−1 : slightly 
poor, a0 : moderate, a1 : slightly excellent, a2 : excellent, a3 : very excellent}. Consider that 
they believe their level of calm is between “slightly excellent and excellent, 30 percent are 
certain,” and between “excellent and very excellent, 70 percent are certain.”. Thus the 
PULTS {⟨[a1, a2], 0.3⟩, ⟨[a2, a3], 0.7⟩} can be utilized to describe a car’s comfort level. 
Additionally, PULTS can indicate the assessment of texts with the entire group or a 
subgroup in GDM situations of significant size. For instance, out of the ten DMs judging 
the possibility x1 over x2 based on a specific set of linguistic concepts, three DMs respond 
among “slightly excellent and excellent,” and seven DMs respond among “excellent and 
very excellent”. B={a−3 : very poor, a−2 : poor, a−1 : slightly poor, a0 : moderate, a1 : 
slightly excellent, a2 : excellent, a3 : very excellent}. In this circumstance, x1 prefers x2, 
which is expressed using a PULTS as: {⟨[a1, a2], 0.3⟩, ⟨[a2, a3], 0.7⟩}.

Earlier than 1965, even misconceptions in pure mathematics and probability concepts 
may partially address the requirement to control a specific type of ambiguity, notably un-
predictability. The fuzzy criteria, including such tiny, immature, notably higher, etc., are 
not sufficiently explained by the probability theory. Zadeh [35] published his innovative 
work,“Fuzzy Sets” in 1965. Fuzzy sets (FSs) are now becoming essential building blocks 
for machine learning and the MCGDM process because they have better feasibility in the 
search for accessible information among difficulties. A collection of components with 
membership values falling between [0,1] is referred to as a FS. An element’s or item’s
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membership value is always expressed by a fuzzy set. If an item partially fulfills a spec-
ified condition, we must give it a membership value within the range [0,1]. Furthermore, 
real-world assessments reveal that events are becoming increasingly complicated, empha-
sizing that only a unique degree of membership is unable to capture the true nature of the 
items. However, the fuzzy set is unable to express the absence of membership value of 
a thing. To address these problems, Atanassov [6] proposed a generalized version of FS 
known as an intuitionistic fuzzy set, which represents both the membership degree (MD) 
of its elements as well as non-membership degree (NMD). Each MD and NMD value for 
IFS must fall within the range [0,1]. The earlier collections, including FS and IFS, operate 
on the exponential connection between MD and NMD with a condition that potentially the 
total of each value is required to be below or equivalent to one. However, if we take MD 
α = 0.7 and NMD β = 0.6, then α+ β > 1; it exceeds the boundaries of these ranges, and 
FS and IFS are unable to resolve this type of issue. The Pythagorean fuzzy set (PyFS) rep-
resents a more extended type of FS that Yager [33] described. Considering the value of the 
quadratic sum of MD and NMD is equal to or less than 1, this idea has been extended from 
IFS to PyFS. He extended the collaboration from α+β ≤ 1 to α2 +β2 ≤ 1, which expands 
the range and helps us to resolve the multiple input [2]. Whereas PyFSs are effective in 
their specific uses, q-rung orthopair fuzzy sets (q-ROFSs) utilize a more generalized form 
of expanded gap cover-up. To increase validity and allow researchers to generate their own 
opinions regarding MD and NMD values, Yager [34] proposed a generalized statement of 
IFS and PyFS called q-ROFS, defined as αq + βq ≤ 1, q ≥ 1. For example, if MD α = 0.9 
and NMD β = 0.8, IFS and PyFS are unable to deal with this problem. However, Yager’s 
q-ROFS can effectively handle these circumstances by changing the requirement such as 
0.93 + 0.83 ≤ 1. Using the q-ROFS in this kind of condition is suitable, too. To man-
age the q-ROFS level, Akram et al. [3, 4] utilized Einstein aggregation operators (EAOs) 
like the Einstein weighted average and the Einstein ordered weighted average operators. 
Sheng [9] proposed the EAOs for q-ROFS and built the MCGDM method to handle chal-
lenges in DM. An essential approach in MCGDM is the CODAS approach, which was first 
presented by Ghorabaee et al.[10]. CODAS provides an advanced way of rating choices 
by combining Euclidean and taxicab distances, especially in conditions when conventional 
techniques might not be able to differentiate between choices with similar scores. Scholars 
have expanded CODAS into a variety of fuzzy contexts in recognition of the intricacies 
and inconsistencies present in practical DM processes. To solve supplier selection prob-
lems in production, Boltrk [7] created a Pythagorean fuzzy (PyF) CODAS approach that 
successfully captures the reluctance and inconsistency in experts ratings. The effective-
ness of a triangular intuitionistic fuzzy (TIF) CODAS technique in combining economical 
and ecological requirements despite unpredictability was also demonstrated by Daami Re-
madi and Moalla Frikha [23] in their application in the choice of sustainable resources. The 
incorporation of CODAS into additional fuzzy approaches is an instance of additional 
improvements. Andukuri and Rao [5] used fuzzy CODAS to choose manufacturing ma-
chinery status tracking devices, demonstrating its ability to endure in scientific choices. 
Additionally, Kundaki and Arman [16] demonstrated the approach’s flexibility in a va-
riety of commercial circumstances by combining fuzzy CODAS with the IMF-SWARA 
technique to simplify the company’s consultant choice process. The use of CODAS for 
economic evaluations is an additional instance of its flexibility. In their extensive review
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of MCGDM techniques, Baydas et al. [8] concluded that fuzzy CODAS was the best tech-
nique for assessing the economic performance information, especially when combined with 
highest leveling. For further study on linguistic DM and its applications, the readers are 
referred to [21, 13, 19, 31, 32].

1.1. Significance of PULq-ROFS. Conventional fuzzy and fuzzy intuitionistic frame-
works struggle to capture the broad spectrum of individual thinking in DM. This difficulty 
persists even when answers are sophisticated but imperfect. The PULq-ROFS combines 
PUL details with the q-ROF principle. This approach overcomes the previous limitations 
and provides a more accurate and adaptable method to express ambiguity. In contrast to 
conventional methods, PULq-ROFS takes into consideration probabilistic linguistic hesi-
tation along with the presence or absence of membership grades. The result is important 
for complicated everyday life DM instances, including safety assessments, medical treat-
ment, and economic investment review. Furthermore, PULq-ROFSs capacity to control 
multidimensional doubt assures that it will continue to function well while dealing with 
complicated interactions and MCGDM problems. It enables specialists to express uncer-
tain linguistic choices effectively. This results in a more rational and informed framework 
for DM. The models capacity to handle volatile and unforeseen circumstances is enhanced 
by including probability elements. This feature makes it suitable for situations with imme-
diate and dynamic outcomes. In the end, PULq-ROFS is an effective tool for increasing 
choice quality, decreasing losing data, and facilitating more open and rational DM in chal-
lenging and unplanned circumstances. Researchers and scholars studied, expanded and 
then utilized different DM strategies in various disciplines [17, 11, 20, 26, 29, 18].

1.2. Motivation of PULq-ROFS. PULq-ROFS was developed to address the growing 
number of decision-making contexts where linguistic evaluations and cognitive abilities 
are critical. Most existing fuzzy algorithms perform poorly when handling highly subjec-
tive, uncertain, or imperfect information. Consequently, they yield suboptimal DM results. 
PULq-ROFS provides administrators with greater flexibility in areas where linguistic and 
human cognition are important. It employs the q-ROF framework to store additional infor-
mation without imposing unnecessary constraints. The DM process gets even better with 
the addition of PUL phrases, which are especially useful in situations with competing re-
quirements, contradictory choices, and unsure analyst judgments. PULq-ROFS essentially 
increases the depth of unreliable simulation, which in turn improves the stability and de-
pendability of convoluted multi-criteria evaluations, consequently enabling DMs. By inte-
grating linguistic uncertainty, probabilistic information, and q-rung flexibility, PULq-ROFS 
serves as an effective tool for addressing real-world problems where traditional imprecise 
frameworks are inadequate.

1.3. Contribution. The PULq-ROFS is an additional area of linguistic terms technique 
integrating the ideas of PUL and q-ROFS. Since the MD and NMD of PULq-ROFS are rep-
resented by a set of possible uncertain linguistic terms (ULTs) with their associated prob-
abilities, PULq-ROFS can process considerably more information provided by experts. A 
sophisticated development of FS theory is PULq-ROFS that combines uncertain linguistic 
variables, probabilistic information, and the q-ROFS framework. The goal of PULq-ROFS 
is to manage the uncertainties and ambiguity in DM problems where linguistic variables
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are used and probabilistic information is available. The q-rung behavior efficiently cov-
ers larger amounts of ambiguity. Consequently, this composite set allows DMs to convey 
safety hazards utilizing linguistic phrases with probabilistic patterns. PULq-ROF Einstein 
weighted average (PULq-ROFEWA) operator is used to improve the accumulation of vul-
nerability threats. This assures that extremely important risk indicators have a higher in-
fluence on DM while preserving the unpredictable nature of expert ratings. Furthermore, 
to handle the fears with range of motion, the PULq-ROF Einstein ordered weighted aver-
age (PULq-ROFEWA) operator is used for aggregating safety hazards while taking DMs 
ideological choices into account. Subsequently, by combining information, the uniform 
distribution of safety-related information is evaluated by the entropy technique to deter-
mine the desired weights for factors related to security. The CODAS technique focuses 
on the most significant gaps by ranking safety hazards according to their Einstein-based 
distances from the negative ideal solution (NIS) after the weights have been provided. Cy-
bersecurity specialists can perform precise and credible threat assessments while taking 
linguistic, fuzzy, and probabilistic difficulty into consideration due to this scientific tech-
nique. For cybercrime risk control, this framework provides a deliberate, adaptable, and 
effective methodology by combining PULq-ROFS with EAOs and MCDM approaches. A 
practical instance dealing with cybersecurity risk assessment is taken under consideration 
in order to show the success of the suggested method. Moreover, a comparison study is 
done to emphasize the technique’s dependability and realistic characteristics.

The manuscript is organized as Sect.2 gives a summary of PULq-ROFSs and their as-
sociation PULq-ROFS. Sect.3 demonstrates an aggregation procedures PULq-ROFEWA 
and PULq-ROFEOWA. The suggested DM technique, which is constructed on the CODAS 
technique for selecting choices and the Entropy technique for weighting requirements, is 
described in Sect.4. Sect.5 illustrates a numerical instance of cybersecurity risk assessment. 
A comparison assessment is provided in Sect.6 to verify the effectiveness of the suggested 
approach, and the research is concluded with important results and recommendations for 
the future in Sect.7.

2. PRELIMINARIES

Definition 2.1. [22, 21] Suppose if i = {♭ϑ|ϑ = −∆, . . . , −3, −2, −1, 0, 1, 2, 3, . . . , ∆} 
represents a LTS; a PLTS can be defined as follows:

~♭(ρ) = {♭ε(ρε)|♭ε ∈ i, ρε ≥ 0, ε = 1, 2, . . . ,#~♭(ρ),
#~♭(ρ)∑
ε=1

ρ(ε) ≤ 1}, (2. 1)

where in the LT is ♭(ε)(ρ(ε)), ♭(ε) is associated with the possibility ρ(ε), and #~♭(ρ) denotes 
the total number of LTs in ~♭(ρ).

Definition 2.2. [13] Suppose Z = [♭a, ♭b], where ♭a, ♭b ∈ i[∆,−∆], ♭a and ♭b include the 
most significant and less restriction; we consequently define Z as the UL component.

To effectively illustrate the DMs rigidity, Lin et al. [19] presented across an innovative 
concept called PULTS, which utilizes unclear linguistic parameters [31] and PLTSs.
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Definition 2.3. [19] A PULTS is described in the following way:

Z(ρ) = {[η(ε), γ(ε)](ρ(ε))|η(ε), γ(ε) ∈ i, ρ(ε) ≥ 0, ε = 1, 2, . . . , #Z(ρ),

#Z(ρ)∑
ε=1

ρ(ε) ≤ 1},

(2. 2)
where [η(ε), γ(ε)](ρ(ε)) indicates the ULT [η(ε), γ(ε)] associated with the probability ρ(ε)

and η(ε), γ(ε) are LTs, η(ε) ≤ γ(ε) and #Z(ρ) is the cardinality of Z(ρ).

It is suggested that no assessment of information is now available, if
#Z(ρ)∑
ε=1

ρ(ε) = 0. In

the occurrence, if
#Z(ρ)∑
ε=1

ρ(ε) = 1, ultimately all information regarding their semantic as-

sessment is provided. In the circumstance in which 0 <
#Z(ρ)∑
ε=1

ρ(ε) < 1, it indicates only a

portion of the linguistic evaluations are provided since some DMs are capable of providing 
the full analysis information as well as given some DMs are responsible for sending the in-
formation. It happens often in real-world MAGDM problems, and it is necessary to resolve 
unknown risk.

Definition 2.4. [19] Considering a PULTS Z(ρ) = {[η(ε), γ(ε)](ρ(ε))|ε = 1, 2, . . . , #Z(ρ)}, 
where Z(ρ) is referred to as a sequence of PULTS if any of its constituent parts are ar-
ranged in descending order. It includes two components ⟨[η(ι), γ(ι)](ρ(ι))⟩ and
⟨[η(ϵ), γ(ϵ)](ρ(ϵ))⟩ which are compared to the probability ratio of [η(ι)×(ρ(ι)), γ(ι)×(ρ(ι))] 
and [η(ϵ) × (ρ(ϵ)), γ(ϵ) × (ρ(ϵ))], respectively.

In order to address the balance of unjustified error that makes PULTS’s importance iden-
tical, PULTS are normalized. Two distinct processes are involved in PULTS normalization. 
Assessing a person’s insufficient statistical understanding is the fundamental component, 
and adjusting a PULTS’s efficiency serves computational reasons.

#Z(ρ)∑
ε=1

ρ(ε) < 1, consequently, the relatedDefinition 2.5. [19] Suppose a PULTS Z(ρ) with 

PULTS Ż (ρ) can be described as:

Ż(ρ) = {[η(ε), γ(ε)](ρ̇(ε))|ε = 1, 2, . . . ,#Z(ρ)}, (2. 3)

where ρ̇(ε) = ρ(ε)

#Z(ρ)∑
ε=1

ρ(ε)
, for all ε = 1, 2, ...,#Z(ρ).

)|ε =

The PULTS significance is typically inconsistent in real-world DM purposes, which causes 
substantial operational issues. Thus, inserting unclear linguistic concepts containing chance 
0 in PULTS with just a few components, we are able to raise their cardinalities.

Definition 2.6. [19] Suppose Z1(ρ) and Z2(ρ) be any two PULTS, Z1(ρ) = {[η(1
ε)
, γ1

(ε)
](ρ

(
1
ε)

1, 2, . . . , #Z1(ρ)} and Z2(ρ) = {[η(2
ε)
, γ2

(ε)
](ρ

(
2
ε)
)|ε = 1, 2, . . . , #Z2(ρ)}, and let #Z1(ρ) 

and #Z2(ρ) be the number of linguistic terms in Z1(ρ) and Z2(ρ), respectively. If #Z1(ρ) > 
#Z2(ρ), then we will add #Z1(ρ) − #Z2(ρ) linguistic terms to Z2(ρ) so that the amount
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of expressions in Z1(ρ) and Z2(ρ) are similar. The probability of each verbal phrase is
zero and the fewest phrases in Z2(ρ) are those that have been inserted.

Let Z1(ρ) = {[η(ε)1 , γ
(ε)
1 ](ρ

(ε)
1 )|ε = 1, 2, . . . ,#Z1(ρ)} and Z2(ρ) = {[η(ε)2 , γ

(ε)
2 ](ρ

(ε)
2 )|ε =

1, 2, . . . ,#Z2(ρ)}, afterward, the two phases listed below can be used to carry out the nor-
malized procedure:

(1) If
#Z(ρ)∑
ε=1

ρ(ε) < 1 then by formula ( 2. 3 ), the value Żι(ρ), ι = 1, 2, can be

calculated.
(2) If #Z1(ρ) ̸= #Z2(ρ), then based on the definition 2.6, it is necessary to include

additional aspects in alongside those with fewer components.

We refer to the resulting PULTS as the adjusted PULTS. The adjusted PULTS are also
represented by Z1(ρ) and Z2(ρ) for visual purposes.

Definition 2.7. [17] Given a conventional predetermined set χ, the expression for a q-
ROFS, Q formed on χ is as follows:

Q = {⟨x, σQ(x), ζQ(x)⟩|x ∈ χ}, (2. 4)

q
√

where σQ(x) and ζQ(x) symbolize the MD and NMD of the component x ∈ χ to the set Q, 
correspondingly, achieving 0 ≤ σQ(x), ζQ(x) ≤ 1 and (σQ(x))q +(ζQ(x))

q ≤ 1, (q ≥ 1). 
The amount of inconsistency is described as

πQ(x) = (σQ(x))q + (ζQ(x))q − (σQ(x))q(ζQ(x))q.

Liu and Wang [17] known as the arranged combination (σQ(x), ζQ(x)) a q-ROFN, which 
is represented as β = (σ, ζ).

Definition 2.8. [32, 11] Suppose i = {♭ϑ|ϑ = −∆, . . . , −2, −1, 0, 1, 2, . . . , ∆} be a LTS 
[32]. The corresponding details to ϖ that is obtained by using the transformation function
[11] can be represented by the linguistic phrase ♭ϑ:

t : [♭−∆, ♭∆] → [0, 1], t(♭ϑ) =
ϑ+∆

2∆
= ϖ. (2. 5)

Additionally, data whose value is equal to the linguistic concepts ♭ϑ can be expressed using
ϖ, so that ϖ can be obtained using the transformation function t−1:

t−1 : [0, 1] → [♭−∆, ♭∆], t
−1 = ♭(2ϖ−1)∆ = ♭ϑ. (2. 6)

We now employ the probabilistic fuzzy set (PULq-ROFS), which permits experts to
display evaluation information in several linguistic and incorporates the possibility for each
of them. The problem is figuring out the best way to apply PULq-ROFS criteria correctly
when the corresponding probability models diverge.

Definition 2.9. [20]Let Y = {y1, y2, . . . , yϵ} refer to a uniform collection and i = {♭ϑ|ϑ 
= −∆, . . . , −3, −2, −1, 0, 1, 2, 3, . . . , ∆} be a LTS. Then a PULq-ROFS ~(ρ) on Y is 
given as:

~(ρ) = {⟨yϵ, σ(ρ̂)(yϵ), ζ(ρ̃)(yϵ)⟩ : yϵ ∈ Y}, (2. 6)
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where σ(ρ̂)(yϵ) = {[ℵθϵ(g) , µθϵ(g) ](ρ̂(g)) : ℵθϵ(g) , µθϵ(g) ∈ i[∆,−∆], ρ̂(g) ≥ 0,
G∑

g=1
ρ̂(g) ≤

1} and ζ(ρ̃)(yϵ) = {[£Θϵ(j) , νΘϵ(j) ](ρ̃
(j)) : £Θϵ(j) , νΘϵ(j) ∈ i[∆,−∆], ρ̃(j) ≥ 0,

J∑
j=1

ρ̃(j) ≤

1} indicate the affiliation and non-affiliation grade, appropriately, of yϵ ∈ Y, with the
corresponding chances are ρ̂(g) and ρ̃(j), respectively; θϵ(g) and Θϵ(j) are the subscripts
of the ULTs [ℵθϵ(g) , µθϵ(g) ] and [£Θϵ(j) , νΘϵ(j) ], respectively; fulfilling the criteria 0 ≤
(

G
max
g=1

θϵ(g))q + (
J

max
j=1

Θϵ(j))q ≤ ∆q (q ≥ 1).

The set ~(ρ) minimizes the PULq-ROFN if it contains exclusively unique elements and
we highlight this as ~(ρ) = ⟨{[ℵθ(g) , µθ(g) ](ρ̂(g))}, {[£Θ(j) , νΘ(j) ](ρ̃(j))}⟩ where [ℵθ(g) , µθ(g) ],

[£Θ(j) , νΘ(j) ] ∈ i[∆,−∆] and ρ̂(g), ρ̃(j) ≥ 0,
G∑

g=1
ρ̂(g) ≤ 1,

J∑
j=1

ρ̃(j) ≤ 1.

Definition 2.10. [20] Suppose i[∆,−∆] be a LTS for any adjusted PULq-ROFN
~(ρ)=⟨{[ℵθ(g) , µθ(g) ](ρ̂(g)), [£Θ(j) , νΘ(j) ](ρ̃(j))}⟩, where ℵθ(g) , µθ(g) , £Θ(j) , and
νΘ(j) ∈ i[∆,−∆], (g = 1, 2, 3 . . . G; j = 1, 2, 3 . . . , J), the score function of ~(ρ) is de-
scribed as

z(~(ρ)) =

#Gθ∑
g=1

(
t(ℵ

θ(g) )ρ̂
(g)+t(µ

θ(g) )ρ̂
(g)

2

)q

#Gθ∑
g=1

ρ̂(g)
−

#JΘ∑
j=1

(
t(£

Θ(j) )ρ̃
(j)+t(ν

Θ(j) )ρ̃
(j)

2

)q

#JΘ∑
j=1

ρ̃(j)
, (2. 7)

where t(ℵθ(g)), t(µθ(g)), t(£Θ(j)), and t(νΘ(j)) ∈ [0, 1], #Gθ and #JΘ indicate how many
items there are in the related set, respectively. The standard deviation of ~(ρ) is described
as

((ρ)~)ג =

√
#Gθ∑
g=1

(
t(ℵ

θ(g) )ρ̂
(g)+t(µ

θ(g) )ρ̂
(g)

2
− z(~(ρ))

)q

#Gθ∑
g=1

ρ̂(g)

+

√
#JΘ∑
j=1

(
t(£

Θ(j) )ρ̃
(j)+t(ν

Θ(j) )ρ̃
(j)

2
− z(~(ρ))

)q

#JΘ∑
j=1

ρ̃(j)

,

(2. 8)

where t(ℵθ(g) ), t(µθ(g) ), t(£Θ(j) ), and t(νΘ(j) ) ∈ [0, 1], #Gθ and #JΘ indicate number 
of items there are in the related set, respectively.

Definition 2.11. [20] Suppose ~(1)(ρ) and ~(2)(ρ) be two PULq-ROFNs. Therefore, the 
arrangement of PULq-ROFNs juxtaposition appears as below:

: (A) If z(~(1)(ρ)) ≻ z(~(2)(ρ)), then ~(1)(ρ) ≻ ~(2)(ρ).
: (B) If z(~(1)(ρ)) ≺ z(~(2)(ρ)), then ~(1)(ρ) ≺ ~(2)(ρ)
: (C) If z(~(1)(ρ)) = z(~(2)(ρ)), then

• (a) If ((ρ)(1)~)ג ≻ ,((ρ)(2)~)ג then ~(1)(ρ) ≺ ~(2)(ρ).
• (b) If ((ρ)(1)~)ג ≺ ,((ρ)(2)~)ג then ~(1)(ρ) ≻ ~(2)(ρ).
• (c) If ((ρ)(1)~)ג = ,((ρ)(2)~)ג then ~(1)(ρ) ≈ ~(2)(ρ).
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Definition 2.12. [20] Suppose ~1(ρ) = ⟨{[ℵθ1(g) , µθ1(g) ](ρ̂(g)), [£Θ1(j) , νΘ1(j) ](ρ̃(j))}⟩ and
~2(ρ) = ⟨{[ℵθ2(g) , µθ2(g) ](ρ̂(g)), [£Θ2(j) , νΘ2(j) ](ρ̃(j))}⟩ (g = 1, 2, . . . ,G; j = 1, 2, . . . , J) in-
clude two customized PULq-ROFNs where θϵ(g) and Θϵ(j)(ϵ = 1, 2) include the relevant
description of [ℵθϵ(g) , µθϵ(g) ] and [£Θϵ(j) , νΘϵ(j) ](ϵ = 1, 2)λ > 0, following that, the key
properties of PULq-ROFNs are outlined as follows:

(1) neg(~1(ρ)) =
⟨{

[£Θ1(j) , νΘ1(j) ] (ρ̃(j)), [ℵθ1(g) , µθ1(g) ] (ρ̂(g))
}⟩
.

(2) ~1(ρ)⊕ ~2(ρ) =
(
ℵ

q
√

(θ1(g))q+(θ2(g))q−(
(θ1(g))(θ2(g))

∆
)q
, µ

q
√

(θ1(g))q+(θ2(g))q−(
(θ1(g))(θ2(g))

∆
)q

)
(ρ̂(g)),

(
£

Θ1(j)Θ2(j)

∆

, ν
Θ1(j)Θ2(j)

∆

)
(ρ̃(j))

.

(3) ~1(ρ)⊗ ~2(ρ) =
(
ℵ
θ1(g)θ2(g)

∆

, µ
θ1(g)θ2(g)

∆

)
(ρ̂(g)),

(
£

q
√

(Θ1(j))q+(Θ2(j))q−(
(Θ1(j))(Θ2(j))

∆
)q
, ν

q
√

(Θ1(j))q+(Θ2(j))q−(
(Θ1(j))(Θ2(j))

∆
)q

)
(ρ̃(j))

.

(4) λ~1(ρ) =
(
ℵ

q
√

∆q−∆q(1− (θ1(g))q

∆q )

, µ
q
√

∆q−∆q(1− (θ1(g))q

∆q )

)λ
(ρ̂(g)),

(
£

∆(Θ1(j)

∆
)λ

, ν
∆(Θ1(j)

∆
)λ

)
(ρ̃(j))

.

(5) (~1(ρ))λ =


(
ℵ
∆( θ

1(g)

∆
)
, µ

∆( θ
1(g)

∆
)

)λ
(ρ̂(g)),

(
£

q
√

∆q−∆q(1− (Θ1(j))q

∆q )

, ν
q
√

∆q−∆q(1− (Θ1(j))q

∆q )

)λ
(ρ̃(j))

.

Theorem 2.1. [20] Let ~1(ρ) = ⟨{[ℵθ1(g) , µθ1(g) ](ρ̂(g)), [£Θ1(j) , νΘ1(j) ](ρ̃(j))}⟩ and ~2(ρ) = 
⟨{[ℵθ2(g) , µθ2(g) ](ρ̂(g)), [£Θ2(j) , νΘ2(j) ](ρ̃(j))}⟩ (g = 1, 2, . . . , G; j = 1, 2, . . . , J) be any two
modified PULq-ROFNs, ξ, ξ1, ξ2, > 0, then

(1): ~1(ρ)⊕ ~2(ρ) = ~2(ρ)⊕ ~1(ρ);
(2): ~1(ρ)⊗ ~2(ρ) = ~2(ρ)⊗ ~1(ρ);
(3): ξ(~1(ρ)⊕ ~2(ρ)) = ξ~1(ρ) ⊕ ξ~2(ρ);
(4): ξ1~1(ρ) ⊕ ξ2~1(ρ) = (ξ1 + ξ2)~1(ρ);
(5): (~1(ρ))ξ1 ⊗ (~1(ρ))ξ2 = (~1(ρ))ξ1+ξ2;
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(6): (~1(ρ))ξ ⊗ (~2(ρ))ξ = (~1(ρ) ⊗ ~2(ρ))ξ.

Definition 2.13. [20] Let ~1(ρ) = ⟨{[ℵθ1(g) , µθ1(g) ](ρ̂(g)), [£Θ1(j) , νΘ1(j) ](ρ̃(j))}⟩ and ~2(ρ) = 
⟨{[ℵθ2(g) , µθ2(g) ](ρ̂(g)), [£Θ2(j) , νΘ2(j) ](ρ̃(j))}⟩ (g = 1, 2, . . . , G; j = 1, 2, . . . , J) consist of two
modified PULq-ROFNs, then Hamming distance HD (~1(ρ), ~2(ρ)) between ~1(ρ) and 
~2(ρ) is described as follows:

HD(~1(ρ), ~2(ρ)) =

√√√√√√
#Gθ∑
g=1

(
|t(ℵθ1(g) )ρ̂(g) − t(ℵθ2(g) )ρ̂(g)|q + |t(µθ1(g) )ρ̂(g) − t(µθ2(g) )ρ̂(g)|q

)
2#Gθ

+√√√√√√
#JΘ∑
j=1

(
|t(£Θ1(j) )ρ̃(j) − t(£Θ2(j) )ρ̃(j)|q + |t(νΘ1(j) )ρ̃(j) − t(νΘ2(j) )ρ̃(j)|q

)
2#JΘ

. (2. 9)

3. PULq-ROF EINSTEIN AGGREGATION OPERATORS

The following section presents the Einstein aggregation operators for PULq-ROFNs.
The fundamental Einstein laws of operation between two PULq-ROFNs are covered ini-
tially in the definition that follows.

Definition 3.1. Let ~1(ρ) = ⟨{[ℵθ1(g) , µθ1(g) ](ρ̂(g)), [£Θ1(j) , νΘ1(j) ](ρ̃(j))}⟩ and ~2(ρ) =
⟨{[ℵθ2(g) , µθ2(g) ](ρ̂(g)), [£Θ2(j) , νΘ2(j) ](ρ̃(j))}⟩ (g = 1, 2, . . . ,G; j = 1, 2, . . . , J) consist
of two modified PULq-ROFNs where θϵ(g) and Θϵ(j)(ϵ = 1, 2) include the associated sub-
title of [ℵθϵ(g) , µθϵ(g) ] and [£Θϵ(j) , νΘϵ(j) ](ϵ = 1, 2)λ > 0, then the PULq-ROF Einstein
operations between ~1(ρ) and ~2(ρ) are:

(1) ~1(ρ)
⊕

~2(ρ) =



t−1

∆

 q

√√√√√√√
(
t (ℵθ1(g))

∆

)q
+

(
t (ℵθ2(g))

∆

)q
1 +

(
t (ℵθ1(g))

∆

)q (
t (ℵθ2(g))

∆

)q

 , t−1

∆

 q

√√√√√√√
(
t (µθ1(g))

∆

)q
+

(
t (µθ2(g))

∆

)q
1 +

(
t (µθ1(g))

∆

)q (
t (µθ2(g))

∆

)q


(ρ̂(g)) ,

t−1

∆


(
t (£Θ1(j))

∆

)(
t (£Θ2(j))

∆

)
q

√
1 +

(
1−

(
t (£Θ1(j))

∆

)q)(
1−

(
t (£Θ2(j))

∆

)q)

 , t−1

∆


(
t (νΘ1(j))

∆

)(
t (νΘ2(j))

∆

)
q

√
1 +

(
1−

(
t (νΘ1(j))

∆

)q)(
1−

(
t (νΘ2(j))

∆

)q)


(ρ̃(j))


.

(2) ~1(ρ)
⊗

~2(ρ) =



t−1

∆


(
t (ℵθ1(g))

∆

)(
t (ℵθ2(g))

∆

)
q

√
1 +

(
1−

(
t (ℵθ1(g))

∆

)q)(
1−

(
t (ℵθ2(g))

∆

)q)

 , t−1

∆


(
t (µθ1(g))

∆

)(
t (µθ2(g))

∆

)
q

√
1 +

(
1−

(
t (µθ1(g))

∆

)q)(
1−

(
t (µθ2(g))

∆

)q)


(ρ̂(g))

t−1

∆

 q

√√√√√√√
(
t (£Θ1(j))

∆

)q
+

(
t (£Θ2(j))

∆

)q
1 +

(
t (£Θ1(j))

∆

)q (
t (£Θ2(j))

∆

)q

 , t−1

∆

 q

√√√√√√√
(
t (νΘ1(j))

∆

)q
+

(
t (νΘ2(j))

∆

)q
1 +

(
t (νΘ1(j))

∆

)q (
t (νΘ2(j))

∆

)q


(ρ̃(j))


.

(3) λ~1(ρ) =



t−1

∆

 q

√√√√√√√√
(
1 +

t (ℵθ1(g))

∆

)λ
−
(
1− t (ℵθ1(g))

∆

)λ
(
1 +

t (ℵθ1(g))

∆

)λ
+

(
1− t (ℵθ1(g))

∆

)λ

 , t−1

∆

 q

√√√√√√√√
(
1 +

t (µθ1(g))

∆

)λ
−
(
1− t (µθ1(g))

∆

)λ
(
1 +

t (µθ1(g))

∆

)λ
+

(
1− t (µθ1(g))

∆

)λ


(ρ̂(g)) ,

t−1

∆


q
√
2

(
t (£Θ1(j))

∆

)λ
q

√(
2−

(
t (£Θ1(j))

∆

)q)λ
+

((
t (£Θ1(j))

∆

)q)λ

 , t−1

∆


q
√
2

(
t (νΘ1(j))

∆

)λ
q

√(
2−

(
t (νΘ1(j))

∆

)q)λ
+

((
t (νΘ1(j))

∆

)q)λ


(ρ̃(j))


.
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(4) (~1(ρ))λ =




t−1


∆



q√2

 t
(
ℵ
θ1(g)

)
∆

λ

q

√√√√√2 −

 t
(
ℵ
θ1(g)

)
∆

qλ +

 t
(
ℵ
θ1(g)

)
∆

qλ




, t−1


∆



q√2

 t
(
µ
θ1(g)

)
∆

λ

q

√√√√√2 −

 t
(
µ
θ1(g)

)
∆

qλ +

 t
(
µ
θ1(g)

)
∆

qλ






(
ρ̂(g)

)
,


t−1


∆


q

√√√√√√√√√√√√

1 +
t
(
£

Θ1(j)

)
∆

λ −

1 −
t
(
£

Θ1(j)

)
∆

λ
1 +

t
(
£

Θ1(j)

)
∆

λ +

1 −
t
(
£

Θ1(j)

)
∆

λ



, t−1


∆


q

√√√√√√√√√√√√

1 +
t
(
ν
Θ1(j)

)
∆

λ −

1 −
t
(
ν
Θ1(j)

)
∆

λ
1 +

t
(
ν
Θ1(j)

)
∆

λ +

1 −
t
(
ν
Θ1(j)

)
∆

λ





(
ρ̃(j)

)


.

We now introduce the PULq-ROFEWA operation and its associated basic characteris-
tics:

Definition 3.2. Assume i = {♭ϑ|ϑ = −∆, . . . ,−3,−2,−1, 0, 1, 2, 3, . . . ,∆} is a LTS,

~ϵ(ρ) = ⟨{[ℵθϵ(g) , µθϵ(g) ](ρ̂(g)), [£Θϵ(j) , νΘϵ(j) ](ρ̃
(j))}⟩

(ϵ = 1, 2, . . . , ς; g = 1, 2, . . . ,G; j = 1, 2, . . . , J) be the modified PULq-ROFNs, then the
PULq-ROFEWA operator is described as below:

PULq-ROFEWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ)) =
ς
⊕
ϵ=1

Wϵ~ϵ(ρ), (3. 10)

where W = (W1,W2, . . . ,Wς)
T is the weight vector of Mϵ (ϵ = 1, 2, . . . , ς) with Wϵ ∈

[0, 1] and
ς∑
ϵ=1

Wϵ = 1.

Theorem 3.1. Considering an assortment of PULq-ROFNs

~ϵ(ρ) = ⟨{[ℵθϵ(g) , µθϵ(g) ](ρ̂(g)), [£Θϵ(j) , νΘϵ(j) ](ρ̃
(j))}⟩
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(ϵ = 1, 2, . . . , ς; g = 1, 2, . . . ,G; j = 1, 2, . . . , J) having weight vector W = (W1,W2, . . . ,Wς)
T

with Wϵ ∈ [0, 1] and
ς∑
ϵ=1

Wϵ = 1. Then

PULq-ROFEWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ))

=



t
−1

∆


q

√√√√√√√√√√
ς∏
ϵ=1

(
1 +

t
(
ℵθϵ(g)

)
∆

)Wϵ

−
ς∏
ϵ=1

(
1−

t
(
ℵθϵ(g)

)
∆

)Wϵ

ς∏
ϵ=1

(
1 +

t
(
ℵθϵ(g)

)
∆

)Wϵ

+
ς∏
ϵ=1

(
1−

t
(
ℵθϵ(g)

)
∆

)Wϵ



 ,

t−1

∆


q

√√√√√√√√√√
ς∏
ϵ=1

(
1 +

t
(
µθϵ(g)

)
∆

)Wϵ

−
ς∏
ϵ=1

(
1−

t
(
µθϵ(g)

)
∆

)Wϵ

ς∏
ϵ=1

(
1 +

t
(
µθϵ(g)

)
∆

)Wϵ

+
ς∏
ϵ=1

(
1−

t
(
µθϵ(g)

)
∆

)Wϵ






(
ρ̂(g)

)
,

t
−1

∆


q
√
2

ς∏
ϵ=1

(
t
(
£Θϵ(j)

)
∆

)Wϵ

q

√√√√ ς∏
ϵ=1

(
2−

(
t
(
£Θϵ(j)

)
∆

)q)Wϵ

+
ς∏
ϵ=1

((
t
(
£Θϵ(j)

)
∆

)q)Wϵ



 ,

t−1

∆


q
√
2

ς∏
ϵ=1

(
t
(
νΘϵ(j)

)
∆

)Wϵ

q

√√√√ ς∏
ϵ=1

(
2−

(
t
(
νΘϵ(j)

)
∆

)q)Wϵ

+
ς∏
ϵ=1

((
t
(
νΘϵ(j)

)
∆

)q)Wϵ






(
ρ̃(j)
)



.(3. 11)

Proof. We use induction method and definition 3.2 to prove this theorem. For ς = 2, we
have

W1~1(ρ)
⊕

W2~2(ρ) =



Entropy-Driven Decision-Making for Cybersecurity Risk Assessment 867

t−1

∆

 q

√√√√√√√√
(
1 +

t (ℵθ1(g))

∆

)W1

−
(
1− t (ℵθ1(g))

∆

)W1

(
1 +

t (ℵθ1(g))

∆

)W1

+

(
1− t (ℵθ1(g))

∆

)W1


 ,

t−1

∆

 q

√√√√√√√√
(
1 +

t (µθ1(g))

∆

)W1

−
(
1− t (µθ1(g))

∆

)W1

(
1 +

t (µθ1(g))

∆

)W1

+

(
1− t (µθ1(g))

∆

)W1



(ρ̂(g))

t−1

∆


q
√
2

(
t (£Θ1(j))

∆

)W1

q

√(
2−

(
t (£Θ1(j))

∆

)q)W1

+

((
t (£Θ1(j))

∆

)q)W1


 ,

t−1

∆


q
√
2

(
t (νΘ1(j))

∆

)W1

q

√(
2−

(
t (νΘ1(j))

∆

)q)W1

+

((
t (νΘ1(j))

∆

)q)W1



(ρ̃(j))



⊕
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t−1

∆

 q

√√√√√√√√
(
1 +

t (ℵθ2(g))

∆

)W2

−
(
1− t (ℵθ2(g))

∆

)W2

(
1 +

t (ℵθ2(g))

∆

)W1

+

(
1− t (ℵθ2(g))

∆

)W2


 ,

t−1

∆

 q

√√√√√√√√
(
1 +

t (µθ2(g))

∆

)W2

−
(
1− t (µθ2(g))

∆

)W2

(
1 +

t (µθ1(g))

∆

)W1

+

(
1− t (µθ2(g))

∆

)W2



(ρ̂(g)) ,

t−1

∆


q
√
2

(
t (£Θ2(j))

∆

)W2

q

√(
2−

(
t (£Θ2(j))

∆

)q)W2

+

((
t (£Θ2(j))

∆

)q)W2


 ,

t−1

∆


q
√
2

(
t (νΘ2(j))

∆

)W1

q

√(
2−

(
t (νΘ1(j))

∆

)q)W2

+

((
t (νΘ2(j))

∆

)q)W2



(ρ̃(j))



.
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

t−1

∆

 q

√√√√√√√√
2∏
ϵ=1

(
1 +

t (ℵθϵ(g))

∆

)Wϵ

−
2∏
ϵ=1

(
1− t (ℵθϵ(g))

∆

)Wϵ

2∏
ϵ=1

(
1 +

t (ℵθϵ(g))

∆

)Wϵ

+
2∏
ϵ=1

(
1− t (ℵθϵ(g))

∆

)Wϵ


 ,

t−1

∆

 q

√√√√√√√√
2∏
ϵ=1

(
1 +

t (µθϵ(g))

∆

)Wϵ

−
2∏
ϵ=1

(
1− t (µθϵ(g))

∆

)Wϵ

2∏
ϵ=1

(
1 +

t (µθϵ(g))

∆

)Wϵ

+
2∏
ϵ=1

(
1− t (µθϵ(g))

∆

)Wϵ



(ρ̂(g)) ,

t−1

∆


q
√
2

2∏
ϵ=1

(
t (£Θϵ(j))

∆

)Wϵ

q

√
2∏
ϵ=1

(
2−

(
t (£Θϵ(j))

∆

)q)Wϵ

+
2∏
ϵ=1

((
t (£Θϵ(j))

∆

)q)Wϵ


 ,

t−1

∆


q
√
2

2∏
ϵ=1

(
t (νΘϵ(j))

∆

)Wϵ

q

√
2∏
ϵ=1

(
2−

(
t (νΘϵ(j))

∆

)q)Wϵ

+
2∏
ϵ=1

((
t (νΘϵ(j))

∆

)q)Wϵ



(ρ̃(j))



.

Equation 3. 11 keeps for ς = 2. Assume that Equation ( 3. 11 ) keeps for ς = ψ.

PULq-ROFEWA(~1(ρ), ~2(ρ), . . . , ~ψ(ρ)) =
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t−1

∆

 q

√√√√√√√√
ψ∏
ϵ=1

(
1 +

t (ℵθϵ(g))

∆

)Wϵ

−
ψ∏
ϵ=1

(
1− t (ℵθϵ(g))

∆

)Wϵ

ψ∏
ϵ=1

(
1 +

t (ℵθϵ(g))

∆

)Wϵ

+
ψ∏
ϵ=1

(
1− t (ℵθϵ(g))

∆

)Wϵ


 ,

t−1

∆

 q

√√√√√√√√
ψ∏
ϵ=1

(
1 +

t (µθϵ(g))

∆

)Wϵ

−
ψ∏
ϵ=1

(
1− t (µθϵ(g))

∆

)Wϵ

ψ∏
ϵ=1

(
1 +

t (µθϵ(g))

∆

)Wϵ

+
ψ∏
ϵ=1

(
1− t (µθϵ(g))

∆

)Wϵ



(ρ̂(g)) ,

t−1

∆


q
√
2

ψ∏
ϵ=1

(
t(£Θϵ(j))

∆

)Wϵ

q

√
ψ∏
ϵ=1

(
2−

(
t (£Θϵ(j))

∆

)q)Wϵ

+
ψ∏
ϵ=1

((
t (£Θϵ(j))

∆

)q)Wϵ


 ,

t−1

∆


q
√
2

ψ∏
ϵ=1

(
t (νΘϵ(j))

∆

)Wϵ

q

√
ψ∏
ϵ=1

(
2−

(
t (νΘϵ(j))

∆

)q)Wϵ

+
ψ∏
ϵ=1

((
t (νΘϵ(j))

∆

)q)Wϵ



(ρ̃(j))



.

For ς = ψ + 1 by the assumption logic, we have

PULq-ROFEWA(~1(ρ), ~2(ρ), . . . , ~ψ(ρ), ~ψ+1(ρ))
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

t−1

∆

 q

√√√√√√√√
ψ∏
ϵ=1

(
1 +

t (ℵθϵ(g))

∆

)Wϵ

−
ψ∏
ϵ=1

(
1− t (ℵθϵ(g))

∆

)Wϵ

ψ∏
ϵ=1

(
1 +

t (ℵθϵ(g))

∆

)Wϵ

+
ψ∏
ϵ=1

(
1− t (ℵθϵ(g))

∆

)Wϵ


 ,

t−1

∆

 q

√√√√√√√√
ψ∏
ϵ=1

(
1 +

t (µθϵ(g))

∆

)Wϵ

−
ψ∏
ϵ=1

(
1− t (µθϵ(g))

∆

)Wϵ

ψ∏
ϵ=1

(
1 +

t (µθϵ(g))

∆

)Wϵ

+
ψ∏
ϵ=1

(
1− t (µθϵ(g))

∆

)Wϵ



(ρ̂(g)) ,

t−1

∆


q
√
2

ψ∏
ϵ=1

(
t (£Θϵ(j))

∆

)Wϵ

q

√
ψ∏
ϵ=1

(
2−

(
t (£Θϵ(j))

∆

)q)Wϵ

+
ψ∏
ϵ=1

((
t (£Θϵ(j))

∆

)q)Wϵ


 ,

t−1

∆


q
√
2

ψ∏
ϵ=1

(
t (νΘϵ(j))

∆

)Wϵ

q

√
ψ∏
ϵ=1

(
2−

(
t (νΘϵ(j))

∆

)q)Wϵ

+
ψ∏
ϵ=1

((
t (νΘϵ(j))

∆

)q)Wϵ



(ρ̃(j))



⊕
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t−1

∆

 q

√√√√√√√√
(
1 +

t (ℵθψ+1(g))

∆

)Wψ+1

−
(
1− t (ℵθψ+1(g))

∆

)Wψ+1

(
1 +

t (ℵθψ+1(g))

∆

)Wψ+1

+

(
1− t (ℵθψ+1(g))

∆

)Wψ+1


 ,

t−1

∆

 q

√√√√√√√√
(
1 +

t (µθψ+1(g))

∆

)Wψ+1

−
(
1− t (µθψ+1(g))

∆

)Wψ+1

(
1 +

t (µθψ+1(g))

∆

)Wψ+1

+

(
1− t (µθψ+1(g))

∆

)Wψ+1



(ρ̂(g)) ,

t−1

∆


q
√
2

(
t (£Θψ+1(j))

∆

)Wψ+1

q

√(
2−

(
t (£Θψ+1(j))

∆

)q)Wψ+1

+

((
t (£Θψ+1(j))

∆

)q)Wψ+1


 ,

t−1

∆


q
√
2

(
t (νΘψ+1(j))

∆

)Wψ+1

q

√(
2−

(
t (νΘψ+1(j))

∆

)q)Wψ+1

+

((
t (νΘψ+1(j))

∆

)q)Wψ+1



(ρ̃(j))



.

=



t−1

∆

 q

√√√√√√√√
ψ+1∏
ϵ=1

(
1 +

t (ℵθϵ(g))

∆

)Wϵ

−
ψ+1∏
ϵ=1

(
1− t (ℵθϵ(g))

∆

)Wϵ

ψ+1∏
ϵ=1

(
1 +

t (ℵθϵ(g))

∆

)Wϵ

+
ψ+1∏
ϵ=1

(
1− t (ℵθϵ(g))

∆

)Wϵ


 ,

t−1

∆

 q

√√√√√√√√
ψ+1∏
ϵ=1

(
1 +

t (µθϵ(g))

∆

)Wϵ

−
ψ+1∏
ϵ=1

(
1− t (µθϵ(g))

∆

)Wϵ

ψ+1∏
ϵ=1

(
1 +

t (µθϵ(g))

∆

)Wϵ

+
ψ+1∏
ϵ=1

(
1− t (µθϵ(g))

∆

)Wϵ



(ρ̂(g)) ,t−1

∆


q
√
2
ψ+1∏
ϵ=1

(
t (£Θϵ(j))

∆

)Wϵ

q

√
ψ+1∏
ϵ=1

(
2−

(
t (£Θϵ(j))

∆

)q)Wϵ

+
ψ+1∏
ϵ=1

((
t (£Θϵ(j))

∆

)q)Wϵ


 ,

t−1

∆


q
√
2
ψ+1∏
ϵ=1

(
t (νΘϵ(j))

∆

)Wϵ

q

√
ψ+1∏
ϵ=1

(
2−

(
t (νΘϵ(j))

∆

)q)Wϵ

+
ψ+1∏
ϵ=1

((
t (νΘϵ(j))

∆

)q)Wϵ



(ρ̃(j))



.
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Hence, Equation ( 3. 11 ) keeps for every positive integers ς ≥ 1. �

Proposition 3.1. Suppose

~ϵ(ρ) = ⟨{[ℵθϵ(g) , µθϵ(g) ](ρ̂(g)), [£Θϵ(j) , νΘϵ(j) ](ρ̃
(j))}⟩

(ϵ = 1, 2, . . . , ς; g = 1, 2, . . . ,G; j = 1, 2, . . . , J) be the collection of PULq-ROFNs with

weight vector W = (W1,W2, . . . ,Wς)
T , such that Wϵ ∈ [0, 1] and

ς∑
ϵ=1

Wϵ = 1. There-

fore, certain characteristics apply to the PULq-ROFEWA operator:

(1) (Idempotency) If all ~ϵ(ρ) = ([ℵθϵ(g) , µθϵ(g) ](ρ̂(g))), [£Θϵ(j) , νΘϵ(j) ](ρ̃
(j))(ϵ = 1, 2, . . . , ς)

are equal, for all ϵ, then

PULq-ROFEWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ)) = ~(ρ).

Proof. Suppose ~ϵ(ρ)=⟨{[ℵθϵ(g) , µθϵ(g) ](ρ̂(g)), [£Θϵ(j) , νΘϵ(j) ](ρ̃
(j))}⟩ is a collec-

tion of PULq-ROFNs such that ~ϵ(ρ) = ~(ρ) for all (ϵ = 1, 2, . . . , ς),Wϵ ∈ [0, 1]
and from Equation 3. 11 , we get

PULq-ROFEWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ)) =

=



t−1

∆ q

√√√√√√√√
ς∏
ϵ=1

(
1 +

t (ℵθϵ(g))

∆

)Wϵ

−
ς∏
ϵ=1

(
1− t (ℵθϵ(g))

∆

)Wϵ

ς∏
ϵ=1

(
1 +

t (ℵθϵ(g))

∆

)Wϵ

+
ς∏
ϵ=1

(
1− t (ℵθϵ(g))

∆

)Wϵ

 ,

t−1

∆ q

√√√√√√√√
ς∏
ϵ=1

(
1 +

t (µθϵ(g))

∆

)Wϵ

−
ς∏
ϵ=1

(
1− t (µθϵ(g))

∆

)Wϵ

ς∏
ϵ=1

(
1 +

t (µθϵ(g))

∆

)Wϵ

+
ς∏
ϵ=1

(
1− t (µθϵ(g))

∆

)Wϵ


(ρ̂(g)) ,t−1

∆

q
√
2

ς∏
ϵ=1

(
t (£Θϵ(j))

∆

)Wϵ

q

√
ς∏
ϵ=1

(
2−

(
t (£Θϵ(j))

∆

)q)Wϵ

+
ς∏
ϵ=1

((
t (£Θϵ(j))

∆

)q)Wϵ

 ,

t−1

∆

q
√
2

ς∏
ϵ=1

(
t (νΘϵ(j))

∆

)Wϵ

q

√
ς∏
ϵ=1

(
2−

(
t (νΘϵ(j))

∆

)q)Wϵ

+
ς∏
ϵ=1

((
t (νΘϵ(j))

∆

)q)Wϵ


(ρ̃(j))


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=



t−1

∆ q

√√√√√√√
(
1 +

t(ℵθ(g))

∆

)
−
(
1− t(ℵθ(g))

∆

)
(
1 +

t(ℵθ(g))

∆

)
+

(
1− t(ℵθ(g))

∆

)
 ,

t−1

∆ q

√√√√√√√
(
1 +

t(µθ(g))

∆

)
−
(
1− t(µθ(g))

∆

)
(
1 +

t(µθ(g))

∆

)
+

(
1− t(µθ(g))

∆

)

(ρ̂(g)) ,t−1

∆

q
√
2

(
t(£Θ(j))

∆

)
q

√(
2−

(
t(£Θ(j))

∆

)q)
+

(
t(£Θ(j))

∆

)q
 ,

t−1

∆

q
√
2

(
t(νΘ(j))

∆

)
q

√(
2−

(
t(νΘ(j))

∆

)q)
+

(
t(νΘ(j))

∆

)q

(ρ̃(j))



=


[
t−1

(
∆

(
t
(
ℵθ(g)

)
∆

))
, t−1

(
∆

(
t
(
µθ(g)

)
∆

))](
ρ̂(g)

)
,

[
t−1

(
∆

(
t
(
£Θ(j)

)
∆

))
, t−1

(
∆

(
t
(
νΘ(j)

)
∆

))](
ρ̃(j)
)


=
(
[ℵθ(g) , µθ(g) ]

(
ρ̂(g)

)
, [£Θ(j) , νΘ(j) ]

(
ρ̃(j)
) )

= ~(ρ).

�

(2) (Monotonicity) Let ~ϵ(ρ) = (~1(ρ), ~2(ρ), . . . , ~ς(ρ)) and ~′ϵ(ρ
′
) = (~′1(ρ

′
), ~′2(ρ

′
), . . . , ~′ς(ρ

′
))

be two collections of adjusted PULq-ROFNs, for all ϵ, ℵθϵ(f) < ℵθ′ϵ(f) , µθϵ(f) < µθ′ϵ(f) ,£Θϵ(h) >
£Θ′ϵ(h)and
νΘϵ(h) > νΘ′ϵ(h) , then

PULq-ROFEWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ)) < PULq-ROFEWA(~
′1(ρ

′
), ~

′2(ρ
′
), . . . , ~

′ς(ρ
′
)).

(3) (Boundedness) Let ℵθϵ(+) =
G

max
g=1

ℵθϵ(g) , µθϵ(+) =
G

max
g=1

µθϵ(g) , ℵθϵ(−) =
G

min
g=1

ℵθϵ(g) ,

µθϵ(−) =
G

min
g=1

µθϵ(g) , £Θϵ(+) =
J

max
j=1

£Θϵ(j) , νΘϵ(+) =
J

max
j=1

νΘϵ(j) , £Θϵ(−) =
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J
min
j=1

£Θϵ(j) , νΘϵ(−) =
J

min
j=1

νΘϵ(j) , then

(([ℵθϵ(−) , µθϵ(−) ](ρ̂(g))), ([£Θϵ(+) , νΘϵ(+) ](ρ̃(j)))) ≤ PULq-ROFEWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ)) ≤
(([ℵθϵ(+) , µθϵ(+) ](ρ̂(g))), ([£Θϵ(−) , νΘϵ(−) ](ρ̃(j)))).

Definition 3.3. The PULq-ROFEOWA operator is a mapping Hς → H such that: for each
collection of PULq-ROFNs, ~ϵ(ρ)=⟨{[ℵθϵ(g) , µθϵ(g) ](ρ̂(g)), [£Θϵ(j) , νΘϵ(j) ](ρ̃

(j))}⟩ (ϵ =
1, 2, . . . , ς; g = 1, 2, . . . ,G; j = 1, 2, . . . , J)

PULq −ROFEOWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ)) =
n⊕
k=1

Wϵ~α(ϵ)(ρ), (3. 12)

where α(ϵ) is such that ~α(ϵ−1)(ρ) ≥ ~α(ϵ)(ρ) for all ϵ, W = (W1,W2, . . . ,Wς)
T is the

weight vector ~ϵ(ϵ = 1, 2, . . . , ς) with Wϵ ∈ [0, 1] and
ς∑
ϵ=1

Wϵ = 1.

Theorem 3.2. Consider a collection of PULq-ROFNs,

~ϵ(ρ) = ⟨{[ℵθϵ(g) , µθϵ(g) ](ρ̂(g)), [£Θϵ(j) , νΘϵ(j) ](ρ̃
(j))}⟩

(ϵ = 1, 2, . . . , ς; g = 1, 2, . . . ,G; j = 1, 2, . . . , J) having weight vector W = (W1,W2, . . . ,Wς)
T

with Wϵ ∈ [0, 1] and
ς∑
ϵ=1

Wϵ = 1. Then

PULq-ROFEOWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ)) =

t−1

∆

 q

√√√√√√√√
ς∏
ϵ=1

(
1 +

t (ℵθα(ϵ)(g))

∆

)Wϵ

−
ς∏
ϵ=1

(
1− t (ℵθα(ϵ)(g))

∆

)Wϵ

ς∏
ϵ=1

(
1 +

t (ℵθα(ϵ)(g))

∆

)Wϵ

+
ς∏
ϵ=1

(
1− t (ℵθα(ϵ)(g))

∆

)Wϵ



 ,

t−1

∆

 q

√√√√√√√√
ς∏
ϵ=1

(
1 +

t (µθα(ϵ)(g))

∆

)Wϵ

−
ς∏
ϵ=1

(
1− t (µθα(ϵ)(g))

∆

)Wϵ

ς∏
ϵ=1

(
1 +

t (µθα(ϵ)(g))

∆

)Wϵ

+
ς∏
ϵ=1

(
1− t (µθα(ϵ)(g))

∆

)Wϵ


(ρ̂(g)) ,t−1

∆


q
√
2

ς∏
ϵ=1

(
t (£Θα(ϵ)(j))

∆

)Wϵ

q

√
ς∏
ϵ=1

(
2−

(
t (£Θα(ϵ)(j))

∆

)q)Wϵ

+
ς∏
ϵ=1

((
t (£Θα(ϵ)(j))

∆

)q)Wϵ


 ,

t−1

∆


q
√
2

ς∏
ϵ=1

(
t (νΘα(ϵ)(j))

∆

)Wϵ

q

√
ς∏
ϵ=1

(
2−

(
t (νΘα(ϵ)(j))

∆

)q)Wϵ

+
ς∏
ϵ=1

((
t (νΘα(ϵ)(j))

∆

)q)Wϵ


(ρ̃(j))





.

(3. 13)

This proof is similar to the proof of Theorem 3.1.
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Proposition 3.2. Let ~ϵ(ρ)=⟨{[ℵθϵ(g) , µθϵ(g) ](ρ̂(g)), [£Θϵ(j) , νΘϵ(j) ](ρ̃
(j))}⟩ (ϵ = 1, 2, . . . , ς; g =

1, 2, . . . ,G; j = 1, 2, . . . , J) be the collection of PULq-ROFNs with weight vector W =

(W1,W2, . . . ,Wς)
T , such that Wϵ ∈ [0, 1] and

ς∑
ϵ=1

Wϵ = 1. Therefore, certain character-

istics apply to the PULq-ROFEOWA operator:

(1) (Idempotency) If all ~ϵ(ρ) = ([ℵθϵ(g) , µθϵ(g) ](ρ̂(g))), [£Θϵ(j) , νΘϵ(j) ](ρ̃
(j))(ϵ = 1, 2, . . . , ς)

are equal, for all ϵ, then

PULq-ROFEOWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ)) = ~(ρ).

(2) (Monotonicity) Let ~ϵ(ρ) = (~1(ρ), ~2(ρ), . . . , ~ς(ρ)) and ~′ϵ(ρ
′
) = (~′1(ρ

′
), ~′2(ρ

′
), . . . , ~′ς(ρ

′
))

be two collections of adjusted PULq-ROFNs, for all ϵ, ℵθϵ(g) < ℵθ′ϵ(g) , µθϵ(g) < µθ′ϵ(g) ,£Θϵ(j) >
£Θ′ϵ(j)and
νΘϵ(j) > νΘ′ϵ(j) then

PULq-ROFEOWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ)) < PULq-ROFEOWA(~
′1(ρ

′
), ~

′2(ρ
′
), . . . , ~

′ς(ρ
′
)).

(3) (Boundedness) Let ℵθϵ(+) =
G

max
g=1

ℵθϵ(g) , µθϵ(+) =
G

max
g=1

µθϵ(g) , ℵθϵ(−) =
G

min
g=1

ℵθϵ(g) ,

µθϵ(−) =
G

min
g=1

µθϵ(g) , £Θϵ(+) =
J

max
j=1

£Θϵ(j) , νΘϵ(+) =
J

max
j=1

νΘϵ(j) , £Θϵ(−) =

J
min
j=1

£Θϵ(j) , νΘϵ(−) =
J

min
j=1

νΘϵ(j) , then

(([ℵθϵ(−) , µθϵ(−) ](ρ̂(g))), ([£Θϵ(+) , νΘϵ(+) ](ρ̃(j)))) ≤ PULq-ROFEOWA(~1(ρ), ~2(ρ), . . . , ~ς(ρ))
≤ (([ℵθϵ(+) , µθϵ(+) ](ρ̂(g))), ([£Θϵ(−) , νΘϵ(−) ](ρ̃(j)))).

4. PULq-RPF-CODAS METHOD

The CODAS technique for the PULq-ROF context will be developed in this part to
tackle the problems associated with MCGDM. Utilizing the CODAS approach expression
in a PULq-ROF context, our goal is to identify the optimal option. The judgments are fused
using additional Einstein aggregation procedures. Additionally, the weights for the require-
ment are generated using the entropy measurement. The complex MCGDM challenges can
be solved using the PULq-ROF-CODAS approach.
The most prevalent determining variables are the surroundings, evaluations of achieve-
ment, information filtering, and implementation generation. There are a group of special-
ists, a number of feasible solutions and a set of requirements for every MCGDM problems.
Selecting the optimal choice from an assortment of ψ prospective choices or alternative
N = {N1,N2, . . . ,Nψ}, (ι = 1, 2, . . . , ψ) that will be examined depending on ς criteria
M = {M1,M2, . . . ,Mς}, (ι = 1, 2, . . . , ψ) a group of τ DM experts, in order to evalu-
ate the different choices, D = {D1,D2, . . . ,De}, τ = 1, 2, . . . , e are permitted.

Step 1: Development od linguistic-based ideas. The behavior of different options through-
out the DM procedure must be explained using suitable syntax. To assess the choices or
possibilities offered in MCGDM problems, decision specialists typically utilize linguistic
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words. The specialists in this approach first determine the linguistic terms and their corre-
sponding PULq-ROFNs for the MCGDM process.

Step 2: Specialists self-construct matrix structures. In this phase, every specialist devel-
ops a ranking framework and provides feedback in the form of PULq-ROFNs. Suppose
the assessment of the matrix structures provided by the specialists are R = [~τιϵ]ψ×ς . The
judgment framework of the τ th specialist should be described below:

R = [~τιϵ]ψ×ς (4. 14)

=


~τ11 ~τ12 . . . ~τ1ς
~τ21 ~τ22 . . . ~τ2ς

...
...

...
...

~τψ1 ~τψ2 . . . ~τψς

 .

Every element in the assessment matrix R = [~τιϵ]ψ×ς (τ = 1, 2, . . . , e) indicates a PULq-
ROFN as ~τιϵ = ⟨[ℵτθιϵ , µ

τ
θιϵ

](ρ̂τιϵ), [£
τ
Θιϵ
, ντΘιϵ ](ρ̃

τ
ιϵ)⟩, where [ℵτθιϵ , µ

τ
θιϵ

], [£τΘιϵ , ν
τ
Θιϵ

] are
the grades of affiliation and non-affiliation, respectively.

Step 3: Independent normalization of matrices. Every single matrix is adjusted using a
particular criteria:

~ιϵ =
{

⟨[ℵτθιϵ , µ
τ
θιϵ

](ρ̂τιϵ), [£
τ
Θιϵ
, ντΘιϵ ](ρ̃

τ
ιϵ)⟩, for benefit type criteria;

⟨[£τΘιϵ , ν
τ
Θιϵ

](ρ̃τιϵ), [ℵτθιϵ , µ
τ
θιϵ

](ρ̂τιϵ)⟩, for cost type criteria. (4. 15)

Step 4: Computing a unified matrix. To produce a matrix of aggregated assessments,
G = (~τιϵ)ψ×ς , it is necessary to sum up each expert’s rating matrix sequentially. The re-
sult is achieved by using the PULq-ROFEWA operator. Step 5: Weighting the criterion.
By using the entropy approach, the weights of the criteria are determined. The main steps
are as follows:

Step 1∗: Compute aggregated scores. The scores corresponding to the combined aggre-
gated matrix G, as presented in Step 4, are computed using the formula presented in Equa-
tion 4. 16 .

S(~ιϵ) =
(
∆+

((
t (ℵθιϵ )

∆

)q
+

(
t (µθιϵ )

∆

)q)
(ρ̂ιϵ)−

((
t (£Θιϵ )

∆

)q
+

(
t (νΘιϵ )

∆

)q)
(ρ̂ιϵ)

)
.

(4. 16)

Step 2∗: Calculate projection values. Equation 4. 17 is used at this step to compute the
projection values Pij for each criteria:

Pιϵ =
S(~ιϵ)
ψ∑
ι=1

S(~ιϵ)
. (4. 17)
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Step 3∗: Determine entropy scores. Entropy values Ej for each attribute are derived using
the projection values:

Eϵ =
−1

log(ψ)

ψ∑
ι=1

Pιϵ log(Pιϵ). (4. 18)

Step 4∗: Evaluate the divergence scores. Based on entropy values, the formula below
derives the divergence degree dϵ for each attribute, including its built-in variation strength:

dϵ = 1− Eϵ. (4. 19)

Step 5∗: Identify relative weights. Equation 4. 20 serves as the basis for determining the
weights of all criteria:

Wϵ =
dϵ
ς∑
ϵ=1

dϵ

, (4. 20)

where
ς∑
ϵ=1

Wϵ = 1.

Step 6: Evaluating the weighted unified matrix. By applying Equation 4. 21 , the weighted
aggregated matrix is formulated through the integration of weights Wϵ and matrix G:

bιϵ = WϵG =


t−1

∆

(
1−

(
1−

(
t (ℵθιϵ)

∆

)q)Wϵ
)1

q

 , t−1

∆

(
1−

(
1−

(
t (µθιϵ)

∆

)q)Wϵ
)1

q


 (ρ̂ιϵ) ,

[
t−1

(
∆

(
t (£Θιϵ)

∆

)Wϵ
)
, t−1

(
∆

(
t (νΘιϵ)

∆

)Wϵ
)]

(ρ̃ιϵ)

.
(4. 21)

Step 7: Score evaluation and NIS determination. The scores from the weighted matrix
are computed and negative ideal solution (NIS) values are determined for each criteria
reflecting the minimum desired outcomes:

NIS = [NISϵ]1×ς ; (4. 22)

NISϵ = min
ι
S(bιϵ). (4. 23)

Step 8: Computation of Euclidean and Hamming distances. Using the equations below,
Hamming distances HDι and Euclidean distances EDι between the weighted matrix and
NIS are determined.

HDι =
ς∑
ϵ=1

HD(bιϵ, NISϵ), (4. 24)

EDι =
ς∑
ϵ=1

ED(bιϵ, NISϵ). (4. 25)

Let A1 = ⟨{[ℵθ1 , µθ1 ](ρ̂1), [£Θ1 , νΘ1 ](ρ̃1)}⟩ and and A2 = ⟨{[ℵθ2 , µθ2 ](ρ̂2), [£Θ2 , νΘ2 ](ρ̃2)}⟩
be PULq-RPFNs. Then the values of HD and ED between two PULq-RPFNs A1 and A2

can be computed as:

HD(A1,A2) =
1

2∆

(∣∣t (ℵθ1) (ρ̂1)− t (ℵθ2)
(
ρ̂2
)∣∣+ ∣∣t (µθ1) (ρ̂1)− t (µθ2)

(
ρ̂2
)∣∣+ ∣∣t (£Θ1)

(
ρ̃1
)
− t (£Θ2)

(
ρ̃2
)∣∣+ ∣∣t (νΘ1)

(
ρ̃1
)
− t (νΘ2)

(
ρ̃2
)∣∣) ,

(4. 26)
ED(A1,A2) =

∆

2

(∣∣∣∣∣
(
t (ℵθ1)

(
ρ̂1
)
− t (ℵθ2)

(
ρ̂2
)

∆

)q∣∣∣∣∣+
∣∣∣∣∣
(
t (µθ1)

(
ρ̂1
)
− t (µθ2)

(
ρ̂2
)

∆

)q∣∣∣∣∣+
∣∣∣∣∣
(
t (£Θ1)

(
ρ̃1
)
− t (£Θ2)

(
ρ̃2
)

∆

)q∣∣∣∣∣+
∣∣∣∣∣
(
t (νΘ1)

(
ρ̃1
)
− t (νΘ2)

(
ρ̃2
)

∆

)q∣∣∣∣∣
)
.

(4. 27)
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Step 9: RA matrix calculation. Construction of relative assessment RA matrix is carried
out in this step:

RA = [cιτ ]ψ×ψ; (4. 28)
cιτ = (EDι − EDτ ) +

(
g(EDι − EDτ )× (HDι −HDτ )

)
; τ = 1, 2, 3, . . . , ψ. (4. 29)

Here the function g is expressed as follows:

g(η) =

{
1, |η| ≥ ϱ;
0, |η| < ϱ, (4. 30)

where ϱ ∈ [0.01, 0.05] as suggested by specialists. In current analysis, ϱ = 0.02.
Step 10: Rank determination. Using Equation 4. 31 , the average result is computed:

ASι =
ς∑
ϵ=1

cιϵ. (4. 31)

Finally, the alternatives are arranged based on the ASι values. The alternative having
highest ASι value will be regarded the best one.

FIGURE 1. PULq-ROF-CODAS method with entropy-based criteria
weight determination

5. NUMERICAL ILLUSTRATION

The endurance, ongoing operations, and economical viability of contemporary busi-
nesses are all affected directly by the crucial task of tackling cybersecurity hazards. Select-
ing reliable and long-lasting security measures is essential to protecting business assets and
guaranteeing long-term expansion. The companies must regularly assess their outside at-
tacker threats and their own safety precautions, create appropriate cybersecurity plans, and
set up efficient criteria for assessment based on risk consequences and probability in the
current continuously shifting threat environment. To build a robust and flexible cyberse-
curity structure, a thorough evaluation methodology is necessary that extends outside con-
ventional cost-cutting or risk-minimizing tactics. However, the unforeseen consequences
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of changing hazards, divergent expert opinions, and the challenge of establishing exact
assessment requirements due to unidentified assault channels, unexpected faults, and dis-
parate levels of experience sometimes interfere with cybersecurity decision-making.
To address these issues, this work employs an MCGDM technique that integrates the PULq-
ROFS.The methodology makes it possible to combine real-world data with expert knowl-
edge to assess cybersecurity solutions in a context of uncertainty. A case study is conducted
using real organizational data collected from a multinational IT services firm that recently
underwent a comprehensive cybersecurity audit. In this study, a panel of four domain ex-
perts Dτ (τ = 1, 2, 3, 4) assessed seven cybersecurity strategies Nι(ι = 1, 2, 3, 4, 5, 6, 7),
including intrusion detection systems, zero trust architecture, and endpoint protection,
based on four key criteria Mϵ(ϵ = 1, 2, 3, 4): implementation cost, threat detection ca-
pability, scalability, and compliance alignment. The use of real audit data validates the
applicability of the proposed method and demonstrates how PULq-ROFS can effectively
handle linguistic uncertainty and probabilistic judgments in cybersecurity decision-making.
In addition to confirming the importance and resilience of the PULq-ROFS-based MCGDM
model, the outcomes offer useful information that can be applied to comprehensive cyber-
security assessment.

TABLE 1. Four essential features and their description
Attributes Description

Threat Detection Efficiency (M1) The solution’s effectiveness in identifying and mitigating evolving
cyber threats based on real-time security data.

Implementation Cost (M2) The financial investment required for deploying and sustaining the
cybersecurity solution within the organization’s existing infrastructure.

Scalability (M3) The ability of the security system to seamlessly expand alongside
organizational growth and increased digital operations.

Compliance Alignment (M4) The degree to which the security strategy meets industry regulations and
international cybersecurity standards relevant to the firm’s operating environment.

TABLE 2. Seven safety measures and their description
Alternatives Description

Intrusion Detection System (IDS) (N1) It monitors network or system activities for malicious actions
and raises alerts in real time.

Zero Trust Architecture (ZTA) (N2) It enforces strict access control by verifying every user and
device attempting to access the network

regardless of their location.
Endpoint Protection Platform (EPP) (N3) It provides centralized security for devices like

laptop, mobiles and servers by detecting,
blocking and remediating threats at the endpoint level.

Security Information and Event Management (SIEM) (N4) It collects and analyzes security event data to detect anomalies and
provide actionable insights for incident response.

Multi-Factor Authentication (MFA) (N5) It strengths user verification by requiring multiple forms of authentication
to access sensitive systems or data.

Cloud Access Security Broker (CASB) (N6) It acts as a security control point between cloud service users and
providers to enforce security policies and monitor data.

Network Firewall with Deep Packet Inspection (DPI) (N7) It filters incoming and outgoing network traffic based on rules
while inspecting packet content to detect sophisticated threats.

5.1. Implementation stages. Consider ∆ = 5 and q = 3 as given. The approach is
carried out in the subsequent steps:
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Step 1. The assessments provided by four experts for the alternatives based on the criteria
they defined and expressed as normalized benefit type values in the form of PULq-ROFSs
are presented in Tables 3, 4, 5 and 6.
Step 2. PULq-ROFEWA operator is employed to consolidate individual evaluations into
an aggregated matrix. Table 7 displays the aggregated scores of the alternatives relative to
each criteria.
Step 3. This stage involves calculating the weights of criteria using entropy measure .
Step 1*. The calculation of the combined aggregated matrix scores is initiated using Equa-
tion 4. 16 along with the data outlined in the Table 8.
Step 2*. The projection values are computed by applying Equation 4. 17 to the data
provided in Table 9.
Step 3*. The results of entropy computation through Equation 4. 18 are consolidated in
Table 10.
Step 4*. Based on Equation 4. 19 , the divergence values corresponding to each criteria
are presented in Table 11.
Step 5*. Equation 4. 20 is employed to compute the criteria weights as shown in Table
12.
Step 6. Using Equation 4. 21 , the components of the weighted aggregated matrix are
outlined in Table 13.
Step 7. To determine the NIS, the scores from Table 8 are initially computed. Subsequently,
the NIS values are identified using criteria 4. 22 and 4. 23 as shown in Table 14.
Step 8. The values of HDi ( 4. 24 ) and EDi ( 4. 25 ) are computed as given below:

ED1 = 0.1179, ED2 = 0.035, ED3 = 0.2317, ED4 = 0.1046,

ED5 = 0.095, ED6 = 0.2557, ED7 = 0.138.

HD1 = 1.2377, HD2 = 0.9509, HD3 = 1.352, HD4 = 1.1597,

HD5 = 0.9455, HD6 = 1.5747, HD7 = 1.3425.

Step 9. The values of RA matrix with their sum are given in Table 17.
Step 10. The best option is shown in Table 18 as N6.

N6 > N3 > N7 > N1 > N4 > N5 > N2
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TABLE 3. Probabilistic uncertain linguistic q-rung orthopair fuzzy
decision matrix provided by D1.

Alternatives M1

N1 ⟨{[ℵ−5, µ−4](0.1), [ℵ−4, µ−3](0.4), [ℵ−3, µ−2](0.5)},
{[£0, ν1](0.4), [£1, ν2](0.2), [£2, ν3](0.4)}⟩

N2 ⟨{[ℵ−1, µ0](0.3), [ℵ0, µ1](0.3), [ℵ1, µ2](0.4)},
{[£−4, ν−3](0.1), [£−3, ν−2](0.1), [£−2, ν−1](0.8)}⟩

N3 ⟨{[ℵ1, µ2](0.3), [ℵ2, µ3](0.6), [ℵ3, µ4](0.1)},
{[£−5, ν−4](0.2), [£−4, ν−3](0.4), [£−3, ν−2](0.4)}⟩

N4 ⟨{[ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.2), [ℵ−1, µ0](0.5)},
{[£−2, ν−1](0.4), [£−1, ν0](0.4), [£0, ν1](0.2)}⟩

N5 ⟨{[ℵ−2, µ−1](0.6), [ℵ−1, µ0](0.1), [ℵ0, µ1](0.3)},
{[£−1, ν0](0.5), [£0, ν1](0.4), [£1, ν2](0.1)}⟩

N6 ⟨{[ℵ0, µ1](0.2), [ℵ1, µ2](0.4), [ℵ2, µ3](0.4)},
{[£−3, ν−2](0.2), [£−2, ν−1](0.4), [£−1, ν0](0.4)}⟩

N7 ⟨{[ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.4)},
{[£1, ν2](0.6), [£2, ν3](0.2), [£3, ν4](0.2)}⟩

Alternatives M2

N1 ⟨{[ℵ−1, µ0](0.5), [ℵ0, µ1](0.3), [ℵ1, µ2](0.2)},
{[£−4, ν−3](0.1), [£−3, ν−2](0.2), [£−2, ν−1](0.7)}⟩

N2 ⟨{[ℵ−2, µ−1](0.3), [ℵ−1, µ0](0.5), [ℵ0, µ1](0.2)},
{[£−1, ν0](0.4), [£0, ν1](0.4), [£1, ν2](0.2)}⟩

N3 ⟨{[ℵ−3, µ−2](0.1), [ℵ−2, µ−1](0.2), [ℵ−1, µ0](0.7)},
{[£−2, ν−1](0.1), [£−1, ν0](0.1), [£0, ν1](0.8)}⟩

N4 ⟨{[ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.4)},
{[£0, ν1](0.3), [£1, ν2](0.4), [£2, ν3](0.3)}⟩

N5 ⟨{[ℵ−5, µ−4](0.5), [ℵ−4, µ−3](0.2), [ℵ−3, µ−2](0.3)},
{[£1, ν2](0.1), [£2, ν3](0.2), [£3, ν4](0.7)}⟩

N6 ⟨{[ℵ0, µ1](0.3), [ℵ1, µ2](0.3), [ℵ2, µ3](0.4)},
{[£−3, ν−2](0.2), [£−2, ν−1](0.3), [£−1, ν0](0.5)}⟩

N7 ⟨{[ℵ1, µ2](0.1), [ℵ2, µ3](0.4), [ℵ3, µ4](0.5)},
{[£−5, ν−4](0.3), [£−4, ν−3](0.1), [£−3, ν−2](0.6)}⟩

Alternatives M3

N1 ⟨{[ℵ0, µ1](0.1), [ℵ1, µ2](0.4), [ℵ2, µ3](0.5)},
{[£−3, ν−2](0.1), [£−2, ν−1](0.2), [£−1, ν0](0.7)}⟩

N2 ⟨{[ℵ−1, µ0](0.4), [ℵ0, µ1](0.3), [ℵ1, µ2](0.3)},
{[£−2, ν−1](0.3), [£−1, ν0](0.3), [£0, ν1](0.4)}⟩

N3 ⟨{[ℵ−4, µ−3](0.1), [ℵ−3, µ−2](0.1), [ℵ−2, µ−1](0.8)},
{[£0, ν1](0.4), [£1, ν2](0.4), [£2, ν3](0.2)}⟩

N4 ⟨{[ℵ2, µ3](0.7), [ℵ3, µ4](0.2), [ℵ4, µ5](0.1)},
{[£−5, ν−4](0.8), [£−4, ν−3](0.1), [£−3, ν−2](0.1)}⟩

N5 ⟨{[ℵ−2, µ−1](0.4), [ℵ−1, µ0](0.4), [ℵ0, µ1](0.2)},
{[£−4, ν−3](0.2), [£−3, ν−2](0.4), [£−2, ν−1](0.4)}⟩

N6 ⟨{[ℵ−3, µ−2](0.1), [ℵ−2, µ−1](0.1), [ℵ−1, µ0](0.8)},
{[£−1, ν0](0.5), [£0, ν1](0.3), [£1, ν2](0.2)}⟩

N7 ⟨{[ℵ1, µ2](0.2), [ℵ2, µ3](0.4), [ℵ3, µ4](0.4)},
{[£−4, ν−3](0.4), [£−3, ν−2](0.4), [£−2, ν−1](0.2)}⟩

Alternatives M4

N1 ⟨{[ℵ−1, µ0](0.2), [ℵ0, µ1](0.2), [ℵ1, µ2](0.6)},
{[£−2, ν−1](0.4), [£−1, ν0](0.5), [£0, ν1](0.1)}⟩

N2 ⟨{[ℵ−2, µ−1](0.5), [ℵ−1, µ0](0.3), [ℵ0, µ1](0.2)},
{[£−1, ν0](0.3), [£0, ν1](0.2), [£1, ν2](0.5)}⟩

N3 ⟨{[ℵ0, µ1](0.3), [ℵ1, µ2](0.6), [ℵ2, µ3](0.1)},
{[£−3, ν−2](0.2), [£−2, ν−1](0.4), [£−1, ν0](0.4)}⟩

N4 ⟨{[ℵ1, µ2](0.5), [ℵ2, µ3](0.2), [ℵ3, µ4](0.3)},
{[£−4, ν−3](0.4), [£−3, ν−2](0.1), [£−2, ν−1](0.5)}⟩

N5 ⟨{[ℵ2, µ3](0.4), [ℵ3, µ4](0.4), [ℵ4, µ5](0.2)},
{[£−5, ν−4](0.3), [£−4, ν−3](0.3), [£−3, ν−2](0.4)}⟩

N6 ⟨{[ℵ−5, µ−4](0.1), [ℵ−4, µ−3](0.1), [ℵ−3, µ−2](0.8)},
{[£1, ν2](0.5), [£2, ν3](0.2), [£3, ν4](0.3)}⟩

N7 ⟨{[ℵ−3, µ−2](0.2), [ℵ−2, µ−1](0.4), [ℵ−1, µ0](0.4)},
{[£0, ν1](0.1), [£1, ν2](0.1), [£2, ν3](0.8)}⟩
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TABLE 4. Probabilistic uncertain linguistic q-rung orthopair fuzzy
decision matrix provided by D2.

Alternatives M1

N1 ⟨{[ℵ−5, µ−4](0.1), [ℵ−4, µ−3](0.4), [ℵ−3, µ−2](0.5)},
{[£−3, ν−2](0.4), [£−2, ν−1](0.2), [£−1, ν0](0.4)}⟩

N2 ⟨{[ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.3), [ℵ−1, µ0](0.4)},
{[£−5, ν−4](0.1), [£−4, ν−3](0.1), [£−3, ν−2](0.8)}⟩

N3 ⟨{[ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.6), [ℵ−2, µ−1](0.1)},
{[£0, ν1](0.2), [£1, ν2](0.4), [£2, ν3](0.4)}⟩

N4 ⟨{[ℵ0, µ1](0.3), [ℵ1, µ2](0.2), [ℵ2, µ3](0.5)},
{[£−4, ν−3](0.4), [£−3, ν−2](0.4), [£−2, ν−1](0.2)}⟩

N5 ⟨{[ℵ−2, µ−1](0.6), [ℵ−1, µ0](0.1), [ℵ0, µ1](0.3)},
{[£−1, ν0](0.5), [£0, ν1](0.4), [£1, ν2](0.1)}⟩

N6 ⟨{[ℵ−1, µ0](0.2), [ℵ0, µ1](0.4), [ℵ1, µ2](0.4)},
{[£−2, ν−1](0.2), [£−1, ν0](0.4), [£0, ν1](0.4)}⟩

N7 ⟨{[ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.4)},
{[£−1, ν0](0.6), [£0, ν1](0.2), [£1, ν2](0.2)}⟩

Alternatives M2

N1 ⟨{[ℵ−3, µ−2](0.5), [ℵ−2, µ−1](0.3), [ℵ−1, µ0](0.2)},
{[£−5, ν−4](0.1), [£−4, ν−3](0.2), [£−3, ν−2](0.7)}⟩

N2 ⟨{[ℵ−5, µ−4](0.3), [ℵ−4, µ−3](0.5), [ℵ−3, µ−2](0.2)},
{[£−3, ν−2](0.4), [£−2, ν−1](0.4), [£−1, ν0](0.2)}⟩

N3 ⟨{[ℵ0, µ1](0.1), [ℵ1, µ2](0.2), [ℵ2, µ3](0.7)},
{[£−4, ν−3](0.1), [£−3, ν−2](0.1), [£−2, ν−1](0.8)}⟩

N4 ⟨{[ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.4)},
{[£0, ν1](0.3), [£1, ν2](0.4), [£2, ν3](0.3)}⟩

N5 ⟨{[ℵ−1, µ0](0.5), [ℵ0, µ1](0.2), [ℵ1, µ2](0.3)},
{[£−2, ν−1](0.1), [£−1, ν0](0.2), [£0, ν1](0.7)}⟩

N6 ⟨{[ℵ−2, µ−1](0.3), [ℵ−1, µ0](0.3), [ℵ0, µ1](0.4)},
{[£−1, ν0](0.2), [£0, ν1](0.3), [£1, ν2](0.5)}⟩

N7 ⟨{[ℵ−4, µ−3](0.1), [ℵ−3, µ−2](0.4), [ℵ−2, µ−1](0.5)},
{[£−1, ν0](0.3), [£0, ν1](0.1), [£1, ν2](0.6)}⟩

Alternatives M3

N1 ⟨{[ℵ−4, µ−3](0.1), [ℵ−3, µ−2](0.4), [ℵ−2, µ−1](0.5)},
{[£0, ν1](0.1), [£1, ν2](0.2), [£2, ν3](0.7)}⟩

N2 ⟨{[ℵ0, µ1](0.4), [ℵ1, µ2](0.3), [ℵ2, µ3](0.3)},
{[£−4, ν−3](0.3), [£−3, ν−2](0.4), [£−2, ν−1](0.4)}⟩

N3 ⟨{[ℵ−5, µ−4](0.1), [ℵ−4, µ−3](0.1), [ℵ−3, µ−2](0.8)},
{[£−3, ν−2](0.4), [£−2, ν−1](0.4), [£−1, ν0](0.2)}⟩

N4 ⟨{[ℵ−3, µ−2](0.7), [ℵ−2, µ−1](0.2), [ℵ−1, µ0](0.1)},
{[£−5, ν−4](0.8), [£−4, ν−3](0.1), [£−3, ν−2](0.1)}⟩

N5 ⟨{[ℵ−4, µ−3](0.4), [ℵ−3, µ−2](0.4), [ℵ−2, µ−1](0.2)},
{[£−1, ν0](0.2), [£0, ν1](0.4), [£1, ν2](0.4)}⟩

N6 ⟨{[ℵ−1, µ0](0.1), [ℵ0, µ1](0.1), [ℵ1, µ2](0.8)},
{[£−2, ν−1](0.5), [£−1, ν0](0.3), [£0, ν1](0.2)}⟩

N7 ⟨{[ℵ−2, µ−1](0.2), [ℵ−1, µ0](0.4), [ℵ0, µ1](0.4)},
{[£0, ν1](0.4), [£1, ν2](0.4), [£2, ν3](0.2)}⟩

Alternatives M4

N1 ⟨{[ℵ0, µ1](0.2), [ℵ1, µ2](0.2), [ℵ2, µ3](0.6)},
{[£−4, ν−3](0.4), [£−3, ν−2](0.5), [£−2, ν−1](0.1)}⟩

N2 ⟨{[ℵ−1, µ0](0.5), [ℵ0, µ1](0.3), [ℵ1, µ2](0.2)},
{[£−2, ν−1](0.3), [£−1, ν0](0.2), [£0, ν1](0.5)}⟩

N3 ⟨{[ℵ−2, µ−1](0.3), [ℵ−1, µ0](0.6), [ℵ0, µ1](0.1)},
{[£−1, ν0](0.2), [£0, ν1](0.4), [£1, ν2](0.4)}⟩

N4 ⟨{[ℵ−5, µ−4](0.5), [ℵ−4, µ−3](0.2), [ℵ−3, µ−2](0.3)},
{[£−3, ν−2](0.4), [£−2, ν−1](0.1), [£−1, ν0](0.5)}⟩

N5 ⟨{[ℵ−4, µ−3](0.4), [ℵ−3, µ−2](0.4), [ℵ−2, µ−1](0.2)},
{[£0, ν1](0.3), [£1, ν2](0.3), [£2, ν3](0.4)}⟩

N6 ⟨{[ℵ−3, µ−2](0.1), [ℵ−2, µ−1](0.1), [ℵ−1, µ0](0.8)},
{[£−5, ν−4](0.5), [£−4, ν−3](0.2), [£−3, ν−2](0.3)}⟩

N7 ⟨{[ℵ−1, µ0](0.2), [ℵ0, µ1](0.4), [ℵ1, µ2](0.4)},
{[£−4, ν−3](0.1), [£−3, ν−2](0.1), [£−2, ν−1](0.8)}⟩
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TABLE 5. Probabilistic uncertain linguistic q-rung orthopair fuzzy
decision matrix provided by D3.

Alternatives M1

N1 ⟨{[ℵ−1, µ0](0.1), [ℵ0, µ1](0.4), [ℵ1, µ2](0.5)},
{[£−4, ν−3](0.4), [£−3, ν−2](0.2), [£−2, ν−1](0.4)}⟩

N2 ⟨{[ℵ0, µ1](0.3), [ℵ1, µ2](0.3), [ℵ2, µ3](0.4)},
{[£−1, ν0](0.1), [£0, ν1](0.1), [£1, ν2](0.8)}⟩

N3 ⟨{[ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.6), [ℵ−1, µ0](0.1)},
{[£−2, ν−1](0.2), [£−1, ν0](0.4), [£0, ν1](0.4)}⟩

N4 ⟨{[ℵ−2, µ−1](0.3), [ℵ−1, µ0](0.2), [ℵ0, µ1](0.5)},
{[£−3, ν−2](0.4), [£−2, ν−1](0.4), [£−1, ν0](0.2)}⟩

N5 ⟨{[ℵ1, µ2](0.6), [ℵ2, µ3](0.1), [ℵ3, µ4](0.3)},
{[£−5, ν−4](0.5), [£−4, ν−3](0.4), [£−3, ν−2](0.1)}⟩

N6 ⟨{[ℵ−5, µ−4](0.2), [ℵ−4, µ−3](0.4), [ℵ−3, µ−2](0.4)},
{[£1, ν2](0.2), [£2, ν3](0.4), [£3, ν4](0.4)}⟩

N7 ⟨{[ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.4)},
{[£0, ν1](0.6), [£1, ν2](0.2), [£2, ν3](0.2)}⟩

Alternatives M2

N1 ⟨{[ℵ0, µ1](0.5), [ℵ1, µ2](0.3), [ℵ2, µ3](0.2)},
{[£−1, ν0](0.1), [£0, ν1](0.2), [£1, ν2](0.7)}⟩

N2 ⟨{[ℵ−1, µ0](0.3), [ℵ0, µ1](0.5), [ℵ1, µ2](0.2)},
{[£−4, ν−3](0.4), [£−3, ν−2](0.4), [£−2, ν−1](0.2)}⟩

N3 ⟨{[ℵ−2, µ−1](0.1), [ℵ−1, µ0](0.2), [ℵ0, µ1](0.7)},
{[£−3, ν−2](0.1), [£−2, ν−1](0.1), [£−1, ν0](0.8)}⟩

N4 ⟨{[ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.3), [ℵ−1, µ0](0.4)},
{[£−2, ν−1](0.3), [£−1, ν0](0.4), [£0, ν1](0.3)}⟩

N5 ⟨{[ℵ1, µ2](0.5), [ℵ2, µ3](0.2), [ℵ3, µ4](0.3)},
{[£−5, ν−4](0.1), [£−4, ν−3](0.2), [£−3, ν−2](0.7)}⟩

N6 ⟨{[ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.4)},
{[£0, ν1](0.2), [£1, ν2](0.3), [£2, ν3](0.5)}⟩

N7 ⟨{[ℵ−5, µ−4](0.1), [ℵ−4, µ−3](0.4), [ℵ−3, µ−2](0.5)},
{[£1, ν2](0.3), [£2, ν3](0.1), [£3, ν4](0.6)}⟩

Alternatives M3

N1 ⟨{[ℵ−3, µ−2](0.1), [ℵ−2, µ−1](0.4), [ℵ−1, µ0](0.5)},
{[£−2, ν−1](0.1), [£−1, ν0](0.2), [£0, ν1](0.7)}⟩

N2 ⟨{[ℵ−2, µ−1](0.4), [ℵ−1, µ0](0.3), [ℵ0, µ1](0.3)},
{[£−3, ν−2](0.3), [£−2, ν−1](0.3), [£−1, ν0](0.4)}⟩

N3 ⟨{[ℵ−1, µ0](0.1), [ℵ0, µ1](0.1), [ℵ1, µ2](0.8)},
{[£−4, ν−3](0.4), [£−3, ν−2](0.4), [£−2, ν−1](0.2)}⟩

N4 ⟨{[ℵ0, µ1](0.7), [ℵ1, µ2](0.2), [ℵ2, µ3](0.1)},
{[£−1, ν0](0.8), [£0, ν1](0.1), [£1, ν2](0.1)}⟩

N5 ⟨{[ℵ−4, µ−3](0.4), [ℵ−3, µ−2](0.4), [ℵ−2, µ−1](0.2)},
{[£0, ν1](0.2), [£1, ν2](0.4), [£2, ν3](0.4)}⟩

N6 ⟨{[ℵ−5, µ−4](0.1), [ℵ−4, µ−3](0.1), [ℵ−3, µ−2](0.8)},
{[£1, ν2](0.5), [£2, ν3](0.3), [£3, ν4](0.2)}⟩

N7 ⟨{[ℵ1, µ2](0.2), [ℵ2, µ3](0.4), [ℵ3, µ4](0.4)},
{[£−5, ν−4](0.4), [£−4, ν−3](0.4), [£−3, ν−2](0.2)}⟩

Alternatives M4

N1 ⟨{[ℵ−2, µ−1](0.2), [ℵ−1, µ0](0.2), [ℵ0, µ1](0.6)},
{[£−3, ν−2](0.4), [£−2, ν−1](0.5), [£−1, ν0](0.1)}⟩

N2 ⟨{[ℵ1, µ2](0.5), [ℵ2, µ3](0.3), [ℵ3, µ4](0.2)},
{[£−5, ν−4](0.3), [£−4, ν−3](0.2), [£−3, ν−2](0.5)}⟩

N3 ⟨{[ℵ−5, µ−4](0.3), [ℵ−4, µ−3](0.6), [ℵ−3, µ−2](0.1)},
{[£1, ν2](0.2), [£2, ν3](0.4), [£3, ν4](0.4)}⟩

N4 ⟨{[ℵ−1, µ0](0.5), [ℵ0, µ1](0.2), [ℵ1, µ2](0.3)},
{[£−4, ν−3](0.4), [£−3, ν−2](0.1), [£−2, ν−1](0.5)}⟩

N5 ⟨{[ℵ0, µ1](0.4), [ℵ1, µ2](0.4), [ℵ2, µ3](0.2)},
{[£−1, ν0](0.3), [£0, ν1](0.3), [£1, ν2](0.4)}⟩

N6 ⟨{[ℵ−3, µ−2](0.1), [ℵ−2, µ−1](0.1), [ℵ−1, µ0](0.8)},
{[£−2, ν−1](0.5), [£−1, ν0](0.2), [£0, ν1](0.3)}⟩

N7 ⟨{[ℵ−4, µ−3](0.2), [ℵ−3, µ−2](0.4), [ℵ−2, µ−1](0.4)},
{[£0, ν1](0.1), [£1, ν2](0.1), [£2, ν3](0.8)}⟩
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TABLE 6. Probabilistic uncertain linguistic q-rung orthopair fuzzy
decision matrix provided by D4.

Alternatives M1

N1 ⟨{[ℵ−4, µ−3](0.1), [ℵ−3, µ−2](0.4), [ℵ−2, µ−1](0.5)},
{[£0, ν1](0.4), [£1, ν2](0.2), [£2, ν3](0.4)}⟩

N2 ⟨{[ℵ−5, µ−4](0.3), [ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.4)},
{[£1, ν2](0.1), [£2, ν3](0.1), [£3, ν4](0.8)}⟩

N3 ⟨{[ℵ1, µ2](0.3), [ℵ2, µ3](0.6), [ℵ3, µ4](0.1)},
{[£−5, ν−4](0.2), [£−4, ν−3](0.4), [£−3, ν−2](0.4)}⟩

N4 ⟨{[ℵ−2, µ−1](0.3), [ℵ−1, µ0](0.2), [ℵ0, µ1](0.5)},
{[£−3, ν−2](0.4), [£−2, ν−1](0.4), [£−1, ν0](0.2)}⟩

N5 ⟨{[ℵ−3, µ−2](0.6), [ℵ−2, µ−1](0.1), [ℵ−1, µ0](0.3)},
{[£−2, ν−1](0.5), [£−1, ν0](0.4), [£0, ν1](0.1)}⟩

N6 ⟨{[ℵ0, µ1](0.2), [ℵ1, µ2](0.4), [ℵ2, µ3](0.4)},
{[£−1, ν0](0.2), [£0, ν1](0.4), [£1, ν2](0.4)}⟩

N7 ⟨{[ℵ−1, µ0](0.3), [ℵ0, µ1](0.3), [ℵ1, µ2](0.4)},
{[£−4, ν−3](0.6), [£−3, ν−2](0.2), [£−2, ν−1](0.2)}⟩

Alternatives M2

N1 ⟨{[ℵ−5, µ−4](0.5), [ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.2)},
{[£1, ν2](0.1), [£2, ν3](0.2), [£3, ν4](0.7)}⟩

N2 ⟨{[ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.5), [ℵ−2, µ−1](0.2)},
{[£0, ν1](0.4), [£1, ν2](0.4), [£2, ν3](0.2)}⟩

N3 ⟨{[ℵ1, µ2](0.1), [ℵ2, µ3](0.2), [ℵ3, µ4](0.7)},
{[£−5, ν−4](0.1), [£−4, ν−3](0.1), [£−3, ν−2](0.8)}⟩

N4 ⟨{[ℵ−3, µ−2](0.3), [ℵ−2, µ−1](0.3), [ℵ−1, µ0](0.4)},
{[£−2, ν−1](0.3), [£−1, ν0](0.4), [£0, ν1](0.3)}⟩

N5 ⟨{[ℵ−2, µ−1](0.5), [ℵ−1, µ0](0.2), [ℵ0, µ1](0.3)},
{[£−3, ν−2](0.1), [£−2, ν−1](0.2), [£−1, ν0](0.7)}⟩

N6 ⟨{[ℵ−1, µ0](0.3), [ℵ0, µ1](0.3), [ℵ1, µ2](0.4)},
{[£−4, ν−3](0.2), [£−3, ν−2](0.3), [£−2, ν−1](0.5)}⟩

N7 ⟨{[ℵ0, µ1](0.1), [ℵ1, µ2](0.4), [ℵ2, µ3](0.5)},
{[£−1, ν0](0.3), [£0, ν1](0.1), [£1, ν2](0.6)}⟩

Alternatives M3

N1 ⟨{[ℵ1, µ2](0.1), [ℵ2, µ3](0.4), [ℵ3, µ4](0.5)},
{[£−5, ν−4](0.1), [£−4, ν−3](0.2), [£−3, ν−2](0.7)}⟩

N2 ⟨{[ℵ−5, µ−4](0.4), [ℵ−4, µ−3](0.3), [ℵ−3, µ−2](0.3)},
{[£1, ν2](0.3), [£2, ν3](0.4), [£3, ν4](0.4)}⟩

N3 ⟨{[ℵ−4, µ−3](0.1), [ℵ−3, µ−2](0.1), [ℵ−2, µ−1](0.8)},
{[£0, ν1](0.4), [£1, ν2](0.4), [£2, ν3](0.2)}⟩

N4 ⟨{[ℵ0, µ1](0.7), [ℵ1, µ2](0.2), [ℵ2, µ3](0.1)},
{[£−1, ν0](0.8), [£0, ν1](0.1), [£1, ν2](0.1)}⟩

N5 ⟨{[ℵ−1, µ0](0.4), [ℵ0, µ1](0.4), [ℵ1, µ2](0.2)},
{[£−4, ν−3](0.2), [£−3, ν−2](0.4), [£−2, ν−1](0.4)}⟩

N6 ⟨{[ℵ−2, µ−1](0.1), [ℵ−1, µ0](0.1), [ℵ0, µ1](0.8)},
{[£−3, ν−2](0.5), [£−2, ν−1](0.3), [£−1, ν0](0.2)}⟩

N7 ⟨{[ℵ−3, µ−2](0.2), [ℵ−2, µ−1](0.4), [ℵ−1, µ0](0.4)},
{[£−2, ν−1](0.4), [£−1, ν0](0.4), [£0, ν1](0.2)}⟩

Alternatives M4

N1 ⟨{[ℵ−4, µ−3](0.2), [ℵ−3, µ−2](0.2), [ℵ−2, µ−1](0.6)},
{[£0, ν1](0.4), [£1, ν2](0.5), [£2, ν3](0.1)}⟩

N2 ⟨{[ℵ−3, µ−2](0.5), [ℵ−2, µ−1](0.3), [ℵ−1, µ0](0.2)},
{[£−2, ν−1](0.3), [£−1, ν0](0.2), [£0, ν1](0.5)}⟩

N3 ⟨{[ℵ0, µ1](0.3), [ℵ1, µ2](0.6), [ℵ2, µ3](0.1)},
{[£−1, ν0](0.2), [£0, ν1](0.4), [£1, ν2](0.4)}⟩

N4 ⟨{[ℵ−1, µ0](0.5), [ℵ0, µ1](0.2), [ℵ1, µ2](0.3)},
{[£−4, ν−3](0.4), [£−3, ν−2](0.1), [£−2, ν−1](0.5)}⟩

N5 ⟨{[ℵ−5, µ−4](0.4), [ℵ−4, µ−3](0.4), [ℵ−3, µ−2](0.2)},
{[£1, ν2](0.3), [£2, ν3](0.4), [£3, ν4](0.4)}⟩

N6 ⟨{[ℵ1, µ2](0.1), [ℵ2, µ3](0.1), [ℵ3, µ4](0.8)},
{[£−5, ν−4](0.5), [£−4, ν−3](0.2), [£−3, ν−2](0.3)}⟩

N7 ⟨{[ℵ−2, µ−1](0.2), [ℵ−1, µ0](0.4), [ℵ0, µ1](0.4)},
{[£−3, ν−2](0.1), [£−2, ν−1](0.1), [£−1, ν0](0.8)}⟩
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TABLE 7. Combined aggregated matrix in the form of PULq-ROFNs
Alternatives M1

N1 ⟨{[ℵ18.20, µ23.15](0.1), [ℵ23.15, µ26.70](0.4), [ℵ26.70, µ29.50](0.5)},
{[£−4.99, ν−4.999](0.4), [£−4.999, ν−4.9976](0.2), [£−4.9976, ν−4.9949](0.4)}⟩

N2 ⟨{[ℵ25.05, µ28.18](0.3), [ℵ28.18, µ30.71](0.3), [ℵ30.71, µ32.81](0.4)},
{[£−5, ν−4.999](0.1), [£−4.999, ν−4.9988](0.1), [£−4.9988, ν−4.997](0.8)}⟩

N3 ⟨{[ℵ28.17, µ30.71](0.3), [ℵ30.71, µ32.81](0.6), [ℵ32.81, µ34.59](0.1)},
{[£−5, ν−4.999](0.2), [£−4.999, ν−4.999](0.4), [£−4.999, ν−4.9983](0.4)}⟩

N4 ⟨{[ℵ26.70, µ29.49](0.3), [ℵ29.49, µ31.79](0.2), [ℵ31.79, µ33.72](0.5)},
{[£−4.999, ν−4.999](0.4), [£−4.999, ν−4.9990](0.4), [£−4.9990, ν−4.9976](0.2)}⟩

N5 ⟨{[ℵ27.46, µ30.12](0.6), [ℵ30.12, µ32.31](0.1), [ℵ32.31, µ34.16](0.3)},
{[£−5, ν−4.999](0.5), [£−4.999, ν−4.9986](0.4), [£−4.9986, ν−4.9965](0.1)}⟩

N6 ⟨{[ℵ27.46, µ30.12](0.2), [ℵ30.12, µ32.32](0.4), [ℵ32.32, µ34.17](0.4)},
{[£−4.999, ν−4.9983](0.2), [£−4.9983, ν−4.9962](0.4), [£−4.9962, ν−4.9924](0.4)}⟩

N7 ⟨{[ℵ20.92, µ25.04](0.3), [ℵ25.04, µ28.17](0.3), [ℵ28.17, µ30.70](0.4)},
{[£−4.999, ν−4.9983](0.6), [£−4.9983, ν−4.9959](0.2), [£−4.9959, ν−4.9919](0.2)}⟩

Alternatives M2

N1 ⟨{[ℵ25.05, µ28.18](0.5), [ℵ28.18, µ30.71](0.3), [ℵ30.71, µ32.81](0.2)},
{[£−5, ν−4.999](0.1), [£−4.999, ν−4.9988](0.2), [£−4.9988, ν−4.9969](0.7)}⟩

N2 ⟨{[ℵ22.08, µ25.90](0.3), [ℵ25.90, µ28.85](0.5), [ℵ28.85, µ31.26](0.2)},
{[£−4.999, ν−4.999](0.4), [£−4.999, ν−4.9979](0.4), [£−4.9979, ν−4.9955](0.2)}⟩

N3 ⟨{[ℵ28.85, µ31.26](0.1), [ℵ31.26, µ33.27](0.2), [ℵ33.27, µ34.98](0.7)},
{[£−5, ν−4.999](0.1), [£−4.999, ν−4.999](0.1), [£−4.999, ν−4.9985](0.8)}⟩

N4 ⟨{[ℵ19.63, µ24.12](0.3), [ℵ24.12, µ27.45](0.3), [ℵ27.45, µ30.11](0.4)},
{[£−4.999, ν−4.9977](0.3), [£−4.9977, ν−4.9951](0.4), [£−4.9951, ν−4.9907](0.3)}⟩

N5 ⟨{[ℵ26.71, µ29.51](0.5), [ℵ29.51, µ31.81](0.2), [ℵ31.81, µ33.73](0.3)},
{[£−5, ν−4.999](0.1), [£−4.999, ν−4.9987](0.2), [£−4.9987, ν−4.9968](0.7)}⟩

N6 ⟨{[ℵ26.70, µ29.50](0.3), [ℵ29.50, µ31.80](0.3), [ℵ31.80, µ33.72](0.4)},
{[£−4.999, ν−4.999](0.2), [£−4.999, ν−4.9979](0.3), [£−4.9979, ν−4.9955](0.5)}⟩

N7 ⟨{[ℵ25.91, µ28.87](0.1), [ℵ28.87, µ31.28](0.4), [ℵ31.28, µ33.29](0.5)},
{[£−5, ν−4.999](0.3), [£−4.999, ν−4.9977](0.1), [£−4.9977, ν−4.9947](0.6)}⟩

Alternatives M3

N1 ⟨{[ℵ27.47, µ30.12](0.1), [ℵ30.12, µ32.32](0.4), [ℵ32.32, µ34.17](0.5)},
{[£−5, ν−4.999](0.1), [£−4.999, ν−4.9988](0.2), [£−4.9988, ν−4.9971](0.7)}⟩

N2 ⟨{[ℵ25.90, µ28.86](0.4), [ℵ28.86, µ31.26](0.3), [ℵ31.26, µ33.28](0.3)},
{[£−4.999, ν−4.999](0.3), [£−4.999, ν−4.9980](0.3), [£−4.9980, ν−4.9956](0.4)}⟩

N3 ⟨{[ℵ19.63, µ24.13](0.1), [ℵ24.13, µ27.46](0.1), [ℵ27.46, µ30.12](0.8)},
{[£−4.999, ν−4.999](0.4), [£−4.999, ν−4.9976](0.4), [£−4.9976, ν−4.9949](0.2)}⟩

N4 ⟨{[ℵ30.70, µ32.80](0.7), [ℵ32.80, µ34.58](0.2), [ℵ34.58, µ36.09](0.1)},
{[£−5, ν−4.999](0.8), [£−4.999, ν−4.999](0.1), [£−4.999, ν−4.9982](0.1)}⟩

N5 ⟨{[ℵ23.14, µ26.70](0.4), [ℵ26.70, µ29.50](0.4), [ℵ29.50, µ31.79](0.2)},
{[£−4.999, ν−4.999](0.2), [£−4.999, ν−4.9984](0.4), [£−4.9984, ν−4.9964](0.4)}⟩

N6 ⟨{[ℵ23.14, µ26.70](0.1), [ℵ26.70, µ29.50](0.1), [ℵ29.50, µ31.79](0.8)},
{[£−4.999, ν−4.9983](0.5), [£−4.9983, ν−4.9962](0.3), [£−4.9962, ν−4.9924](0.2)}⟩

N7 ⟨{[ℵ29.50, µ31.80](0.2), [ℵ31.80, µ33.73](0.4), [ℵ33.73, µ35.37](0.4)},
{[£−5, ν−4.999](0.4), [£−4.999, ν−4.999](0.4), [£−4.999, ν−4.9976](0.2)}⟩

Alternatives M4

N1 ⟨{[ℵ26.70, µ29.50](0.2), [ℵ29.50, µ31.80](0.2), [ℵ31.80, µ33.72](0.6)},
{[£−4.999, ν−4.999](0.4), [£−4.999, ν−4.9983](0.5), [£−4.9983, ν−4.9961](0.1)}⟩

N2 ⟨{[ℵ28.17, µ30.70](0.5), [ℵ30.70, µ32.80](0.3), [ℵ32.80, µ34.58](0.2)},
{[£−5, ν−4.999](0.3), [£−4.999, ν−4.9987](0.2), [£−4.9987, ν−4.9969](0.5)}⟩

N3 ⟨{[ℵ26.71, µ29.51](0.3), [ℵ29.51, µ31.80](0.6), [ℵ31.80, µ33.73](0.1)},
{[£−4.999, ν−4.9978](0.2), [£−4.9978, ν−4.9953](0.4), [£−4.9953, ν−4.9911](0.4)}⟩

N4 ⟨{[ℵ27.47, µ30.12](0.5), [ℵ30.12, µ32.32](0.2), [ℵ32.32, µ34.17](0.3)},
{[£−4.999, ν−4.999](0.4), [£−4.999, ν−4.999](0.1), [£−4.999, ν−4.9987](0.5)}⟩

N5 ⟨{[ℵ26.73, µ29.53](0.4), [ℵ29.53, µ31.82](0.4), [ℵ31.82, µ33.75](0.2)},
{[£−5, ν−4.999](0.3), [£−4.999, ν−4.9973](0.3), [£−4.9973, ν−4.9939](0.4)}⟩

N6 ⟨{[ℵ24.14, µ27.47](0.1), [ℵ27.47, µ30.13](0.1), [ℵ30.13, µ32.32](0.8)},
{[£−5, ν−4.999](0.5), [£−4.999, ν−4.999](0.2), [£−4.999, ν−4.9981](0.3)}⟩

N7 ⟨{[ℵ24.12, µ27.45](0.2), [ℵ27.45, µ30.11](0.4), [ℵ30.11, µ32.30](0.4)},
{[£−4.999, ν−4.999](0.1), [£−4.999, ν−4.9976](0.1), [£−4.9976, ν−4.9948](0.8)}⟩
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TABLE 8. PULq-ROF score of aggregated matrix
Alternatives M1 M2 M3 M4

N1 5.4928 5.6110 5.8153 5.780
N2 5.668 5.5736 5.6753 5.7524
N3 5.7678 5.9069 5.5750 5.6980
N4 5.7516 5.4842 5.8480 5.7317
N5 5.7171 5.6966 5.5520 5.6984
N6 5.7876 5.7384 5.6831 5.7194
N7 5.5219 5.7474 5.8872 5.6466

TABLE 9. PULq-ROF projection values
Alternatives M1 M2 M3 M4

N1 0.13833 0.14113 0.14525 0.14440
N2 0.14275 0.14019 0.14176 0.14371
N3 0.14526 0.14857 0.13925 0.14236
N4 0.14485 0.13794 0.14607 0.14320
N5 0.14398 0.14328 0.13868 0.14236
N6 0.14576 0.14433 0.14195 0.14289
N7 0.13907 0.14456 0.14705 0.14107

TABLE 10. PULq-ROF entropy values
Alternatives M1 M2 M3 M4

E 0.999902 0.999870 0.999885 0.999983

TABLE 11. PULq-ROF divergence values
Alternatives M1 M2 M3 M4

d 0.000098 0.00013 0.000115 0.000017

TABLE 12. PULq-ROF criteria weights
Alternatives M1 M2 M3 M4

W 0.2722 0.3139 0.3194 0.0472
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TABLE 13. Combined weighted aggregated matrix in the form of
PULq-ROFNs

Alternatives M1

N1 ⟨{[ℵ10.2259, µ13.674](0.1), [ℵ13.674, µ16.267](0.4), [ℵ16.267, µ18.418](0.5)},
{[£−2.37, ν−2.37](0.4), [£−2.37, ν−1.6660](0.2), [£−1.6660, ν−0.9250](0.4)}⟩

N2 ⟨{[ℵ15.046, µ17.39](0.3), [ℵ17.39, µ19.386](0.3), [ℵ19.386, µ21.139](0.4)},
{[£−5, ν−2.37](0.1), [£−2.37, ν−2.236](0.1), [£−2.236, ν−1.4540](0.8)}⟩

N3 ⟨{[ℵ17.382, µ19.386](0.3), [ℵ19.386, µ21.139](0.6), [ℵ21.139, µ22.716](0.1)},
{[£−5, ν−2.37](0.2), [£−2.37, ν−2.37](0.4), [£−2.37, ν−1.9620](0.4)}⟩

N4 ⟨{[ℵ16.267, µ18.41](0.3), [ℵ18.41, µ20.275](0.2), [ℵ20.275, µ21.933](0.5)},
{[£−2.37, ν−2.37](0.4), [£−2.37, ν−2.37](0.4), [£−2.37, ν−1.663](0.2)}⟩

N5 ⟨{[ℵ16.84, µ18.91](0.6), [ℵ18.91, µ20.712](0.1), [ℵ20.712, µ22.326](0.3)},
{[£−5, ν−2.37](0.5), [£−2.37, ν−2.1181](0.4), [£−2.1181, ν−1.302](0.1)}⟩

N6 ⟨{[ℵ16.84, µ18.91](0.2), [ℵ18.91, µ20.721](0.4), [ℵ20.721, µ22.335](0.4)},
{[£−2.37, ν−1.962](0.2), [£−1.962, ν−1.218](0.4), [£−1.218, ν−0.433](0.4)}⟩

N7 ⟨{[ℵ12.102, µ15.039](0.3), [ℵ15.039, µ17.382](0.3), [ℵ17.382, µ19.378](0.4)},
{[£−2.37, ν−1.962](0.6), [£−1.962, ν−1.139](0.2), [£−1.139, ν−0.368](0.2)}⟩

Alternatives M2

N1 ⟨{[ℵ15.986, µ18.424](0.5), [ℵ18.424, µ20.494](0.3), [ℵ20.494, µ22.306](0.2)},
{[£−5, ν−3.325](0.1), [£−3.325, ν−3.227](0.2), [£−3.227, ν−2.611](0.7)}⟩

N2 ⟨{[ℵ13.765, µ16.637](0.3), [ℵ16.637, µ18.962](0.5), [ℵ18.962, µ20.959](0.2)},
{[£−3.325, ν−3.325](0.4), [£−3.325, ν−2.886](0.4), [£−2.886, ν−2.315](0.2)}⟩

N3 ⟨{[ℵ18.962, µ20.959](0.1), [ℵ20.959, µ22.717](0.2), [ℵ22.717, µ24.301](0.7)},
{[£−5, ν−3.325](0.1), [£−3.325, ν−3.325](0.1), [£−3.325, ν−3.098](0.8)}⟩

N4 ⟨{[ℵ11.981, µ15.282](0.3), [ℵ15.282, µ17.845](0.3), [ℵ17.845, µ19.993](0.4)},
{[£−3.325, ν−2.825](0.3), [£−2.825, ν−2.242](0.4), [£−2.242, ν−1.628](0.3)}⟩

N5 ⟨{[ℵ17.265, µ19.499](0.5), [ℵ19.499, µ21.431](0.2), [ℵ21.431, µ23.134](0.3)},
{[£−5, ν−3.325](0.1), [£−3.325, ν−3.181](0.2), [£−3.181, ν−2.587](0.7)}⟩

N6 ⟨{[ℵ17.257, µ19.491](0.3), [ℵ19.491, µ21.422](0.3), [ℵ21.422, µ23.125](0.4)},
{[£−3.325, ν−3.325](0.2), [£−3.325, ν−2.886](0.3), [£−2.886, ν−2.315](0.5)}⟩

N7 ⟨{[ℵ16.645, µ18.978](0.1), [ℵ18.978, µ20.976](0.4), [ℵ20.976, µ22.735](0.5)},
{[£−5, ν−3.325](0.3), [£−3.325, ν−2.825](0.1), [£−2.825, ν−2.173](0.6)}⟩

Alternatives M3

N1 ⟨{[ℵ17.986, µ20.137](0.1), [ℵ20.137, µ22.017](0.4), [ℵ22.017, µ23.688](0.5)},
{[£−5, ν−3.422](0.1), [£−3.422, ν−3.328](0.2), [£−3.328, ν−2.783](0.7)}⟩

N2 ⟨{[ℵ16.757, µ19.101](0.4), [ℵ19.101, µ21.099](0.3), [ℵ21.099, µ22.872](0.3)},
{[£−3.422, ν−3.422](0.3), [£−3.422, ν−3.031](0.3), [£−3.031, ν−2.467](0.4)}⟩

N3 ⟨{[ℵ12.078, µ15.404](0.1), [ℵ15.404, µ17.979](0.1), [ℵ17.979, µ20.137](0.8)},
{[£−3.422, ν−3.422](0.4), [£−3.422, ν−2.913](0.4), [£−2.913, ν−2.345](0.2)}⟩

N4 ⟨{[ℵ20.623, µ22.442](0.7), [ℵ22.442, µ24.072](0.2), [ℵ24.072, µ25.54](0.1)},
{[£−5, ν−3.422](0.8), [£−3.422, ν−3.422](0.1), [£−3.422, ν−3.096](0.1)}⟩

N5 ⟨{[ℵ14.658, µ17.38](0.4), [ℵ17.38, µ19.624](0.4), [ℵ19.624, µ21.555](0.2)},
{[£−3.422, ν−3.422](0.2), [£−3.422, ν−3.166](0.4), [£−3.166, ν−2.624](0.4)}⟩

N6 ⟨{[ℵ14.659, µ17.38](0.1), [ℵ17.38, µ19.624](0.1), [ℵ19.624, µ21.555](0.8)},
{[£−3.422, ν−3.131](0.5), [£−3.131, ν−2.583](0.3), [£−2.583, ν−1.984](0.2)}⟩

N7 ⟨{[ℵ19.624, µ21.564](0.2), [ℵ21.564, µ23.282](0.4), [ℵ23.282, µ24.829](0.4)},
{[£−5, ν−3.422](0.4), [£−3.422, ν−3.422](0.4), [£−3.422, ν−2.913](0.2)}⟩

Alternatives M4

N1 ⟨{[ℵ6.99, µ8.253](0.2), [ℵ8.253, µ9.367](0.2), [ℵ9.367, µ10.369](0.6)},
{[£25.004, ν25.004](0.4), [£25.004, ν25.765](0.5), [£25.765, ν26.995](0.1)}⟩

N2 ⟨{[ℵ7.641, µ8.824](0.5), [ℵ8.824, µ9.879](0.3), [ℵ9.879, µ10.845](0.2)},
{[£−5, ν25.004](0.3), [£25.004, ν25.378](0.2), [£25.378, ν26.65](0.5)}⟩

N3 ⟨{[ℵ6.994, µ8.258](0.3), [ℵ8.258, µ9.367](0.6), [ℵ9.367, µ10.374](0.1)},
{[£25.004, ν26.142](0.2), [£26.142, ν27.278](0.4), [£27.278, ν28.265](0.4)}⟩

N4 ⟨{[ℵ7.329, µ8.545](0.5), [ℵ8.545, µ9.631](0.2), [ℵ9.631, µ10.616](0.3)},
{[£25.004, ν25.004](0.4), [£25.004, ν25.004](0.1), [£25.004, ν25.378](0.5)}⟩

N5 ⟨{[ℵ7.003, µ8.267](0.4), [ℵ8.267, µ9.377](0.4), [ℵ9.377, µ10.385](0.2)},
{[£−5, ν25.004](0.3), [£25.004, ν26.444](0.3), [£26.444, ν27.677](0.4)}⟩

N6 ⟨{[ℵ5.899, µ7.329](0.1), [ℵ7.329, µ8.55](0.1), [ℵ8.55, µ9.631](0.8)},
{[£−5, ν25.004](0.5), [£25.004, ν25.004](0.2), [£25.004, ν25.927](0.3)}⟩

N7 ⟨{[ℵ5.891, µ7.32](0.2), [ℵ7.32, µ8.541](0.4), [ℵ8.541, µ9.62](0.4)},
{[£25.004, ν25.004](0.1), [£25.004, ν26.27](0.1), [£26.27, ν27.432](0.8)}⟩
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TABLE 14. PULq-ROF values of negative ideal solution matrix
Alternatives M1

NSI1 ⟨{[1.5226, 1.8674](0.1), [1.8674, 2.1267](0.4), [2.1267, 2.3418](0.5)},
{[0.2630, 0.2630](0.4), [0.2630, 0.3334](0.2), [0.3334, 0.4075](0.4)}⟩

Alternatives M2

NSI2 ⟨{[1.6981, 2.0282](0.3), [2.0282, 2.2845](0.3), [2.2845, 2.4993](0.4)},
{[0.1675, 0.2175](0.3), [0.2175, 0.2758](0.4), [0.2758, 0.3372](0.3)}⟩

Alternatives M3

NSI3 ⟨{[1.9659, 2.2380](0.4), [2.2380, 2.4624](0.4), [2.4624, 2.6555](0.2)},
{[0.1578, 0.1578](0.2), [0.1578, 0.1834](0.4), [0.1834, 0.2376](0.4)}⟩

Alternatives M4

NSI4 ⟨{[1.1994, 1.3258](0.3), [1.3258, 1.4367](0.6), [1.4367, 1.5374](0.1)},
{[3.0004, 3.1142](0.2), [3.1142, 3.2278](0.4), [3.2278, 3.3265](0.4)}⟩

TABLE 15. PULq-ROF Hammy distance
Alternatives M1

HD1 1.2377
HD2 0.9509
HD3 1.352
HD4 1.1597
HD5 0.9455
HD6 1.5747
HD7 1.3425

TABLE 16. PULq-ROF Euclidean distance
Alternatives M1

ED1 0.1179
ED2 0.035
ED3 0.2317
ED4 0.1046
ED5 0.095
ED6 0.2557
ED7 0.138
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TABLE 17. PULq-ROF RA matrix
Alternatives N1 N2 N3 N4 N5 N6 N7

N1 0 0.3697 -0.2281 0.0133 0.3151 -0.4748 -0.1249
N2 -0.3697 0 -0.5978 -0.2784 -0.0546 -0.8445 -0.4946
N3 0.2281 0.5978 0 0.3194 0.5432 -0.2467 0.1032
N4 -0.0133 0.2784 -0.3194 0 0.0096 -0.5661 -0.2162
N5 -0.3151 0.0546 -0.5432 -0.0096 0 -0.7899 -0.44
N6 0.4748 0.8445 0.2467 0.5661 0.7899 0 0.3499
N7 0.1249 0.4946 -0.1032 0.2162 0.44 -0.3499 0

TABLE 18. PULq-ROF final average solution
Alternatives ASi

N1 -0.1297
N2 -2.6396
N3 1.5449
N4 -0.8270
N5 -2.0432
N6 3.2719
N7 0.8226

6. COMPARATIVE ANALYSIS

(1) In comparatively simple decision contexts, PUL-TOPSIS provides an intuitive
framework for recognizing, evaluating, and selecting the most suitable alternative
among numerous options. Even so, its ability to interpret convoluted, imprecise,
or reluctant data is restricted. Although it makes extensive use of keeping away
from perfect answers, it rejects the vague and contradictory assessments that DMs
commonly face in real-life scenarios. It is capable of recognizing the best options,
but it is unable to convey how much it prefers or believes in those choices. On
the other hand, PULq-ROF-CODAS incorporates probabilistic uncertain linguistic
data, which enables DMs to more precisely represent resistance, confusion, and in-
consistency. This method assists in emphasizing more accurate variations among
comparable alternatives, particularly when such variations are not particularly ap-
parent. It also employs a strong distance-based process that is more conscious of
contradiction in everyday situations. Consequently, PULq-ROF-CODAS produces
rankings that are both scientifically valid and linguistically significant. In com-
parison with TOPSIS simple approach, it more accurately depicts an individual
element of uncertainties.

(2) In organized circumstances, the traditional CODAS technique, which ranks objects
based on both beneficial and detrimental measurements, is effective. Meanwhile, it
excludes the vagueness of individual judgments and professional perspectives. In
contrast, PULq-ROF-CODAS is far more descriptive since it expands on this basis
by incorporating the capability to deal with linguistic phrases, statistical doubts,
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and imprecise confusion. This improvement makes it possible for the approach
to more accurately simulate the intricate structures of everyday life. Additionally,
because of its sophisticated aggregation operators, PULq-ROF-CODAS is able to
depict the amount of desire with much better consistency. As a result, rankings
become more reliable and sophisticated. PULq-ROF-CODAS provides a far more
comprehensive evaluation in instances in which human perception is crucial and
frequently erratic. It turns the identical framework of CODAS into a more adapt-
able, perceptive, and cognitive instrument that reacts more effectively to specula-
tive and reluctant choice issues.

(3) In an attempt to reconcile competing requirements, VIKOR is a useful technique
that puts an emphasis on acceptable ideas. If the best alternatives are inconsistent
throughout all dimensions, such a compromise may occasionally lead to their rat-
ing being inferior. It has a tendency to balance out the variations between options,
which may not always be the best choice to undertake in circumstances involv-
ing competition or large values. On the other hand, PULq-ROF-CODAS doesn’t
reduce the effectiveness of powerful substitutes. Dominance is emphasized, and
alternatives that perform noticeably better than others, as well as those that per-
form differently throughout some criteria, are given greater weight. Furthermore,
by integrating probabilistic linguistic values, PULq-ROF-CODAS provides greater
understanding into disorientation, rendering the ultimate choice closer to human
thinking in difficult and reluctant situations. In contrast to VIKOR, it offers a clear
and strong rating instead of presuming that teamwork is necessary. This renders
it more appropriate for choices that need assurance and accuracy, especially when
rewarding exceptional options is the aim instead of reaching an equitable solution.

TABLE 19. Using various techniques to rank findings according to
the PULEWA operator

Methods Ranking
PUL-TOPSIS [26] N3 > N7 > N6 > N4 > N1 > N5 > N2

PUL-CODAS [29] N3 > N7 > N6 > N4 > N1 > N5 > N2

PULq-ROF-VIKOR [20] N6 > N7 > N3 > N4 > N1 > N2 > N5

PUL-EDAS [18] N6 > N3 > N7 > N1 > N4 > N5 > N2

PULq-ROF-CODAS N6 > N3 > N7 > N1 > N4 > N5 > N2

(4) The effectiveness and compatibility of PUL-EDAS in rating choices according to
divergence from an average solution are well known. In particular, it is simple
to calculate and understand, providing a moderate level of choice difference. Al-
though when the circumstance calls for more complex choices or when there is a lot
of confusion in the choice area, this kind of equilibrium turns into a constraint. The
genuine value of exceptional alternatives may be obscured by EDAS’s tendency
to distort the line between high and average options. As an alternative, PULq-
ROF-CODAS adds an exceptionally high-quality focus to the DM procedure. It
takes probability-based reluctance and language misunderstanding into considera-
tion while capturing even the smallest deviations in performance. This makes eval-
uations more important and transparent. In addition, whereas PULq-ROF-CODAS
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performs well in certain situations, EDAS may struggle dealing with sophisticated
or other types of information. It effectively transforms subjective opinions into an
accurate statistical foundation. Consequently, it is particularly suited for common
issues when figuring out the best option of action requires both comprehension and
credibility.

The PULq-ROF-CODAS method stands apart as one influential tool, and it is adaptable
among the compared techniques. It integrates most of the strengths within customary
decision-making frameworks in a masterful way. It conquers the central faults of frame-
works. Its ability to handle various linguistic expressions, uncertainty, and hesitation, as
well as probabilistic beliefs, makes it a true reflection of how human experts think and
also decide under real-world complexity. PULq-ROF-CODAS brings depth, as well as
clarity and intelligence, in situations where other methods oversimplify or lack any repre-
sentation of ambiguity. It ranks each alternative option, and it justifies each of them with
reasoning within a context. This method gives decision-makers exact, assured, and dis-
cerning outcomes, especially in cases where stakes are extreme and information is distant
from flawless. Its superior performance in sufficient aspects makes it virtually not only a
preferred method but also quite a necessary one for modern decision analysis.

7. CONCLUSION

In this article, we employed PULq-ROFSs, an expanded form of PULTSs and q-ROFSs,
to appropriately manage uncertainty and imprecision within detailed DM issues. Standard
aggregation operators of PULq-ROF information often rely on basic algebraic operations
as well as lack the ability to model interrelationships among criteria. For resolution of
such limitations, we have proposed dual aggregation operators PULq-ROFEWA (Einstein
Weighted Average) and PULq-ROFEOWA (Einstein Ordered Weighted Average) within
the PULq-ROF environment. These operators are examined and validated through several
properties. These properties include monotonicity, boundedness, and idempotency. In or-
der to evaluate the performance of the approach proposed, we applied the CODAS method
in the PULq-ROF framework so as to rank cybersecurity risk alternatives. The entropy
method has been employed for objective determination of criteria weights; expert opinions
are integrated for incorporation of subjectivity, thus improving decision accuracy. A case
study for practical use in cybersecurity risk assessment has been done so as to show the ap-
plicability, also effectiveness, of the method that was developed. Further comparative anal-
ysis established the superiority and robustness of the proposed approach for management
of real-world cybersecurity decision problems under uncertainty. The integration of such
Einstein aggregation operators with such PULq-ROFSs indeed adds one new dimension to
fuzzy MCDM for catching non-linear relationships among criteria in a more effective way.
This enhancement enables DMs to achieve more realistic as well as adaptable evaluations in
highly sensitive domains such as cybersecurity. Furthermore, the flexibility within the pro-
posed framework allows for its extension into various other fields, such as into healthcare,
into supply chain management, as well as into ecological risk assessment. This research
virtually closes one specific theoretical gap, joining certain probabilistic linguistic models
and Einstein operations, barely studied in prior work. This framework herein helps cy-
bersecurity experts prioritize threats as well as vulnerabilities under vague and uncertain
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information. It also offers unto various policy makers a tool providing decision-support of 
great value. This is for people seeking firm data plans in dire situations. Future studies will 
integrate this model with hybrid MCDM and machine learning in real-time data systems 
for dynamic risk monitoring and assessment.

7.1. Future Work. Building off the existing research opens up many flexible and relevant 
gaps that can be pursued. One such opening can be the combination of PULq-ROFS ap-
proaches with other MCDM methods like TOPSIS, MOORA, or EDAS that create hybrid 
structures for dealing with different instances of DM problems. Moreover, the problem 
might be more effectively managed by shifting risk in cybersecurity through immediate 
information and adaptive balancing algorithm infusion responsive structures. In addi-
tion, using neural networks or cognitive computing can strengthen the highly vulnerable 
areas through the proposed PULq-ROFEWA and PULq-ROFEOWA operators, enabling 
controlled and immediate guidance on decision-making. Incorporating this methodology, 
future research might add computable decision support systems in the form of software 
and web applications usable by organizations or by security professionals. In addition, 
other modifications of the theory, such as the application of the Einstein-based aggrega-
tion method onto other fuzzy models like spherical fuzzy sets, complex intuitionistic fuzzy 
sets, or even within neutrosophic environments, could be made to expand the boundaries of 
the framework. Other interdisciplinary cross-domains include healthcare diagnostics, risk 
assessment in disasters, planning for smart cities, and evaluating risks in finance, which 
warrant exploration as well. Lastly, implementing the model with larger and more region-
ally diverse data sets would further contribute to the richness of the insights as well as the 
generalizability of the outlined approach.
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