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Abstract. Multi-criteria group decision-making (MCGDM) is a significant
procedure because it facilitates and enhances decision-making (DM) by
incorporating diverse variables and professional viewpoints, producing more
adequate results. A set of flexibility to manage confusion and un-predictable
information is improved by adding probability which makes choices more
predictable. The present work suggests a technique that utilizes fuzziness to
handle MCGDM issues that frequently arise in cybersecurity risk assessment.
This strategy overcomes the fundamental difficulties in privacy and security
information by using the probabilistic uncertain linguistic g-rung orthopair
fuzzy set (PULg-ROFS). Comparedwith other fuzzy collections, such as
statistical tentative, linguistically in-tuitionistic, and linguistically Euclidean
imprecise  collections that effec-tively include erratic and non-
erraticproblems, the PULQ-ROFS provides multiple characteristics. To
advance this framework, we propose two new operators the PULq-ROF
einstein weighted average (PULqQ-ROFEWA) and PULq-ROF Einstein order
weighted average (PULqQ-ROFEOWA) that efficiently integrate the statistical
lexical choice data. These operations introduce a creative concept within the
PULQ-ROF context. Furthermore, by applying the entropy technique, we
determine the relative weights of parameters based on their informational
contribution to the study.
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In addition, we employ the combinative distance-based assessment
(CODAS) method to evaluate choices according to their distance from the
least op-timal solution, thereby ensuring a more accurate and reliable
decision-making procedure. The suggested PULg-ROF-CODAS
technique effi-ciency is illustrated by its implementation in cybersecurity
risk assess-ments, where managing ambiguities and communication
judgment are critical. The results support the theoretical frameworks
capacity to rank cybersecurity threats based on significance while
maintaining agreement between specialist perspectives and collective
evaluations, ultimately con-tributing to stronger and more well-planned
cybersecurity mechanisms.

AMS (MOS) Subject Classification Codes: 03E72;94D05,90B50;90C31
Key Words: PULg-ROFS, PULg-ROFEWA operator, PULg-ROFEOWA operator, CO-
DAS method.

1. INTRODUCTION

A crucial area of research that concentrates on locating, evaluating, and reducing possi-
ble safety hazards in the digital world is cybersecurity risk assessments. Controlling safety
hazards is a major concern for enterprises due to a rising incidence of assaults and ex-
panding modern backdrops. It is frequently difficult for conventional protection models
to allow for statistical differences in specialist judgments, translational bias, and confu-
sion. Examples of cyber attacks include antivirus assaults, fake emails, hacking, intrusions
by employees, and advanced persistent threats (APTs). These threats often target critical
records. To effectively investigate threats, enterprises need to adopt complex decision-
making frameworks. These frameworks also help execute protection methods as attackers
techniques evolve. Safety monitoring assessments protect private information. They also
ensure client trust, organizational resilience, and regulatory compliance. Emerging tech-
nological hazards are unpredictable as well as complicated, therefore rendering it difficult
for conventional safety frameworks to handle them. For this purpose, vulnerability iden-
tification techniques must incorporate artificial intelligence (Al) and deep learning (DL).
More complex threat evaluation techniques, including probabilistic and fuzzy reasoning,
can improve the effectiveness of vulnerability identification. The expansion of vulnera-
bilities caused by the increasing number of connected gadgets has made strict constraints
on access and protection techniques mandatory. Furthermore, malicious acts by insiders
are a permanent issue, emphasizing the significance of regular monitoring and safety ed-
ucation initiatives for employees. By adopting creative measures, enterprises can prevent
potential cyber crises before they fully develop. Real-time threat assessment enables timely
interventions. A strong cyber defense plan guarantees that companies can minimize oper-
ational interruptions and quickly bounce back from safety incidents. Effective processes
for verification and frequent staff education are essential because hacking and social me-
dia manipulation assaults are still common.
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The critical network is particularly targeted by advanced persistent threats (APTs), which

highlights the significance of a multi-layered protection plan. Frequent safety inspections
and hacking investigations are necessary for enterprises. These processes help identify
system flaws and stay ahead of malicious crim-inals. The safety of information is made
even stronger by computer system improvements like multiple logins and zero trust
infrastructure. For successful control and elimination of cyber hazards, a well-organized
crisis management plan is essential.

Due to the erratic character of human behavior and the complexity of situations, it is a
tough challenge for specialists to represent their skills as contexts. Specialists cannot
convey their opinions by providing accurate scores, regardless of whether the assessment
data obtained from them is imprecise or insufficient. To capture the qualities of a
qualitative assessment, Herrera and Martinez [12] developed linguistic term sets (LTSs).
Therefore, specialists may use a unique linguistic term (LT) to present the assessment of
knowledge enabled by the LT [14].

There are occasions when specialists are unable to clearly describe their studies with a
single LT, and we face uncertainty between several LTs. For illustration, while determining
the sustainability of a life insurance policy, a specialist may use any LT that is part of LTS,
p={po : very bad, p; : bad, ps : moderately bad, p3 : moderate, p, : slightly good, ps : good,
pe : very good} to indicate the assessment. If the specialist feels that the approach is indeed
slightly good, it can be described as {p4}. Also, if the specialist feels that the approach is
indeed very good, it can be described as {pg}.

Due to their expertise and the complexity of the decision-making (DM) environment
[15], specialists may provide multiple evaluation levels for similar DM problems.
Rodriguez et al.[24] presented a hesitating fuzzier linguistics terminology set (HFLTS)
that allows specialists to indicate their opinions with multiple LTS. The HFLTS assigns
identical values to each object, which could not be correct in practice. Although
specialists may have different kinds of experience or choice for possible LTS, it can be
concluded that the weights of linguistic evaluations cannot be ignored in actual DM
concerns [1]. For example, the rating information includes probabilistic information in
addition to LTS if an expert is 70 percent convinced that a life insurance plan is good and
30 percent convinced that such a plan is moderate.

To solve these issues, Pang et al. [22] developed probabilistic linguistic term sets
(PLTSs) that contained a few potential LTS as well as related probability information.
Those who make decisions apply PLTS [27] to represent their assessment data and as-sess
difficulties. It provides data sets together with probabilities for all linguistic terms that
might be used. The DMs can generate a variety of linguistic terms for an item (alter-native
or attribute) by using PLTSs, as well as display actual probabilistic data of such a collection
of values. We can obtain complete and reliable details well about DM opinions in this
technique [22]. Suppose N'={m_5: very bad, m_1 : bad, mg: general, m : excellent, ms:
very excellent}, and a specialist is asked to assess a students potential.
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He/she may assert that 50 percent of the time the individuals potential is excellent and 40
percent of the time it is very excellent. Furthermore, it might be expressed as Capability
(person)={excellent(0.5), very excellent(0.4)}, that is O(p) = {m1(0.5),m2(0.4)}. Fur-
thermore, it can explain that a group makes decisions. For example, let M={n_o : very
little, n_; : little, ng : general, n; : large, ny : very large}, and 100 clients are asked to
evaluate the probability that a plan will succeed. If 56 clients perceive it to be large and
24 believe it to be general, while the remaining clients remain silent, this condition can be
determined by the possibility of achievement (task) ={general(24 percent), large(56 per-
cent)}, that is Y(p) = {no(0.24),n1(0.56)}. Furthermore, under consideration of PLTSs
benefits and variety of uses, it acts as the essential assessment results. The two illustrations
represent the PLTSs imprecise probabilistic ranges. The PLTS must generate an appropriate
distribution of possibilities for data blending, the PLTS needs to be adjusted for normality
[25].

In some real-world scenarios, DMs may lack precise or complete information. They
may therefore present their assessments using uncertain linguistic concepts [31] within
group decision-making (GDM) procedures. Moreover, such uncertain linguistic concepts
are distinct from one another, and each linguistic expression also exists at a specific rate.
Lin et al. [19] constructed on the basis of unclear linguistic concepts and PLTSs to de-
velop the PULTS approach for dealing with inconsistent linguistic assessments in DM. To
develop the popular level and the target variable, Xie et al. [30] developed the PUL prefer-
ence relation (PULPR) and the normalized PULPR. Scoring each uncertain linguistic term
demonstrates the richness of data in the presence of multiple ULTs. It also provides a prob-
abilistic model for analysis. The related probabilities of UL variables in a PULTS might be
considered as the concepts of appearing for the ULTs [28]. To express their analyzed data,
few DMs can offer PULTSs. For example, a high-ranking DM utilizes the intensity of
relaxation in a vehicle the way of given LTs A={a_3: very poor, a_s: poor, a_; : slightly
poor, ag : moderate, a; : slightly excellent, a : excellent, a3 : very excellent}. Consider that
they believe their level of calm is between “slightly excellent and excellent, 30 percent are
certain,” and between ‘“excellent and very excellent, 70 percent are certain.”. Thus the
PULTS {{[a1, az], 0.3), ([az, as], 0.7)} can be utilized to describe a car’s comfort level.
Additionally, PULTS can indicate the assessment of texts with the entire group or a
subgroup in GDM situations of significant size. For instance, out of the ten DMs judging
the possibility x; over x2 based on a specific set of linguistic concepts, three DMs respond
among “slightly excellent and excellent,” and seven DMs respond among “excellent and
very excellent”. B={a_3 : very poor, a_s : poor, a_; : slightly poor, ag : moderate, a; :
slightly excellent, a : excellent, ag : very excellent}. In this circumstance, x1 prefers xo,
which is expressed using a PULTS as: {([a1, a3],0.3), ([az, as],0.7)}.

Earlier than 1965, even misconceptions in pure mathematics and probability concepts
may partially address the requirement to control a specific type of ambiguity, notably un-
predictability. The fuzzy criteria, including such tiny, immature, notably higher, etc., are
not sufficiently explained by the probability theory. Zadeh [35] published his innovative
work,“Fuzzy Sets” in 1965. Fuzzy sets (FSs) are now becoming essential building blocks
for machine learning and the MCGDM process because they have better feasibility in the
search for accessible information among difficulties. A collection of components with
membership values falling between [0,1] is referred to as a FS. An element’s or item’s
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membership value is always expressed by a fuzzy set. If an item partially fulfills a spec-
ified condition, we must give it a membership value within the range [0,1]. Furthermore,
real-world assessments reveal that events are becoming increasingly complicated, empha-
sizing that only a unique degree of membership is unable to capture the true nature of the
items. However, the fuzzy set is unable to express the absence of membership value of
a thing. To address these problems, Atanassov [6] proposed a generalized version of FS
known as an intuitionistic fuzzy set, which represents both the membership degree (MD)
of its elements as well as non-membership degree (NMD). Each MD and NMD value for
IFS must fall within the range [0,1]. The earlier collections, including FS and IFS, operate
on the exponential connection between MD and NMD with a condition that potentially the
total of each value is required to be below or equivalent to one. However, if we take MD
a = 0.7and NMD 3 = 0.6, then o+ 8 > 1; it exceeds the boundaries of these ranges, and
FS and IFS are unable to resolve this type of issue. The Pythagorean fuzzy set (PyFS) rep-
resents a more extended type of FS that Yager [33] described. Considering the value of the
quadratic sum of MD and NMD is equal to or less than 1, this idea has been extended from
IFS to PyFS. He extended the collaboration from av+ 3 < 1 to o2 + 32 < 1, which expands
the range and helps us to resolve the multiple input [2]. Whereas PyFSs are effective in
their specific uses, g-rung orthopair fuzzy sets (g-ROFSs) utilize a more generalized form
of expanded gap cover-up. To increase validity and allow researchers to generate their own
opinions regarding MD and NMD values, Yager [34] proposed a generalized statement of
IFS and PyFS called ¢-ROFS, defined as a? + 57 < 1, ¢ > 1. For example, if MD o = 0.9
and NMD g = 0.8, IFS and PyFS are unable to deal with this problem. However, Yager’s
¢-ROFS can effectively handle these circumstances by changing the requirement such as
0.9 + 0.8 < 1. Using the ¢-ROFS in this kind of condition is suitable, too. To man-
age the ¢-ROFS level, Akram et al. [3, 4] utilized Einstein aggregation operators (EAOs)
like the Einstein weighted average and the Einstein ordered weighted average operators.
Sheng [9] proposed the EAOs for g-ROFS and built the MCGDM method to handle chal-
lenges in DM. An essential approach in MCGDM is the CODAS approach, which was first
presented by Ghorabaee et al.[10]. CODAS provides an advanced way of rating choices
by combining Euclidean and taxicab distances, especially in conditions when conventional
techniques might not be able to differentiate between choices with similar scores. Scholars
have expanded CODAS into a variety of fuzzy contexts in recognition of the intricacies
and inconsistencies present in practical DM processes. To solve supplier selection prob-
lems in production, Boltrk [7] created a Pythagorean fuzzy (PyF) CODAS approach that
successfully captures the reluctance and inconsistency in experts ratings. The effective-
ness of a triangular intuitionistic fuzzy (TIF) CODAS technique in combining economical
and ecological requirements despite unpredictability was also demonstrated by Daami Re-
madi and Moalla Frikha [23] in their application in the choice of sustainable resources. The
incorporation of CODAS into additional fuzzy approaches is an instance of additional
improvements. Andukuri and Rao [5] used fuzzy CODAS to choose manufacturing ma-
chinery status tracking devices, demonstrating its ability to endure in scientific choices.
Additionally, Kundaki and Arman [16] demonstrated the approach’s flexibility in a va-
riety of commercial circumstances by combining fuzzy CODAS with the IMF-SWARA
technique to simplify the company’s consultant choice process. The use of CODAS for
economic evaluations is an additional instance of its flexibility. In their extensive review
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of MCGDM techniques, Baydas et al. [8] concluded that fuzzy CODAS was the best tech-
nique for assessing the economic performance information, especially when combined with
highest leveling. For further study on linguistic DM and its applications, the readers are
referred to [21, 13, 19, 31, 32].

1.1. Significance of PULg-ROFS. Conventional fuzzy and fuzzy intuitionistic frame-
works struggle to capture the broad spectrum of individual thinking in DM. This difficulty
persists even when answers are sophisticated but imperfect. The PULg-ROFS combines
PUL details with the ¢g-ROF principle. This approach overcomes the previous limitations
and provides a more accurate and adaptable method to express ambiguity. In contrast to
conventional methods, PULg-ROFS takes into consideration probabilistic linguistic hesi-
tation along with the presence or absence of membership grades. The result is important
for complicated everyday life DM instances, including safety assessments, medical treat-
ment, and economic investment review. Furthermore, PULg-ROFSs capacity to control
multidimensional doubt assures that it will continue to function well while dealing with
complicated interactions and MCGDM problems. It enables specialists to express uncer-
tain linguistic choices effectively. This results in a more rational and informed framework
for DM. The models capacity to handle volatile and unforeseen circumstances is enhanced
by including probability elements. This feature makes it suitable for situations with imme-
diate and dynamic outcomes. In the end, PULg-ROFS is an effective tool for increasing
choice quality, decreasing losing data, and facilitating more open and rational DM in chal-
lenging and unplanned circumstances. Researchers and scholars studied, expanded and
then utilized different DM strategies in various disciplines [17, 11, 20, 26, 29, 18].

1.2. Motivation of PUL¢-ROFS. PULg-ROFS was developed to address the growing
number of decision-making contexts where linguistic evaluations and cognitive abilities
are critical. Most existing fuzzy algorithms perform poorly when handling highly subjec-
tive, uncertain, or imperfect information. Consequently, they yield suboptimal DM results.
PULg-ROFS provides administrators with greater flexibility in areas where linguistic and
human cognition are important. It employs the g-ROF framework to store additional infor-
mation without imposing unnecessary constraints. The DM process gets even better with
the addition of PUL phrases, which are especially useful in situations with competing re-
quirements, contradictory choices, and unsure analyst judgments. PULg-ROFS essentially
increases the depth of unreliable simulation, which in turn improves the stability and de-
pendability of convoluted multi-criteria evaluations, consequently enabling DMs. By inte-
grating linguistic uncertainty, probabilistic information, and g-rung flexibility, PULg-ROFS
serves as an effective tool for addressing real-world problems where traditional imprecise
frameworks are inadequate.

1.3. Contribution. The PULg-ROFS is an additional area of linguistic terms technique
integrating the ideas of PUL and ¢-ROFS. Since the MD and NMD of PUL¢-ROFS are rep-
resented by a set of possible uncertain linguistic terms (ULTs) with their associated prob-
abilities, PULg-ROFS can process considerably more information provided by experts. A
sophisticated development of FS theory is PULg-ROFS that combines uncertain linguistic
variables, probabilistic information, and the g-ROFS framework. The goal of PULg-ROFS
is to manage the uncertainties and ambiguity in DM problems where linguistic variables
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are used and probabilistic information is available. The g-rung behavior efficiently cov-
ers larger amounts of ambiguity. Consequently, this composite set allows DMs to convey
safety hazards utilizing linguistic phrases with probabilistic patterns. PULg-ROF Einstein
weighted average (PULg-ROFEWA) operator is used to improve the accumulation of vul-
nerability threats. This assures that extremely important risk indicators have a higher in-
fluence on DM while preserving the unpredictable nature of expert ratings. Furthermore,
to handle the fears with range of motion, the PULg-ROF Einstein ordered weighted aver-
age (PULg-ROFEWA) operator is used for aggregating safety hazards while taking DMs
ideological choices into account. Subsequently, by combining information, the uniform
distribution of safety-related information is evaluated by the entropy technique to deter-
mine the desired weights for factors related to security. The CODAS technique focuses
on the most significant gaps by ranking safety hazards according to their Einstein-based
distances from the negative ideal solution (NIS) after the weights have been provided. Cy-
bersecurity specialists can perform precise and credible threat assessments while taking
linguistic, fuzzy, and probabilistic difficulty into consideration due to this scientific tech-
nique. For cybercrime risk control, this framework provides a deliberate, adaptable, and
effective methodology by combining PULg-ROFS with EAOs and MCDM approaches. A
practical instance dealing with cybersecurity risk assessment is taken under consideration
in order to show the success of the suggested method. Moreover, a comparison study is
done to emphasize the technique’s dependability and realistic characteristics.

The manuscript is organized as Sect.2 gives a summary of PULg-ROFSs and their as-
sociation PULg-ROFS. Sect.3 demonstrates an aggregation procedures PULg-ROFEWA
and PUL¢-ROFEOWA. The suggested DM technique, which is constructed on the CODAS
technique for selecting choices and the Entropy technique for weighting requirements, is
described in Sect.4. Sect.5 illustrates a numerical instance of cybersecurity risk assessment.
A comparison assessment is provided in Sect.6 to verify the effectiveness of the suggested
approach, and the research is concluded with important results and recommendations for
the future in Sect.7.

2. PRELIMINARIES

Definition 2.1. [22, 21] Suppose if 3 = {by|d = —A, ..., —-3,-2,-1,0,1,2,3,..., A}
represents a LTS; a PLTS can be defined as follows:

#hy (p)
By(p) = {b5(p%)b € 2, p° > 0,6 = 1,2,..., #hy(p), Z P& <1}, 2.1

e=1

where in the LT is b®) (p(®)), b(®) is associated with the possibility p'=), and #hy,(p) denotes
the total number of LTs in b, (p).

Definition 2.2. [13] Suppose Z = [bq,bp], where bo,by € Jja,— A, Do and by include the
most significant and less restriction, we consequently define Z as the UL component.

To effectively illustrate the DMs rigidity, Lin et al. [19] presented across an innovative
concept called PULTS, which utilizes unclear linguistic parameters [31] and PLTSs.
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Definition 2.3. [19] A PULTS is described in the following way:

#Z(p)
Z(p) = {1 AN A9 €2, 2 0,e = 1,2, #Z(p), Y p9 <1},

e=1

2.2)
where [n(®),~))(p(®)) indicates the ULT [n'®),~(®)] associated with the probability p©)
and n'®), ) are LTs, n) < ~) and #Z(p) is the cardinality of Z(p).

#Z(p)

It is suggested that no assessment of information is now available, if p(g) =0 In
e=1
#Z(p)
the occurrence, if > p&) = 1, ultimately all information regarding their semantic as-
e=1

#Z(p)
sessment is provided. In the circumstance in which0 < p'®) < 1, it indicates only a
e=1
portion of the linguistic evaluations are provided since some DMs are capable of providing
the full analysis information as well as given some DMs are responsible for sending the in-
formation. It happens often in real-world MAGDM problems, and it is necessary to resolve

unknown risk.

Definition 2.4. [19] Considering a PULTS Z(p) = {[n©, v@](p)|e = 1,2, ..., #Z(p)},
where Z(p) is referred to as a sequence of PULTS if any of its constituent parts are ar-
ranged in descending order. It includes two components ([n), ] (p")) and

([, 4] (p'9))) which are compared to the probability ratio of [n“) x (p)), v) x (p))]
and [n(©) x (p{)), () x (p())], respectively.

In order to address the balance of unjustified error that makes PULTS’s importance iden-
tical, PULTS are normalized. Two distinct processes are involved in PULTS normalization.
Assessing a person’s insufficient statistical understanding is the fundamental component,
and adjusting a PULTS’s efficiency serves computational reasons.

R .. #Z(p)
Definition 2.5. [19] Suppose a PULTS Z(p) with Dy p(&) < 1, consequently, the related

. e=1
PULTS Z(p) can be described as:

Z(p) = {n®, v (p)e =1,2,..., #Z(p)}, 2.3)

o Jforalle = 1,2,...,#Z(p).

#Z(p)
> o

where p(&) =

e=1
The PULTS significance is typically inconsistent in real-world DM purposes, which causes
substantial operational issues. Thus, inserting unclear linguistic concepts containing chance
0 in PULTS with just a few components, we are able to raise their cardinalities.

Definition 2.6. [19] Suppose Z1(p) and Z5(p) be any two PULTS, Z1(p) = {[77%8)7 ’yf)](pgg) e =
L2, #21(p)} and Z(p) = ([, 257)(05 ) e = 1,2, #25(p)}, and let #:.2, (p)

and #Z5(p) be the number of linguistic terms in Z1(p) and Z2(p), respectively. If #21(p) >
#2Z5(p), then we will add # 2, (p) — #22(p) linguistic terms to Z5(p) so that the amount
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of expressions in Z1(p) and Z5(p) are similar. The probability of each verbal phrase is
zero and the fewest phrases in Z(p) are those that have been inserted.

Let Z1(p) = {[m” 17 1(p17)le = 1.2, .., #21(p)} and Z5(p) = {[ny” 757 (057 )] =
2,...,#25(p)}, afterward, the two phases llsted below can be used to carry out the nor-
malized procedure'

m If Z p(E) < 1 then by formula ( 2. 3 ), the value Z( ),t = 1,2, can be

calculated
(2) If #21(p) # #22(p), then based on the definition 2.6, it is necessary to include
additional aspects in alongside those with fewer components.

We refer to the resulting PULTS as the adjusted PULTS. The adjusted PULTS are also
represented by Z,(p) and Z5(p) for visual purposes.

Definition 2.7. [17] Given a conventional predetermined set X, the expression for a q-
ROFSS, 9 formed on x is as follows:

Q = {{x,0a(x),¢a(x))|x € x}, 2.4

where 0q(x) and (q(x) symbolize the MD and NMD of the component x € X to the set 1,
correspondingly, achieving 0 < 0q(x),(a(x) < Land (0q(x))7+ (Co(x))* < 1,(q > 1).
The amount of inconsistency is descri ed as

T (x) = Q/égn@ééﬂ#é@%%ﬂ—éﬁ%ﬁéﬁ@%ﬂ

Liu and Wang [17] known as the arranged combination (0q(x),(q(x)) a ¢-ROFN, which
is represented as 5 = (o, ().

Definition 2.8. [32, 11] Suppose 3 = {by|d = —-A, ..., —2,-1,0,1,2,..., A} bea LTS
[32]. The corresponding details to w that is obtained by using the transformation function
[11] can be represented by the linguistic phrase by:

I+A
oA 7

Additionally, data whose value is equal to the linguistic concepts by can be expressed using
@, so that w can be obtained using the transformation function t—:

L00,1) = boasbal T =bewona = Do (2.6)

t:b_a,ba] = [0,1],t(by) = 2.5)

We now employ the probabilistic fuzzy set (PULg-ROFS), which permits experts to
display evaluation information in several linguistic and incorporates the possibility for each
of them. The problem is figuring out the best way to apply PULg-ROFS criteria correctly
when the corresponding probability models diverge.

Definition 2.9. [20]Let ) = {91, 92, - - - , Y} refer to a uniform collection and 3 = {by|d
=-A,...,-3,-2,-1,0,1,2,3,...,A} be a LTS. Then a PULq-ROFS Fi(p) on 9 is
given as:

h(p) = {(ne;a(p)(9e), (D) (D)) : e € D}, (2. 6)
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®
where o(p)(9e) = {[Roeo), o (5®) = Rpewr pigecor € Jya,—a), p© 20, Z plo) <

1} and ¢(p)(9e) = {[£en, veen](B) : £ocw, Vo € Jja,—al V) > 0, ZP(J

i=
1} indicate the affiliation and non-affiliation grade, appropriately, of ne €9, w1th the
corresponding chances are p'® and pU), respectively; <9 and ©<U) are the subscripts
of the ULTs [Nge(o), tge(s)] and [£gei), Voetn ], respectively; fulfilling the criteria 0 <

(m%i(ge(g))q + (m%f( 0<())a < A1 (q> 1),
9= i=

\ /\

The set h(p) minimizes the PULq-ROFN if it contains exclusively unique elements and
we highlight this as h(p) = ({[Rga), ke (3} {[£60), ven 1(BV)}) where [Rocw) , oo ],

) & I
(Lot Vow] € Ja,—ajand p\9, p0) >0, 3 p® <1, 3 50 < 1.
g=1 j=1

Definition 2.10. [20] Suppose 3[A7_A] be a LTS for any adjusted PULq-ROFN

h(P)=<{[N9<g>7M9<B>K/3(g))’ (Lo, Ve<i>}(/3(j))}>’ where Ry, f1g(e), Loo), and
Vo) € Jia—ap (8= 1,2,3...8;) = 1,2,3...,3), the score function of h(p) is de-
scribed as

#Gy q #3 N (i e q
t(N ( )) (9) +t(# (s )) (9) [S) t£.)) ())th( . ()
Z ( 2 5 S ()P . Vo(i))P

_ )=t

F(n(p)) = * 7o, . , 2.7
Z @) S 50
g=1 j=1

where t(Ryo) ), t(lg) ), { Lo ), and t(vgsy) € [0, 1], #B¢ and #Jo indicate how many
items there are in the related set, respectively. The standard deviation of h(p) is described
as

g=1 j=1

#Bg /(R 5(8) ¢ 5(9) q #Jo £ ) t(v )50 q
\/ py (‘ o) PE @ I (h(P))) \/ > (“ 207 o)) —F(ﬁ(p))>

A(n(p)) = v + Fie
> pe S p0)
g=1 i=1
(2.8

where t(Ng) ), t(igw) ), s.f@())) and f(l/@(,)) [0, 1], #®B¢ and #Jo indicate number
of items there are in the related set, respectively.

Definition 2.11. [20] Suppose hy(p) and h2)(p) be two PULG-ROFNs. Therefore, the
arrangement of PULq-ROFNs juxtaposition appears as below:

: (A)IFF (R ()

) = F (R (p)), then ﬁ(”(p) = 1) (p).
: (B)If F (A ( ) <
)

)
() (p)). then KO (p) < K (p)
)

F
2 (O IfF (K (p)) = F (R (p)), then
o (@) IfI(hV) (p)) = I(h2) (p)), then BV (p) < B (p).
e (b) UJ(h“)(p)) < I(h(p)), then BV (p) = 1P (p).
o () If 37 (p)) = IR (p)), then KV (p) ~ A2 (p).

)
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Definition 2.12. [20] Suppose B (p) = ({[Roro)» g1 ] (D), [£616) s Vormn | (5D)}) and
R(p) = {Ro2t) o2 [ (6®), [£o200: Vo2 [(3)}) (8 = 1727 565 =1,2,...,3) in-
clude two customized PULg-ROFNs where 0°9) and ©°0) (e = 1,2) include the relevant
description of [Rge(o), fge(or] and [£ge), Vo ](e = 1,2)A > 0 followmg that, the key

properties of PULq-ROFNs are outlined as follows:
(1) neg(h*(p)) = ({[£e10), Vo1 ] (A1), Rpr0), o1 ] (59) }) .

2 ht(p) @ h3(p) =

N N )(/3(9)),
( ‘\‘/(el(n))quZ(n))qf(wN ‘{/(91(9))q+(92(n))q7(w)q

("6@10)920) 7”610)92(1) )(50))
A A

(3) h'(p) ® B*(p) =

(Neug)e?(ﬂ) 7“91(9)92(9) )(.ﬁ(g)):
A A

)

£ - - v - -
( v(el(])>q+<®2(j))q7(((—)l(l)X(—)?(J)))q’ (\]/(el(j))q+(@2(j)>q7(((—)1())K(—)2(l))>q

@) Ail(p) =

e
( \/Aq Aa(1- 7”1(’3))“ \/A‘l Ad(1— 7(91(9)”)) e
<’€A((_)1A(i)>>\7VA<@1AU))>\)(/30>)
&) (Bt (p)* =

o)
(A<el(9))vﬂA<el(g))) (p'9)),

A .
£ - v - (s
( Vas—ana- @801 gfas_aeq-olhe >)

Theorem 2.1. [20] Let hl( ) <{[N91(g), ,u91(g)]([)(g)), [£@1(j) y V@l(j)](ﬁ(j))}> and ﬁQ(p) =
<{[N92(s)aﬂg2(s)]( [£o2(1)7V@2(|)](P( ))}> (Q =12,...,8; = 1,2,... >3) be any two
modified PULq—ROFNs & &1, &, > 0, then

(D: h'(p) © W*(p) = h*(p) © B (p);

(2): B'(p) ® B*(p) = h*(p) @ h'(p);

3): f(ﬁl(p)@hz(p)) = ¢t (p )@ihZ( )

@: &h(p) @ &R (p) = (& +€2) Y(p);

(5): (R (p))*r @ (Kt (p))*2 = (At (p))*r+e2;
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6): (h'(p))* @ (h?(p))* = (h'(p) ® h*(p))*.

Definition 2.13. [20] Let 5 (p) = ({[Rpica) » fgror ] (5P), [
{20, 192000 (PP, [£200, Y200 (1)) (8= 1,2,
modified PULq-ROFNs, then Hamming distance HD (
h%(p) is described as follows:

£@1m, Vem](ﬁ("’)}) and h*(p) =
, 855 = .,J) consist of two
L(p), h3( )) between ht(p) and

#®Bg

‘q + ‘t(ﬂol(g))P@) - t(MQZ(U))p(G)I )

HD(h' (p), 1% (p)) =

g=

21 (‘t( 91(0)),0(9) —t(R 92(9))

Jr

24# G

#Jo . s s (s
> (ULorn)AY) — H(£g26))pD[? + [H(rg1:))pD) — rgzi) )W)

1

.(2.9)

)
2#Je

3. PULg-ROF EINSTEIN AGGREGATION OPERATORS

The following section presents the Einstein aggregation operators for PULg-ROFNs.

The fundamental Einstein laws of operation between two
tially in the definition that follows.

Definition 3.1. Ler ' (p) = ({[Rpio), ttgrco)] (59 [£@1

),
{Rg200s 11920 ] (A9), [£02015 V2] (5)}) (8 = 1,2
of two modified PULq-ROFNs where 0<(9) and ©¢0 (e

PULg-ROFNs are covered ini-

<,>7V@1(1>](ﬁ(j))}> and h*(p) =
565 =1,2,...,3) consist
) include the associated sub-

title of [Nye(a), plgeca)| and [£ge (,),l/@ m]e =1,2

)
)

operations between h'(p) and h?(p

are

A

‘ ("9

)

> 0

0, then the PULq-ROF Einstein

(1)

») @ (p) =

(2) we@mep -

e W

e >>)J((¢<H><8>>)N
o) o)

i n 020) t(vein) q+ t(ren)\’
M) e

(3) ) =

ey e

o) \* o)\ (o) \* (o) \*
() (e
et i U 1) (1 A”“
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o1(e)

[[J( (£ (>> <2 >>]] Hde <;;~§§;<f§5”2|2(g:wJﬂW
R

We now introduce the PULg-ROFEWA operation and its associated basic characteris-
tics:

@ w )

Definition 3.2. Assume J = {by|9 = —A,...,—3,-2,-1,0,1,2,3,..., A} isa LTS,

B(p) = ({[Rgears oo ] (D), [£Loen s Vo | (A}

(e=1,2,...,5;9=1,2,...,8;5 = 1,2,...,3) be the modified PULqG-ROFNs, then the
PULq-ROFEWA operator is described as below:

PULg-ROFEWA(I(p), B2 (p). ..., i (p)) = & Wk (p), (3. 10)

e=1

where W = (Wi, Wa, ..., W.)T is the weight vector of M, (e = 1,2,...,5) with W, €
S
[0,1] and 3~ We = 1.
e=1

Theorem 3.1. Considering an assortment of PULq-ROFNs

B (p) = ({Rorto 100} (5®), [ £, v ) (69)})
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866
(e=1,2,...,;9=1,2,...,8;i=1,2,...,3) having weight vector W = Wy, Wa, ... . W)T
<
with W, € [0,1] and > W, = 1. Then
e=1
PULg-ROFEWA(R* (p), h*(p), - - -, h* (p))
We We
[ <1+ t(Nme)) I <1 t(NZ(g))>
t71 A q e=1 - e=1 - 7
S t(Rge(a)) ’ i t(Rpe(a)) ‘
61;11 <1 + A ) + 61;[1 (1 A
We We
lill <1 + t(l‘z(u))) o Ijl <1 o t(”z&(ﬂ)))
Al o = ( ) > = ( ) v (p@),
< tlrge) "L & (1 teew) )
(et e n (o)
— 3. 1)
w
a & t("g@s(i)) ‘
o0 ()
t A " = ,
o (o (1Eeco) Y\ L ([t Eec) \T)
¢€H1 (2 < A +51;11 A
W
o5 1 [(tren) )
\/5 61;[1 < A ) .
1A (,5(1))
q £ (o) Y\ L s (o) )\
al-(s)) - a((5))

Proof. We use induction method and definition 3.2 to prove this theorem. For ¢ = 2, we

have

Wik (p) P W (p) =



—
=
- =Y
. ~—
r 1
. a L —
= = S
| —~ (- -
> N = =
2 2 /| —
>4 <42 | =
2 & c C
_ LS |3
— — - -
~| | |
| + — —
. . ~_|
= = , +
/| /| - -
> N = =
2 2 /|
=< 2|2 |2
2 & 2 2
- - | 3K
+ + /W /W
— — - R
~—|~—| + +
= N N
(\
o /“
A (\
(\
—~ <
,..L N
—
L

\J7 QL
S—
\J_|_
— .
W \|/
AN .
o
— <
= 7N
ol —~
M.w )
S NG o
ﬂ)(\l =
= + W N———
MA_ | ~~——
@ < -
SR e +
- SJ V@A_W.l
/l\n)(\ —
™ = > =
% g ~ | —
ol o~ N
= % <
= o<
SN— =
=
, ~
™
~—— |
— ~
= ~_
/|\




. c
. ‘Q
SN—
1
Al ~N
= S - ~
—
))2 N
B 2 = 2
al Lla| S 40
Z z = 3
— — -+ —-—
N——— | N—— | |
| + — -
- — | N——
= = | N
))2 .
B = = 2
al Lla| = 40
Z z = 2
h - 3| 3|
+ + = =
A NG -
+ +
o — —
~ |

\J_|_
3l \|/
£

Al
o
/N
o<
3

= N

)(Wl

MVA_Q.T -

@

-+ o @A_

| —~ 2
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I1 <1+ t(NXm))) B ﬁl (1 B t(NX(g)))W
Ayt 61%1 (HM)VK;; (1_““@))%
e=1 A i
I1 <1+ f(MZ(w))We o (1 B t(uzm))We
1| A q\J EIZII <1 + t(/~L49e(9))>WE . 512[1 <1 j f(ﬂ9€<g))>W€ (
e=1 A i >

Equation 3. 11 keeps for ¢ = 2. Assume that Equation ( 3. 11 ) keeps for ¢ = .

PULg-ROFEWA (%! (p), B2 (p), ..., h¥ (p))
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[T )
(e 05) e i ()
N 51211 <1+f(uz<g>)>::_€1§[l (1_t(ug<o>)):i o
61;[1 <1 N f(ugm)) N 6131 (1 B f(#gm))
tt A Wﬁl t(fim)yv ;
LG () A ()
B \q/gﬁl f(VZem))WE N
1A T [\ & ([t " (")
LG (5)) A ((5)

For ¢ = 1 + 1 by the assumption logic, we have

PULg-ROFEWA (' (p), 1% (p), - - -, ¥ (p), k¥ 1 (p))



- =
— <
SN—
I |
2 2
— N\| / . N
5 sl IR =

=y

+ |+
— Ll
SN——— | N———

N =l =

4

|
-~

N~——

|
-~

- /M‘J\p
7 N SN~—
e ~Nr——————— 1
v \|/
W \|/
7 N\ .
o
I~ =
= <
1 N
o|q —
&) E
-+ ol
g ~ Y
~_ =
N - ~__
= el S~
7 o~
Sl T T
=l |F slal t
— 7/ N
S| = N |
N ~ |2
= BN o<
~_ =
I .t(\
~
~_ |




X

1(9))

t (Nguw

(-

t(Ngur1a))

<1+




Entropy-Driven Decision-Making for Cybersecurity Risk Assessment 873

Hence, Equation ( 3. 11 ) keeps for every positive integers ¢ > 1. 0

Proposition 3.1. Suppose

he(p) = <{[N96<g>,u9€<g>](ﬁ(’3)), [fedjnV@eo)](ﬁ(j))})

(e=1,2,...,;9=1,2,...,8;) = 1,2,...,3) be the collection of PULq-ROFNs with
S
weight vector W = (Wi, Wa, ..., W)T, such that W, € [0,1] and > W. = 1. There-

e=1
fore, certain characteristics apply to the PULq-ROFEWA operator:

(1) (Idempotency) If all k¢ (p) = ([Nge(g),uge(g)](ﬁ(g))), [£@F<i),uee<i>](ﬁ("))(e =1,2,...

are equal, for all €, then

PULq-ROFEWA(R' (p), 12(p), ..., h*(p)) = h(p).

Proof. Suppose h(p)=({[Rgeco), ptgew ] (D), [£6e01s Vo ](51)}) is a collec-
tion of PUL¢-ROFNSs such that i€(p) = A(p) forall (e = 1,2,...,5), W, € [0,1]
and from Equation 3. 11, we get

PULg-ROFEWA (R (p), h?(p), ..., h*(p)) =

()
611 1+% +£I1 9e<g>
T
= eljl (1 + W) ’ + E]i[1 <1 Neem
1l 1 (f“i““)“
q f[ (2_ (t(ifgm))q)m il ((t(fz‘“))) >W€ )
R o] (Hrew) .
e = WA = (ﬁ(i))
6 () ()
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- 73 f(£§<i>)>
et
1A i <t(yim)> (8"

- (52)) (452

(5 o o
() oo

= ( Ry, o] (09), [£on,ven] (BV) )

= h(p).

O

(2) (Monotonicity) Let b (p) = (h*(p), h2(p), . .., h* (p)) and B (p') = (W' (p"), h'2(p), ..., h'<(p))
be two collections of adjusted PULq-ROFNs, for all e, N‘gf(f) < Nelg(f),ﬂas(f) < Wgle(h) s a€@5(h) >
£®/E(h)0/ﬂd
Vge(n) > Vg'ew), then

PULg-ROFEWA(R' (p), h2(p), ..., h*(p)) < PULq-ROFEWA(h'*(p

® ® &
(3) (Boundedness) Let Xge(+) = Iéliai( Nge(a), ge(+) = I;@ic,uqu), Npe(—) = Iggrll Npe(o),

® I r 3 p
Hoe(—) = Yglllll,uee(g), f@e(+) = malx Qc<(i), Vge(+) = mafil/ee(ib Q- =
= j= j=
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J J

mlil £®g(i), Vge(-) = m1{1 Vge(), then

= =

((Rger, 119 ] (@), ([£oecr, vorn)(3))) < PULG-ROFEWA(R' (p), 12 (p), ..., h* (p)) <
((Rgecors tge ) (2D), ([£ e, o (AM)))-

Definition 3.3. The PULq-ROFEOWA operator is a mapping $° — $) such that: for each
collection of PULG-ROFNs, 1€(p)=({[Rpeto), ttge(](5®), [Loci, Vo] (PN} (¢ =
1,2,...,¢9=1,2,...,86;i=1,2,....3)

PULg — ROFEOW A(h! (p), 1 (p), . .., ¥ (p)) = @D Weh*(p), (3.12)

where a(€) is such that h*€= (p) > h)(p) for all e, W = (Wi, W, ..., W) is the

S
weight vector h¢(e = 1,2,...,¢) with W, € [0,1] and > W, = 1.
e=1

Theorem 3.2. Consider a collection of PULq-ROFNs,
he(p) = <{[Nee<s>,ﬂee<s>}(ﬁ(g))7 [feeonV@e(i)](ﬁ(j))D
(e=1,2,...,5;9=1,2,...,8;i=1,2,...,3) having weight vector W = Wy, Wa, ... . W.)T
S
with W, € [0,1] and > W, = 1. Then

e=1

PULq-ROFEOWA(h* (p), B (p), ..., i (p)) =

< Nga()(s) s t (Rgatoro) )
L[ B ()
15[ 1+ Nga(e)(g) )WE L+ ISI ( (N9a<e><u>)>we ’
=1 =1 A
ﬁ (1+ ga()(ﬂ))>W6_ li[ (1_t(u925><g>)>w
1A ¢ 6?1 ‘uea( — .- ejl ) > (ﬁ(g))’
1 (1) e (- )

V2 6131 (f(f(—)gem))w

t1]A = = ,
. ﬁ o t(£oawn) "\ n 12[ t(£oawn)\"\
e=1 A e=1 A
s 1 [t (Veaon) e
— \/i el;ll ( A ~(3i
t1]A (51)

)
0= (o)) e n () )

This proof is similar to the proof of Theorem 3.1.

(3. 13)
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Proposition 3.2. Let i (p)=({[Rpetw), 190 ) (9D). [£oc00, Vo ](F7)}) (e =1,2,..., ;9=

1,2,...,8;j = 1,2,...,3) be the collection of PULq-ROFNs with weight vector VW =
S

Wi, Wa, ... , W)L, such that W, € [0,1] and > W, = 1. Therefore, certain character-
e=1
istics apply to the PULq-ROFEOWA operator:

(1) (Idempotency) Ifall h(p) = ([Rgecar» e ] (P'D)), [£oct) s Voen ] (AP ) (e = 1,2, . ..

are equal, for all €, then

PULq-ROFEOWA(h*(p), B*(p), ..., h(p)) = h(p).

(2) (Monotonicity) Let b (p) = (h*(p), h2(p), - .., h* (p)) and B (p') = (W'*(p"), h'2(p), ..., h'<(p))

be two collections of adjusted PULq-ROFNs, for all e, Nae(g) < Ne/e(g),ugg(g) < g'e(a) s £@<(j) >

£@/€(j)and
Vge() > Vgl then

’ ’

PULg-ROFEOWA(K'(p), h*(p), . .., hS(p)) < PULG-ROFEOWA(L'*(p ),k %(p),.... h(p)).

& & -
(3) (Boundedness) Let Rye(+) = maf Nge(a), lge(+) = maic,uqu), Npe(—) = mull Npe(o),
9= 9= 9=
® 3 3
I _ Lo _ L _
Hoe(=) = Yglllll,uee(g), f@e(+) = _alx Qc<(i), Vge(+) = malxl/@g(,), Q- =

J J
min £ge), Vge(—) = minvge), then
j=1 =1

(Rgecr, -0 J(B')), ([£ 0000, Vo0 (57))) < PULG-ROFEOWA(I (p), 12 (p), ..., (p))
< (Mg, o] (09, ([£0e, v 1(3M))).

4. PULg-RPF-CODAS METHOD

The CODAS technique for the PULg-ROF context will be developed in this part to

tackle the problems associated with MCGDM. Utilizing the CODAS approach expression
in a PULqg-ROF context, our goal is to identify the optimal option. The judgments are fused
using additional Einstein aggregation procedures. Additionally, the weights for the require-
ment are generated using the entropy measurement. The complex MCGDM challenges can
be solved using the PULg-ROF-CODAS approach.
The most prevalent determining variables are the surroundings, evaluations of achieve-
ment, information filtering, and implementation generation. There are a group of special-
ists, a number of feasible solutions and a set of requirements for every MCGDM problems.
Selecting the optimal choice from an assortment of ¢ prospective choices or alternative
N = {N1,Na, ..., Ny}, (0= 1,2,...,1) that will be examined depending on ¢ criteria
M={My,Msa,..., M}, (0 =1,2,...,4) a group of T DM experts, in order to evalu-
ate the different choices, D = {D;,Da,...,D.}, 7 = 1,2,..., ¢ are permitted.

Step 1: Development od linguistic-based ideas. The behavior of different options through-
out the DM procedure must be explained using suitable syntax. To assess the choices or
possibilities offered in MCGDM problems, decision specialists typically utilize linguistic
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words. The specialists in this approach first determine the linguistic terms and their corre-
sponding PULg-ROFNs for the MCGDM process.

Step 2: Specialists self-construct matrix structures. In this phase, every specialist devel-
ops a ranking framework and provides feedback in the form of PULg-ROFNs. Suppose

the assessment of the matrix structures provided by the specialists are R = [A] | xc. The
judgment framework of the 7th specialist should be described below:
R = [Al]ox (4. 14)
My his ... hi,
B h3, Ry ... A3
By hyo oo R
Every element in the assessment matrix R = [A] |y« (7 = 1,2,. .., ¢) indicates a PULg-

ROFN as 1], = (NG, 1, 1(0le), [£6,.,v5, 1(PL)), where [Np g ], [£5, ,v5, ] are
the grades of affiliation and non-affiliation, respectively.

Step 3: Independent normalization of matrices. Every single matrix is adjusted using a
particular criteria:

n [N (P2, [£5, 108, J(77), for benefit ype crieria: o
“ T (48,078, )5, N3 (97 for cost ype eriteria |

Step 4: Computing a unified matrix. To produce a matrix of aggregated assessments,
G = (h],)yxe, it is necessary to sum up each expert’s rating matrix sequentially. The re-
sult is achieved by using the PULg-ROFEWA operator. Step 5: Weighting the criterion.
By using the entropy approach, the weights of the criteria are determined. The main steps
are as follows:

Step 1x: Compute aggregated scores. The scores corresponding to the combined aggre-
gated matrix G, as presented in Step 4, are computed using the formula presented in Equa-
tion 4. 16.

o = (a+ ((1C0) 4 ((D) ) - (FE2d) 4 (122)") )

(4. 16)

Step 2x: Calculate projection values. Equation 4. 17 is used at this step to compute the
projection values P;; for each criteria:

S(he)

‘BLE == ¥ .
> S(hue)

4. 17)
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Step 3%: Determine entropy scores. Entropy values &; for each attribute are derived using
the projection values:

Z Pe log(Poo)- (4.18)

€

log

Step 4x: Evaluate the divergence scores. Based on entropy values, the formula below
derives the divergence degree 0. for each attribute, including its built-in variation strength:

de=1—¢€.. 4. 19)

Step 5x: Identify relative weights. Equation 4. 20 serves as the basis for determining the
weights of all criteria:

We = , (4. 20)

S
where > W, = 1.

e=1

Step 6: Evaluating the weighted unified matrix. By applying Equation 4. 21, the weighted
aggregated matrix is formulated through the integration of weights W, and matrix G:

l We % (£ W, t (v We
b, =W.G= ( ! (A (1 - <17 (‘“‘A”))l)wy) R (A (17 <1 - (%)) ) H (Pre) s [r' (A (%) ).r‘ (A (%) )] (ﬁ“)).
4.21)
Step 7: Score evaluation and NIS determination. The scores from the weighted matrix

are computed and negative ideal solution (NIS) values are determined for each criteria
reflecting the minimum desired outcomes:

NIS = [NIS|ix; 4. 22)
NIS, = min&(b,.). (4. 23)

Step 8: Computation of Euclidean and Hamming distances. Using the equations below,
Hamming distances D, and Euclidean distances £D, between the weighted matrix and
NIS are determined.

<
D, = HD(b,,NIS), (4. 24)
e=1
S
D, = ED(b,,NIS.). (4. 25)
e=1

Let Ay = ({[Ro1, g |(p'), [£o1,v01](p")}) andand Az = ({[Rz, pg2](5), [£Lo2, ve2](57)})
be PULg-RPFNs. Then the values of HD and £D between two PULg-RPFNs A; and As

can be computed as:

HD(AlaAz):i()‘(Ne‘)(ﬁl)*‘(Neﬂ)(/32)|+“(ﬂel ) (') = t(ue2) (B7)] + [t(£or) (5') — t(£e2) (7*)] + [t (ver) (') — t(ve2) (3)])

(4. 26)
(t(m(ﬁ*):men(ﬁl)) . (tow(ﬁl);t(x:m(ﬁi)) . (t(rm(ﬁ');twenw)) ‘+ (t(z@)(ﬁ');t(m(ﬁ)) D

4.27)

DAL Am%(
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Step 9: RA matrix calculation. Construction of relative assessment R.4 matrix is carried
out in this step:
RA = [eur]yxys (4. 28)
¢r = (ED, — ED:) + (9(ED, — ED;) x (HD, — HD;)); 7=1,2,3,...,9. (4.29)
Here the function g is expressed as follows:
L, > 0
a(n) —{ 0. IZ} . (4. 30)

where g € [0.01,0.05] as suggested by specialists. In current analysis, o = 0.02.
Step 10: Rank determination. Using Equation 4. 31 , the average result is computed:

<
AS, = Zc 4. 31)
e=1

Finally, the alternatives are arranged based on the AS, values. The alternative having
highest .AS, value will be regarded the best one.

Probabilistic uncertain linguistic q-rung
orthopair fuzzy (PULG-ROF) CODAS method

$

Panel of experts
Set of criterions
Set of alternatives

Determination of criteria
weights

Construction of individual matrices by the
experts

Normalization of individual matrices Find scores of aggregated matrix

Formation of linguistic terms.

C ion of
matrix

Calculate projection values

c ion of weighted matrix Compute entropy values

Calculation of scores and identification of

Determine weights

Determination of Euclidean distance and
Hamming distance

Finding of RA matrix

Final rank of alternatives

FIGURE 1. PULg-ROF-CODAS method with entropy-based criteria
weight determination

5. NUMERICAL ILLUSTRATION

The endurance, ongoing operations, and economical viability of contemporary busi-
nesses are all affected directly by the crucial task of tackling cybersecurity hazards. Select-
ing reliable and long-lasting security measures is essential to protecting business assets and
guaranteeing long-term expansion. The companies must regularly assess their outside at-
tacker threats and their own safety precautions, create appropriate cybersecurity plans, and
set up efficient criteria for assessment based on risk consequences and probability in the
current continuously shifting threat environment. To build a robust and flexible cyberse-
curity structure, a thorough evaluation methodology is necessary that extends outside con-
ventional cost-cutting or risk-minimizing tactics. However, the unforeseen consequences
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of changing hazards, divergent expert opinions, and the challenge of establishing exact
assessment requirements due to unidentified assault channels, unexpected faults, and dis-
parate levels of experience sometimes interfere with cybersecurity decision-making.

To address these issues, this work employs an MCGDM technique that integrates the PULg-
ROFS.The methodology makes it possible to combine real-world data with expert knowl-
edge to assess cybersecurity solutions in a context of uncertainty. A case study is conducted
using real organizational data collected from a multinational IT services firm that recently
underwent a comprehensive cybersecurity audit. In this study, a panel of four domain ex-
perts D, (1 = 1,2,3,4) assessed seven cybersecurity strategies NV, (v = 1,2,3,4,5,6,7),
including intrusion detection systems, zero trust architecture, and endpoint protection,
based on four key criteria M (e = 1,2,3,4): implementation cost, threat detection ca-
pability, scalability, and compliance alignment. The use of real audit data validates the
applicability of the proposed method and demonstrates how PULg-ROFS can effectively
handle linguistic uncertainty and probabilistic judgments in cybersecurity decision-making.
In addition to confirming the importance and resilience of the PULg-ROFS-based MCGDM
model, the outcomes offer useful information that can be applied to comprehensive cyber-
security assessment.

TABLE 1. Four essential features and their description

Attributes Description
Threat Detection Efficiency (M) The solution’s effectiveness in identifying and mitigating evolving
cyber threats based on real-time security data.
Implementation Cost (M) The financial investment required for deploying and sustaining the
cybersecurity solution within the organization’s existing infrastructure.
Scalability (M3) The ability of the security system to seamlessly expand alongside
organizational growth and increased digital operations.
Compliance Alignment (M) The degree to which the security strategy meets industry regulations and

international cybersecurity standards relevant to the firm’s operating environment.

TABLE 2. Seven safety measures and their description

Alternatives Description
Intrusion Detection System (IDS) (N7) It monitors network or system activities for malicious actions
and raises alerts in real time.
Zero Trust Architecture (ZTA) (N3) It enforces strict access control by verifying every user and

device attempting to access the network
regardless of their location.
Endpoint Protection Platform (EPP) (N3) It provides centralized security for devices like
laptop, mobiles and servers by detecting,
blocking and remediating threats at the endpoint level.

Security Information and Event Management (SIEM) (N;) It collects and analyzes security event data to detect anomalies and
provide actionable insights for incident response.
Multi-Factor Authentication (MFA) (N5) It strengths user verification by requiring multiple forms of authentication
to access sensitive systems or data.
Cloud Access Security Broker (CASB) (Ng) It acts as a security control point between cloud service users and
providers to enforce security policies and monitor data.
Network Firewall with Deep Packet Inspection (DPI) (\7) It filters incoming and outgoing network traffic based on rules

while inspecting packet content to detect sophisticated threats.

5.1. Implementation stages. Consider A = 5 and ¢ = 3 as given. The approach is
carried out in the subsequent steps:
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Step 1. The assessments provided by four experts for the alternatives based on the criteria
they defined and expressed as normalized benefit type values in the form of PULg-ROFSs
are presented in Tables 3, 4, 5 and 6.

Step 2. PULg-ROFEWA operator is employed to consolidate individual evaluations into
an aggregated matrix. Table 7 displays the aggregated scores of the alternatives relative to
each criteria.

Step 3. This stage involves calculating the weights of criteria using entropy measure .
Step 1*. The calculation of the combined aggregated matrix scores is initiated using Equa-
tion 4. 16 along with the data outlined in the Table 8.

Step 2*. The projection values are computed by applying Equation 4. 17 to the data
provided in Table 9.

Step 3* The results of entropy computation through Equation 4. 18 are consolidated in
Table 10.

Step 4* Based on Equation 4. 19, the divergence values corresponding to each criteria
are presented in Table 11.

Step 5* Equation 4. 20 is employed to compute the criteria weights as shown in Table
12.

Step 6. Using Equation 4. 21, the components of the weighted aggregated matrix are
outlined in Table 13.

Step 7. To determine the NIS, the scores from Table 8 are initially computed. Subsequently,
the NIS values are identified using criteria 4. 22 and 4. 23 as shown in Table 14.

Step 8. The values of HD; (4. 24 ) and £D; (4. 25) are computed as given below:

ED; = 0.1179, D5 = 0.035, D3 = 0.2317, £D, = 0.1046,
ED5 = 0.095, EDg = 0.2557, D7 = 0.138.

HD; = 1.2377, HD, = 0.9509, HD; = 1.352, HD, = 1.1597,
HDs5 = 0.9455, HDg = 1.5747, HD7 = 1.3425.

Step 9. The values of R.A matrix with their sum are given in Table 17.
Step 10. The best option is shown in Table 18 as N.

N@ >N3 >N7>N1 >N4>N5 >N2
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TABLE 3. Probabilistic uncertain linguistic ¢-rung orthopair fuzzy

decision matrix provided by D;.

Alternatives M1
M ({[R—5, p—4](0.1), [R_4, u—3](0.4), [R_3, p—2](0.5) },
{[£0,11](0.4), [£1,12](0.2), [£2,3](0.4)})
Na ({[®-1, 10](0-3), [Ro, #1](0.3), [R1, u2](0.4) },
{[£-4,v-3](0.1), [£-3,v-2](0.1), [£_2,v_1](0.8)})
N3 ({[®1, p2](0.3), [R2, us] (0.6), [Ns, 14](0.1)},
{[£-5,v-4](0.2), [£-4,v-3](0.4), [£_3,v2](0.4)})
Na ({R—3, 1-2](0.3), [R—2, n—1](0.2), [R—1, 110](0.5) },
{[£-2,v-1](0.4), [£-1,10](0.4), [£0,1](0.2)})
Ns ({[R=2, #-1](0.6), [R_1, £20](0.1), [Ro, 11](0.3) },
{[£-1,10](0.5), [£0,11](0.4), [£1,2](0.1)})
Ne ({0, #1](0.2), [Ry, 12](0.4), [R2, p3](0.4)},
{[£-3,v-2](0.2), [£-2,v-1](0.4),[£_1,v0](0.4)})
N7 ({R—4, n-3](0.3), [R_3, n—2](0.3), N2, 1 -1](0.4) },
{[£1,v2](0.6), [£2,v3](0.2), [£3,4](0.2)})
Alternatives Mo
M ({[R=1, 10](0.5), [Ro, p1](0.3), [N1, p2](0.2) },
{[£-4,v-3](0.1), [£-3,v-2](0.2), [£_2,v-1](0.T)})
Na ({[R-2, p-1](0.3), [R—1, 0] (0.5), [Ro, p1](0.2)},
{[£-1,10](0.4), [£0,11](0.4), [£1,72](0.2)})
N3 {[R=3, p—2](0.1), [R_2, 1—1](0.2), [R_1, 0] (0.7)},
{[£—-2,v-1](0.1), [£-1,10](0.1), [£Lo, v1](0.8)})
Na ({[R—a, p-3](0.3), [R_3, p—2](0.3), [R—2, u—1](0.4) },
{[£0,11](0.3), [£1,12](0.4), [£2,75](0.3)})
Ns ({[R-5, n—4](0.5), [R_4, n—3](0.2), [R—3, 1—2](0.3)},
{[£1,v2](0.1), [£2,v3](0.2), [£3,4](0.7)})
Neg ({[Ro, #1](0.3), [R1, 2] (0.3), [R2, u3](0.4) },
{[£-3,v-2](0.2), [£—2,v-1](0.3), [£-1,10](0.5)})
N7 ({[R1, p2](0.1), [R2, p3](0.4), [N3, 124](0.5) },
{[£—5,v-4](0.3),[£4,v5](0.1),[£3,v2](0.6)})
Alternatives M3
M ({Ro, p#1](0.1), [R1, p12](0.4), [R2, 13](0.5) },
{[£-3,v-2](0.1), [£—2,v-1](0.2), [£ 1, 10](0.7)})
No ({[®=1, 10](0-4), [Ro, 11](0.3), [N, p2](0.3)},
{[£-2,v-1](0.3), [£-1,10](0.3), [£0,11](0.4)})
N3 ({[R—4, p—3](0.1), [R_3, p—2](0.1), [R—2, n—1](0.8)},
{[£0,11](0.4), [£1,12](0.4), [£2,75](0.2)})
Ny ({[R2, 13](0.7), [R3, p14](0.2), [Na, 5] (0.1)},
{[£-5,v-4](0.8), [£—4,v-3](0.1), [£_3,v_2](0.1)})
Ns ({R=2, p—1](0.4), [R_1, £20](0.4), [Ro, 21](0.2) },
{[£-4,v-3](0.2), [£-3,v-2](0.4), [£_2,v-1](0.4)})
Ne ({[R—3, p—2](0.1), [R—2, p—1](0.1), [R_1, 140](0.8)},
{["5—17 VO](O'5)7 [’607 Vl](0'3)7 ["517 VQ](O'Q)}>
N7 ({[R1, p2](0.2), [Ra, p23](0.4), [R5, 14](0.4) },
{["5—47 V—3](0'4)7 [£—37 V—Q](O'4)7 ["5—27 l/_1](0.2)}>
Alternatives My
M ({[R=1, 10](0.2), [Ro, p£1](0.2), [R1, 42](0.6)},
{[£-2,v-1](0.4), [£-1,10](0.5), [£0,21](0.1)})
N ({[R®—-2, p—1](0.5), [R—1, 110](0.3), [Ro, p1](0.2)},
{[£-1,10](0.3), [£0,11](0.2), [£1,12](0.5)})
N3 ({[Ro, p1](0.3), [R1, 2] (0.6), [Nz, u3](0.1)},
{[£-3,v-2](0.2), [£-2,v-1](0.4),[£_1,v0](0.4)})
Ny ({1, p2](0.5), [R2, 3] (0.2), [N3, 44](0.3) },
{[£-4,v-5](0.4),[£_3,v_2](0.1),[£_2,v-1](0.5)})
Ns ({[R2, u3](0.4), [R3, p4](0.4), [Ny, p15](0.2) },
{[£-5,v-4](0.3), [£—4,v-3](0.3), [£_3,v-2](0.4)})
Ne ({R—5, p—4](0.1), [R_g, p—3](0.1), [R_3, u—2](0.8) },
{[£1,v2](0.5), [£2,13](0.2), [£3,14](0.3)})
N7 ({R—3, —2](0.2), [R—2, u—1](0.4), [R_1, 110](0.4) },
{[£0,11](0.1), [£1,12](0.1), [£2, v3](0.8)})
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TABLE 4. Probabilistic uncertain linguistic ¢-rung orthopair fuzzy
decision matrix provided by D-.

Alternatives M1
M ({[R—5, p—4](0.1), [R_4, u—3](0.4), [R_3, p—2](0.5) },
{[£-3,v-2](0.4), [£-2,v-1](0.2),[£ 1, v0](0.4)})
N2 ({R-3, 1-2](0.3), [R—2, p—1](0.3), [R—1, 110](0.4) },
{[£-5,v-4](0.1), [£-4,v-3](0.1), [£_3,v_2](0.8)})
N3 ({R—4, n-3](0.3), [R_3, 2] (0.6), N2, u-1](0.1)},
{[£0,11](0.2), [£1,12](0.4), [£2,3](0.4)})
Ny ({[Ro, 41](0.3), [R1, p12](0.2), [N2, p13](0.5) },
{[£-4,v-3](0.4), [£-3,v—-2](0.4), [£_2,v_1](0.2)})
Ns ({[R=2, #-1](0.6), [R_1, £20](0.1), [Ro, 11](0.3) },
{[£-1,10](0.5), [£0,11](0.4), [£1,2](0.1)})
Ne ({R—1, 10](0.2), [Ro, p1](0.4), [Ry, 112](0.4) },
{[£-2,v-1](0.2), [£-1,10](0.4), [£0, v1](0.4)})
N7 ({R—4, n-3](0.3), [R5, 2] (0.3), [R—2, 1 -1](0.4) },
{[£-1,10](0.6), [£0,11](0.2), [£1,72](0.2)})
Alternatives Mo
M ({[R—3, 1—2](0.5), [R_2, u—1](0.3), [R_1, 10](0.2)},
{[£-5,v-4](0.1), [£-4,v-5](0.2), [£_3,v-2](0.T)})
Na ({[R-5, n—-4](0.3), [R_4, n—3](0.5), [R—3, 1—2](0.2) },
{[£-3,v-2](0.4), [£-2,v-1](0.4), [£_1,10](0.2)})
N3 ({[Ro, p1](0.1), [N, 12](0.2), [Nz, 3](0.7)},
{[£-4,v-3](0.1), [£-3,v—2](0.1), [£_2,v_1](0.8)})
Na ({[R—a, p-3](0.3), [R_3, p—2](0.3), [R—2, u—1](0.4) },
{[£0,11](0.3), [£1,12](0.4), [£2,75](0.3)})
N5 ({[R=1, 10](0.5), [Ro, p1](0.2), [N1, p2](0.3) },
{[£-2,v-1](0.1), [£-1,0](0.2), [ Lo, v1](0.7)})
Neg ({[R-2, p-1](0.3), [R—1, 0] (0.3), [Ro, p1](0.4)},
{[’6*17 VO](0'2)1 ["{”07 Vl](0‘3)7 ["617 l’2](0'5)}>
N7 ({[R—4, p-3](0.1), [R_3, p—2](0.4), [R_2, p1](0.5) },
{[£-1,10](0.3), [£0, v1](0.1), [£1,12](0.6)})
Alternatives M3
M ({[R—4, p—3](0.1), [R_3, p—2](0.4), [R—2, n—1](0.5)},
{[£0,11](0.1), [£1,12](0.2), [£2,753](0.7)})
No ({[Ro, 111](0.4), [R1, p2](0.3), [N2, 13](0.3)},
{[£-4,v-3](0.3),[£-3,v-2](0.4),[£ —2,v-1](0.4)})
N3 ({[R—5, —4](0.1), [R—4, p—3](0.1), [R_3, n—2](0.8)},
{[£-3,v-2](0.4),[£2,v-1](0.4),[£ 1,10](0.2)})
Nay ({[R—3, p—2](0.7), [R—2, 1—1](0.2), [R_1, 0] (0.1)},
{[£-5,v-4](0.8), [£—4,v—3](0.1), [£_3,v_2](0.1)})
Ns ({[R—4, —3](0.4), [R_3, p—2](0.4), [R—2, n—1](0.2)},
{[£-1,10](0.2), [£0,11](0.4), [£1,22](0.4)})
Ne ({[R—1, 10](0.1), [Ro, p£1](0.1), [R1, 42](0.8)},
{["5—27 V—l](0'5)7 [£—17 VO](0'3)7 ["507 Vl](O'Q)}>
N7 ({R=2, 1—1](0.2), [R_1, £20](0.4), [Ro, 21](0.4) },
{["507 Vl](0'4)7 [’Elv VQ](O'4)7 ["527 V3](0'2)}>
Alternatives My
M ({[Ro, 111](0.2), [R1, p2](0.2), [N2, 3] (0.6) },
{[£-4,v-3](0.4),[£_3,v2](0.5), [£2,v-1](0.1)})
N ({[R=1, 10](0.5), [Ro, p1](0.3), [N1, p2](0.2)},
{[£-2,v-1](0.3), [£-1,10](0.2), [£0,11](0.5)})
N3 ({[R—2, £-1](0.3), [N—1, 10](0.6), [Ro, p12](0.1) },
{[£-1,10](0.2), [£0,11](0.4), [£1,2](0.4)})
Nay <{[N*51 :U'*4](0'5)7 [N*41 M*3](0'2)7 [N*?n /L*Q](O'g)}v
{[£-3,v-2](0.4), [£-2,v-1](0.1),[£_1,10](0.5)})
Ns ({[R—4, p—3](0.4), [R_3, n—2](0.4), [R_2, p1](0.2) },
{[£0,11](0.3), [£1,12](0.3), [£2,3](0.4)})
Ne ({R—3, p—2](0.1), [R—2, u—1](0.1), [R—1, 120](0.8) },
{[£-5,v-4](0.5), [£-4,v-3](0.2), [£_3,v_2](0.3)})
N7 ({R—1, 1£0](0.2), [Ro, 11](0.4), [R1, p2](0.4)},
{[£-4,v-3](0.1), [£_3,v—2](0.1), [£_2,v_1](0.8)})
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TABLE 5. Probabilistic uncertain linguistic ¢-rung orthopair fuzzy

decision matrix provided by Ds.

Alternatives M1
M ({[R—1, 10](0.1), [Ro, 11](0.4), [R1, p2](0.5) },
{[£-4,v-3](0.4), [£-3,v-2](0.2), [£_2,v_1](0.4)})
Na ({[Ro, £11](0.3), [R1, 2] (0.3), [N, 3] (0.4) },
{[£-1,10](0.1), [£0,21](0.1), [£1,12](0.8)})
N3 ({R-3, 1-2](0.3), [R—2, p—1](0.6), [R_1, o] (0.1)},
{[£-2,v-1](0.2), [£-1,10](0.4), [ L0, v1](0.4)})
Na ({R=2, 1-1](0.3), [R—1, 110](0.2), [Ro, 11](0.5)},
{[£-3,v-2](0.4), [£-2,v-1](0.4), [£_1,10](0.2)})
Ns ({[®1, p2](0.6), [R2, us] (0.1), [Ns, 14](0.3) },
{[£-5,v-4](0.5), [£—4,v-3](0.4), [£_3,v_2](0.1)})
Ne ({5, 1-4](0.2), [R_4, p—3](0.4), [R_3, 1 —2](0.4) },
{[£1,12](0.2), [£2,v3](0.4), [£3,4](0.4)})
N7 ({R—4, n-3](0.3), [R_3, n—2](0.3), N2, 1 -1](0.4) },
{[£0,11](0.6), [£1,12](0.2), [£2,3](0.2)})
Alternatives Mo
M ({[Ro, p1](0.5), [N1, 12](0.3), [N2, 13](0.2)},
{[£-1,10](0.1), [£0,11](0.2), [£1,22](0.7)})
N ({[R-1, 10](0.3), [Ro, #1](0.5), [R1, u2](0-2)},
{[£-4,v-3](0.4), [£-3,v-2](0.4), [£_2,v_1](0.2)})
N3 ({[R-2, p—1](0.1), [R_1, 0] (0.2), [Ro, p1](0.7)},
{[£-3,v-2](0.1), [£-2,v-1](0.1), [£L_1,10](0.8)})
Ny {[R—3, 1—2](0.3), [R_2, 1—1](0.3), [R_1, 0] (0.4)},
{[£—-2,v-1](0.3), [£-1,10](0.4), [ Lo, 1](0.3)})
N5 ({[R1, p2](0.5), [N, 13](0.2), [N3, p4](0.3) },
{[£-5,v-4](0.1), [£-4,v-5](0.2), [£_3,v-2](0.7)})
Neg ({[R—4, 1—3](0.3), [R_3, 1—2](0.3), [R_2, p-1](0.4)},
{[£0,11](0.2), [£1,12](0.3), [£2,13](0.5)})
N7 ({[R-5, p—4](0.1), [R_4, n—3](0.4), [R—3, 1—2](0.5)},
{[£1,12](0.3), [£2,3](0.1), [£3,4](0.6)})
Alternatives M3
M ({[R-3, p—2](0.1), [R_2, n—1](0.4), [R—1, 0] (0.5) },
{[£-2,v-1](0.1), [£-1,10](0.2), [£0,1](0.7)})
Nz ({R=2, p—1](0.4), [R—1, £20](0.3), [Ro, 41](0.3) },
{[£-3,v-2](0.3),[£—2,v-1](0.3),[£ 1, 10](0.4)})
N3 ({[R—1, 10](0.1), [Ro, p£1](0.1), [R1, 42](0.8)},
{[£-4,v-3](0.4),[£_3,v2](0.4), [£2,v-1](0.2)})
Ny ({[Ro, 111](0.7), [R1, p2](0.2), [N2, u3](0.1)},
{[£-1,10](0.8), [£0,11](0.1), [£1,22](0.1)})
Ns ({[R—4, n—3](0.4), [R_3, p—2](0.4), [R—2, n—1](0.2)},
{[£0,11](0.2), [£1,12](0.4), [£2,73](0.4)})
Ne ({[R—5, 1—4](0.1), [R_g, p—3](0.1), [R_3, n—2](0.8)},
{[£1,12](0.5), [£2,15](0.3), [£3,74](0.2)})
N7 ({[R1, p2](0.2), [Ra, p23](0.4), [R5, 14](0.4) },
{["5—57 V—4](0'4)7 [£—47 V—3](0'4)7 ["5—37 V—Q](O'Q)}>
Alternatives My
M ({[R-2, p—1](0.2), [R—1, 10](0.2), [Ro, p1](0.6) },
{[£-3,v-2](0.4), [£-2,v-1](0.5),[£_1,v0](0.1)})
N ({[R1, 42](0.5), [N, u3](0.3), [N3, p4](0.2)},
{[£-5,v-4](0.3), [£—4,v-3](0.2), [£_3,v2](0.5)})
N3 ({[R—5, p—4](0.3), [R_4, n—3](0.6), [R_3, p—2](0.1)},
{[£1,v2](0.2), [£2,v3](0.4), [£3,14](0.4)})
Ny ({[R-1, 10](0.5), [Ro, #1](0.2), [R1, p2](0.3) },
{[£-4,v-5](0.4),[£_3,v_2](0.1),[£_2,v-1](0.5)})
Ns ({[Ro, 11](0.4), [R1, p2](0.4), [Nz, p13](0.2) },
{[£-1,10](0.3), [£0,11](0.3), [£1,2](0.4)})
Ne ({[R—3, p—2](0.1), [R_2, p—1](0.1), [R—1, 120](0.8) },
{[£-2,v-1](0.5), [£-1,10](0.2), [£0,11](0.3)})
N7 ({[R—4, p—3](0.2), [R_3, n—2](0.4), [R—2, p—1](0.4)},
{[£0,11](0.1), [£1,12](0.1), [£2, v3](0.8)})
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TABLE 6. Probabilistic uncertain linguistic ¢-rung orthopair fuzzy
decision matrix provided by D,.

Alternatives M1
M ({[R—4, p—3](0.1), [R_3, u—2](0.4), [R_2, p—1](0.5) },
{[£0,11](0.4), [£1,12](0.2), [£2,v3](0.4)})
N2 ({R—s5, 1-4](0.3), [R_4, n—3](0.3), N3, n—2](0.4) },
{[£1,v2](0.1), [£2,v3](0.1), [£3,4](0.8)})
N3 ({[®1, p2](0.3), [R2, us] (0.6), [Ns, 14](0.1)},
{[£-5,v-4](0.2), [£-4,v-3](0.4), [£_3,v-2](0.4)})
Na ({R—2, 1-1](0.3), [R—1, 110](0.2), [Ro, 1](0.5)},
{[£-3,v-2](0.4), [£-2,v-1](0.4),[£_1,10](0.2)})
Ns ({R—3, 1-2](0.6), [R_2, p—1](0.1), [R_1, 110](0.3) },
{[£-2,v-1](0.5), [£-1,10](0.4), [£0,v1](0.1)})
Ne ({0, #1](0.2), [Ry, 12](0.4), [R2, p3](0.4)},
{[£-1,10](0.2), [£0,11](0.4), [£1,12](0.4)})
N7 ({IR=1, 120](0.3), Ro, 11](0.3), (X1, p2](0.4)},
{[£-4,v-3](0.6), [£_3,v—2](0.2), [£_2,v_1](0.2)})
Alternatives Mo
M ({5, n—4](0.5), [R_4, u—3](0.3), [R—3, 1—2](0.2)},
{[£1,v2](0.1), [£2,v3](0.2), [£3,4](0.7)})
N ({[R—4, 1—3](0.3), [R_3, 4—2](0.5), [R_2, p-1](0.2)},
{[£0,11](0.4), [£1,12](0.4), [£2,75](0.2)})
N3 ({[R1, #2](0.1), [R2, u3](0.2), [Ns, 14](0.7) },
{[£-5,v-4](0.1), [£-4,v-5](0.1), [£_3,v_2](0.8)})
Ny {[R—3, 1—2](0.3), [R_2, 1—1](0.3), [R_1, 0] (0.4)},
{[£—2,v-1](0.3), [£-1,10](0.4), [ L0, 1](0.3)})
Ns ({[R-2, p—1](0.5), [R—1, 10](0.2), [Ro, p1](0.3)},
{[£-3,v-2](0.1), [£-2,v-1](0.2), [£ -1, 0](0.7)})
Neg ({[R=1, 10](0.3), [Ro, p1](0.3), [N1, p2](0.4) },
{[£-4,v-3](0.2),[£_3,v-2](0.3), [£—2,v-1](0.5)})
N7 ({[Ro, 11](0.1), X1, p12](0.4), [Nz, p13](0.5) },
{[£-1,10](0.3), [£0, v1](0.1), [£1,12](0.6)})
Alternatives M3
M ({[R1, p2](0.1), [Re, u3](0.4), [N3, 44](0.5)},
{[£-5,v-4](0.1),[£_4,v-3](0.2),[£ -3, v-2](0.7)})
N ({[¥—5, p—a](0.4), [R_4, u—3](0.3), [R—3, u—2](0.3)},
{[£1,22](0.3), [£2,v3](0.4), [£3,14](0.4)})
N3 ({[R—4, p—3](0.1), [R_3, p—2](0.1), [R—2, n—1](0.8)},
{[£0,11](0.4), [£1,12](0.4), [£2,75](0.2)})
Nay ({[Ro, #1](0.7), [R1, p22](0.2), [R2, 13](0.1) },
{[£-1,10](0.8), [£0,11](0.1), [£1,22](0.1)})
Ns ({[R=1, 10](0.4), [Ro, p£1](0.4), [R1, 142](0.2)},
{[£-4,v-3](0.2), [£-3,v-2](0.4), [£_2,v-1](0.4)})
Ne ({[R=2, p—1](0.1), [R—1, 120](0.1), [Ro, 21](0.8) },
{[£-3,v-2](0.5), [£-2,v-1](0.3), [£ -1, 10](0.2)})
N7 ({[R—3, p—2](0.2), [R_2, p—1](0.4), [R_1, 0] (0.4) },
{["5—27 V—l](0'4)7 [£—17 VO](0'4)7 ["507 Vl](O'Q)}>
Alternatives My
M ({[R-4, p—3](0.2), [R_3, n—2](0.2), [R—2, 1] (0.6) },
{[£0,21](0.4), [£1,12](0.5), [£2,v3](0.1)})
N ({[®-3, p—2](0.5), R—2, 1—1](0.3), [R—1, 120](0.2) },
{[£-2,v-1](0.3), [£-1,10](0.2), [£0,1](0.5)})
N3 ({[Ro, p#1](0.3), [R1, 2] (0.6), [Nz, u3](0.1)},
{[£-1,10](0.2), [£0,11](0.4), [£1,2](0.4)})
Ny ({[R-1, 10](0.5), [Ro, #1](0.2), [R1, p2](0.3) },
{[£-4,v-5](0.4),[£_3,v_2](0.1),[£_2,v-1](0.5)})
Ns ({R—5, p—4](0.4), [R_g, n—3](0.4), [R_3, p—2](0.2) },
{[£1,v2](0.3), [£2,v3](0.4), [£3,14](0.4)})
Ne ({[R1, p2](0.1), [R2, p3](0.1), [N3, 124](0.8) },
{[£-5,v-4](0.5), [£-4,v-3](0.2), [£_3,v2](0.3)})
N7 ({2, p—1](0.2), [R_1, p0](0.4), [Ro, p12](0.4) },
{[£-3,v-2](0.1), [£_2,v-1](0.1),[£_1,10](0.8)})
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TABLE 7. Combined aggregated matrix in the form of PUL¢-ROFNs

Alternatives My
M ({[N18.20, 123.15](0.1), [N23.15, u26.70](0.4), [R26.70, 29.50] (0.5) },
{[£-4.99,V-4.999](0.4), [£ —4.999, V—4.9976](0.2), [£ —4.9976, V—4.9949](0.4) })
N ({[N25.05, 12s.18](0.3), [N2g.18, #30.71](0.3), [R30.71, 132.81](0.4) },
{[£-5,v-4.990](0.1), [£ _4.999, V—4.9988](0.1), [£ _4.9088, ¥—4.997](0.8) })
N3 ({[N28.17, 130.71](0.3), [N30.71, #32.81](0.6), [R32.81, 34.50] (0.1) },
{[£-5,7-4.099](0.2), [£ —4.999, V—4.999](0.4), [£ —4.999, V—4.9983](0.4) })
Ny ({[R26.70, 1129.49](0.3), [R29.49, 1431.79](0.2), [N31.79, 1£33.72](0.5) },
{[£-4.999,7-4.999](0.4), [£ _4.999, V—4.9990](0.4), [£ —4.9990, V—4.9976](0.2)})
N5 ({[R27.46, 1130.12](0.6), [R30.12, £32.31](0.1), [N32.31, 1£34.16](0.3) },
{[£-5,7-4.999](0.5), [£ —4.999, V—4.9986](0.4), [£ —4.9986, V—4.9965](0.1)})
Ne ({[R27.46, 1130.12](0.2), [R30.12, 1432.32](0.4), [N32.32, 1£34.17](0.4) },
{[£-4.999,V-4.0983](0.2), [£ —4.9083, V—4.9962](0.4), [£ —4.9962, V—4.9924](0.4)})
N7 ({[R20.92, 1125.04](0.3), [R25.04, p128.17](0.3), [R2s.17, 1£30.70](0.4) },
{[£_-4.999,V4.0983](0.6), [£ _4.9083, V—4.9959](0.2), [£ _4.9959, V—4.9919](0.2)})
Alternatives Mo
N1 ({[R25.05, 128.18](0.5), [N2g.18, 1£30.71](0.3), [R30.71, 1£32.81](0.2) },
{[£—-5,v—-4.909](0.1), [£ _4.999, V—4.9988](0.2), [£ —4.9988, ¥—4.9969](0.7) })
N2 ({[R22.08, 125.90](0.3), [N25.90, 1128.85](0.5), [R2s.85, 1£31.26](0.2) },
{[£-4.999,7-4.999](0.4), [£ _4.909, V—4.9979](0.4), [£ _4.9979, V—4.9955](0.2)})
N3 ({[R28.85, 1131.26](0.1), [N31.26, 1£33.27](0.2), [N33.27, 1£34.98] (0.7) },
{[£—-5,v—-4.999](0.1), [£ —4.999,V—4.999](0.1), [£ —4.999, V—4.9985](0.8) })
Ny ({[R19.635 1124.12](0.3), [N24.12, 127.45](0.3), [R27.45, 1£30.11] (0.4) },
{[£-4.999,V—4.9977](0.3), [£ —4.0977, V—4.9951](0.4), [£ —4.9951, ¥—4.9907](0.3) })
Ns ({[R26.71, 129.51](0.5), [N2g.51, £31.81](0.2), [N31.81, 33.73](0.3) },
{[£-5,v-4.999](0.1), [£ —4.999, V—4.9087](0.2), [£ —4.9087, V—4.9968](0.7)})
Ns ({[R26.70, 1129.50](0.3), [N29.50, 1£31.80](0.3), [N31.80, 1£33.72](0.4) },
{[£-4.999,v-4.999)(0.2), [£ _4.999, V—4.9979](0.3), [£ _4.9079, ¥—4.9955](0-5) })
N7 ({[R25.91, 28.87](0.1), [N2g .87, 1£31.28](0.4), [N31.28, 1£33.20] (0.5)},
{[£-5,v-4.999](0.3), [£ _4.999, ¥—4.0977](0.1), [£ —4.9977, V—4.9947](0.6)})
Alternatives Ms
M ({[R27.47, 130.12](0.1), [N30.12, 1£32.32](0.4), [N32.32, 134.17](0.5) },
{[£-5,7-4.999](0.1), [£ —4.999, V—1.9988](0.2), [£ —4.90988, V—4.90971](0.7) })
N ({[R25.90, 128.86](0.4), [N2s.86, 1£31.26](0.3), [N31.26, £33.28](0.3) },
{[£-4.999,7-4.999](0.3), [£ —4.999, ¥—4.9980](0.3), [£ —4.9980, V—1.9956](0.4) })
N3 ({[R19.63, #24.13](0.1), [N24.13, p127.46](0.1), [N27.46, 1£30.12](0.8) },
{[£-4.999,7-4.999](0.4), [£ —4.999, V—4.9976](0.4), [£ —4.9976, V—1.9949](0.2) })
Na ({[N30.70, #32.80](0.7), [N32.80, 1£34.58](0.2), [N34.58, 1436.09](0.1) },
{[£-5,v-4.999](0.8), [£ _4.999,V—4.999](0.1), [£ _4.999, V—4.9982](0.1)})
Ns ({[N23.14, 26.70](0.4), [N26.70, 1£29.50](0.4), [N29.50, 31.79](0.2) },
{[£-4.999,7—4.999](0.2), [£ _4.999, V—4.9984](0.4), [£ _1.9984, V—4.9964](0.4)})
Ne ({[N23.14, 126.70](0.1), [N26.70, 1£29.50] (0.1), [N2g 50, £31.79](0.8) },
{[£—-4.999,V—4.9983](0.5), [£ —4.9983, ¥—4.9962](0.3), [£ —4.9962, ¥—4.9924](0.2) })
N7 ({[R29.50, 131.80](0.2), [N31.80, 1£33.73](0.4), [R33.73, 135.37](0.4) },
{[£—5,7-4.099](0.4), [£ _4.999, V—4.999](0.4), [£ _4.999, ¥—4.9976](0.2) })
Alternatives My
N1 ({[R26.70, 1429.50](0.2), [N29.50, 1£31.80](0.2), [N31.80, 1£33.72](0.6) },
{[£—-4.999,7—4.999](0.4), [£ _4.999, V—4.9983](0.5), [£ _4.9083, V—4.9961](0.1)})
N ({[N28.17, 130.70](0.5), [N30.70, 432.80](0.3), [R32.80, 1434.58] (0.2) },
{[£-5,v-4.999](0.3), [£ —4.999, ¥—4.9987](0.2), [£ —4.9987, V—4.9969](0.5) })
N3 ({[R26.71, 1120.51](0.3), [R29.51, 1131.80](0.6), [N31.80, 1133.73] (0.1) },
{[£-4.999,V—4.9978](0.2), [£ _4.0978, V—4.9953](0.4), [£ —4.9953, ¥—4.9911](0.4) })
Ny ({[N27.47, 130.12](0.5), [N30.12, #32.32](0.2), [R32.32, 34.17](0.3) },
{[£—-4.999,V—4.999](0.4), [£ _4.999, V—4.999](0.1), [£ _4.999, ¥—4.9987](0.5) })
Ns ({[R26.73, 129.53](0.4), [R29.53, 1131.82](0-4), [N31.82, 1133.75] (0.2) },
{[£-5,v-4.999](0.3), [£ —4.999, V—4.9973](0.3), [£ —4.9973, V—4.9939](0.4) })
Ne ({[N24.14, p27.47](0.1), [Na7.47, 1#30.13](0.1), [R30.13, £32.32] (0.8) },
{[£-5,7-4.099](0.5), [£ —4.999, V—4.999](0.2), [£ —4.999, ¥—4.9981](0.3) })
N7 ({[R24.12, p27.45](0.2), [Ra7.45, 130.11](0.4), [R30.11, #32.30](0.4) },

{[£-4.999,7-4.999](0.1), [£ _4.999, V—4.9976](0.1), [£ —4.9976, V—4.9948](0.8)})




Entropy-Driven Decision-Making for Cybersecurity Risk Assessment

887

TABLE 8. PULg-ROF score of aggregated matrix

Alternatives | M Mo Ms My
M 5.4928 | 5.6110 | 5.8153 | 5.780
No 5.668 | 5.5736 | 5.6753 | 5.7524
N 5.7678 | 5.9069 | 5.5750 | 5.6980
N, 5.7516 | 5.4842 | 5.8480 | 5.7317
Ns 5.7171 | 5.6966 | 5.5520 | 5.6984
Ns 5.7876 | 5.7384 | 5.6831 | 5.7194
N7 5.5219 | 5.7474 | 5.8872 | 5.6466

TABLE 9. PULg-ROF projection values

Alternatives My Mo Ms My
N 0.13833 | 0.14113 | 0.14525 | 0.14440
Ny 0.14275 | 0.14019 | 0.14176 | 0.14371
N3 0.14526 | 0.14857 | 0.13925 | 0.14236
N, 0.14485 | 0.13794 | 0.14607 | 0.14320
N5 0.14398 | 0.14328 | 0.13868 | 0.14236
Ns 0.14576 | 0.14433 | 0.14195 | 0.14289
N 0.13907 | 0.14456 | 0.14705 | 0.14107
TABLE 10. PULg-ROF entropy values
Alternatives My Mo Ms My
¢ 0.999902 | 0.999870 | 0.999885 | 0.999983

TABLE 11. PULg-ROF divergence values

Alternatives

M,y

Moy

Ms

My

0 0.

000098

0.00013

0.000115

0.000017

TABLE 12. PULg-ROF criteria weights

Alternatives

M,y

Moy

M3

My

W

0.2722 | 0.3139

0.3194

0.0472
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TABLE 13. Combined weighted aggregated matrix in the form of

PUL¢-ROFNs
Alternatives My
M ({[R10.2259, 13.674](0.1), [N13.674, 1£16.267](0.4), [N16.267, 118.418](0.5) },

{[£-2.37,v-2.37])(0.4), [£ —2.37,v_1.6660] (0.2), [£ _1.6660, ¥—0.9250](0.4) })

Na ({[R15.046, ££17.39](0.3), [R17.39, 119.386] (0.3), [R19.386, 1121.139](0.4) },
{[£-5,v-2.37](0.1), [£ —2.37,v_2.236] (0.1), [£ _2.236, ¥—1.4540](0.8) })
N3 ({[R17.382, 1119.386](0.3), [N10.386, 1£21.139](0.6), [R21.139, 22.716](0.1) },
{[£-5,v-2.37](0.2), [£—2.37,V—2.37](0.4), [£ —2.37, ¥—1.9620](0.4) })
Ny ({[R16.267, 1118.41](0.3), [N18.41, p120.275](0.2), [R20.275, p21.933](0.5) },
{[£-2.37,v-2.37](0.4),[£_2.37,v-2.37](0.4), [£ _2.37,v_1.663](0.2) })
Ns ({[R16.84, 1118.91](0.6), [R18.91, #20.712] (0.1), [R20.712, p122.326](0.3) },
{[£-5,v-2.37](0.5), [£ _2.37,v_2.1181](0.4), [£ —2.1181,¥—1.302](0.1) })
Ne ({[R16.84, 1118.91](0.2), [R18.91, #20.721](0.4), [R20.721, p122.335](0.4) },
{[£-2.37,v-1.962](0.2), [£ —1.962,V—1.218](0.4), [£ _1.218,7—0.433](0.4) })
N7 ({[R12.102, ££15.039](0.3), [R15.039, 17.382](0.3), [R17.382, 1£19.378](0.4)},
{[£_2.37,v-1.962](0.6), [£ _1.962,-1.130](0.2), [£ _1.130,7—0.368](0.2)})
Alternatives Moy
N1 ({[R15.986, p18.424](0.5), [N18.424, 1120.494](0.3), [R20.494, 122.306](0.2) },
{[£—-5,v-3.325](0.1), [£ _3.325,¥-3.227](0.2), [£ _3.227,v—2.611](0.7)})
No ({[R13.765, 116.637](0.3), [N16.637, 1£18.962](0.5), [R18.962, 1120.959](0.2) },
{[£—-3.325,7-3.325](0.4), [£ _3.325, V_2.886](0.4), [£ _2.886, ¥—2.315](0.2) })
N3 ({[R18.962, 120.959](0.1), [N20.9509, p22.717](0.2), [R22.717, 124.301](0.7) },
{[£-5,v-3.325](0.1), [£ _3.325,¥—3.325](0.1), [£ _3.325, ¥—3.008] (0.8) })
Ny ({[R11.981, p15.282](0.3), [N15.282, p£17.845](0.3), [R17.845, 1119.993](0.4) },
{[£—-3.325,7-2.825](0.3), [£ _2.825, V—2.242](0.4), [£ _2.242,_1.628](0.3)})
N5 ({[R17.265, 1419.499](0.5), [N19.499, p121.431](0.2), [R21.431, 123.134](0.3) },
{[£—-5,v-3.325](0.1), [£ _3.325,¥-3.181](0.2), [£ _3.181, ¥—2.587](0.7) })
Ne ({[R17.257, 1119.491](0.3), [N19.491, p21.422](0.3), [R21.422, 123.125](0.4) },
{[£—-3.325,7-3.325](0.2), [£ _3.325, ¥—2.886](0.3), [£ —2.886, ¥—2.315] (0.5) })
N7 ({[R16.645, n18.978](0.1), [N18.978, 1£20.976](0.4), [R20.976, 122.735](0.5) },
{[£_5,v-3.325](0.3), [£ _3.325,¥_2.825](0.1), [£ _2.825,v—2.173](0.6)})
Alternatives M3
M ({[N17.986, 1120.137](0.1), [N20.137, pr22.017](0.4), [N22.017, p23.688](0.5) },
{[£-5,v-3.422](0.1), [£ _3.422,-3.328](0.2), [£ _3.328, ¥—2.783](0.7) })
Na ({[N16.757, 1119.101](0.4), [N19.101, #121.099](0.3), [R21.099, pr22.872](0.3) },
{[£-3.422,7-3.422](0.3), [£ —3.422,7-3.031](0.3), [£-3.031, ¥ 2.467](0.4) })
N3 ({[R12.078, 115.404](0.1), [N15.404, 17.979](0.1), [R17.979, 120.137](0.8)},
{[£-3.422,v-3.422](0.4), [£ _3.422,V—2.913](0.4), [£-2.913,2.345](0.2) })
Ny ({[R20.623, 122.442](0.7), [N22.442, p124.072](0.2), [R24.072, p125.54](0.1) },
{[£-5,v-3.422](0.8), [£ —3.422, ¥—3.422](0.1), [£ _3.422, ¥—3.006](0.1) })
Ns ({[N14.658, 117.38](0.4), [N17.38, 1119.624](0.4), [N19.624, 1£21.555](0.2) },
{[£-3.422,7-3.422](0.2), [£ _3.422,v—3.166](0.4), [£3.166, V—2.624](0.4) })
Ne ({[R14.659, #17.38](0.1), [N17.38, pt19.624](0.1), [N19.624, 1£21.555](0.8) },
{[£-3.422,v-3.131](0.5), [£ _3.131, ¥—2.583](0.3), [£ —2.583, ¥—1.984](0.2) })
N7 ({[R19.624, p21.564](0.2), [N21.564, 1123.282](0.4), [N23.282, 1124.829](0.4) },
{[£—5,v-3.422](0.4), [£ _3.422,V—3.422])(0.4), [£ —3.422,¥—2.913](0.2)})
Alternatives My
N1 ({[N6.99, 18.253](0.2), [Ng.253, 119.367](0.2), [N9.367, 1£10.369](0.6) },
{[£25.004, 25.004](0.4), [£25.004, V25.765](0.5), [£25.765, V26.995] (0.1) })
N3 ({[R7.641, 18.824](0.5), [N8.824, 19.879](0.3), [No.879, 1£10.845](0.2) },
{[£=5,125.004](0.3), [£25.004, 25.378](0.2), [£25.378, 26.65](0.5) } )
N3 ({[R6.994, 18.258](0.3), [Ng.258, 119.367](0.6), [R9.367, 1£10.374](0.1) },
{[£25.004,v26.142](0.2), [£26.142, v27.278](0.4), [£27.278, 28.265](0.4) })
Nay ({[R7.320, 118.545](0.5), [N8.545, 119.631](0.2), [N9.631, i£10.616)(0-3) },
{[£25.004,125.004](0.4), [£25.004, 25.004](0.1), [£25.004, 25.378](0.5) })
Ns ({[R7.003, 18.267](0.4), [N8.267, 19.377](0.4), [No.377, 1£10.385](0.2) },
{[£-5,v25.004](0.3), [£25.004, V26.444] (0.3), [ £26.444, V27.677](0.4) })
Ne ({[X5.899, 147.329](0.1), [R7 329, g.55](0.1), [Ns 55, 119.631](0.8) },
{[£-5,v25.004](0.5), [£25.004, 25.004](0.2), [£25.004, V25.927](0.3) })
N7 ({[N5.801, 17.32]

(0.2), [R7.32, 18.541](0.4), [Ns.541, p19.62](0.4) },
{[£25.004, ¥25.004](0.1), [£25.004, ¥26.27](0.1), [£26.27, v27.432] (0.8) })
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TABLE 14. PULg-ROF values of negative ideal solution matrix

Alternatives My
NST,  ({[L.5226, 1.8674](0.1), [L.8674, 2.1267](0.4), [2.1267, 2.3418](0.5)],
{[0.2630, 0.2630] (0.4), [0.2630, 0.3334](0.2), [0.3334, 0.4075](0.4)})

Alternatives Moy
NST, ({16981, 2.0282](0.3), [2.0282, 2.2845](0.3), [2.2845, 2.4993](0.4) ],
{[0.1675,0.2175](0.3), [0.2175, 0.2758)(0.4), [0.2758,0.3372](0.3)})

Alternatives M3
NST;  ({[1.9659,2.2380](0.4), [2.2380, 2.4624](0.4), [2.4624, 2.6555](0.2) ]
{[0.1578,0.1578] (0.2), [0.1578, 0.1834](0.4), [0.1834, 0.2376](0.4)})

Alternatives My
NST:  ({[1.1994,1.3258](0.3), [1.3258, 1.4367](0.6), [1.4367, 1.5374](0.1),
{[3.0004, 3.1142] (0.2), [3.1142, 3.2278](0.4), [3.2278, 3.3265](0.4)})

TABLE 15. PULg-ROF Hammy distance

Alternatives | M1
HD, 1.2377
HDsy 0.9509
HD3 1.352
HD, 1.1597
HDs 0.9455
HDg 1.5747
HD 1.3425

TABLE 16. PULg-ROF Euclidean distance

Alternatives | M,
EDy 0.1179
EDs 0.035
EDs 0.2317
EDy 0.1046
EDs 0.095
EDg 0.2557
ED~ 0.138
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TABLE 17. PULg-ROF RA matrix

Alternatives | N} No Ns Ny N5 Ns N7
M 0 0.3697 | -0.2281 | 0.0133 | 0.3151 | -0.4748 | -0.1249
No -0.3697 0 -0.5978 | -0.2784 | -0.0546 | -0.8445 | -0.4946
N 0.2281 | 0.5978 0 0.3194 | 0.5432 | -0.2467 | 0.1032
Ny -0.0133 | 0.2784 | -0.3194 0 0.0096 | -0.5661 | -0.2162
Ns -0.3151 | 0.0546 | -0.5432 | -0.0096 0 -0.7899 | -0.44
Ns 0.4748 | 0.8445 | 0.2467 | 0.5661 | 0.7899 0 0.3499
N; 0.1249 | 0.4946 | -0.1032 | 0.2162 0.44 -0.3499 0

ey

@)

TABLE 18. PULg-ROF final average solution

Alternatives AS;
N -0.1297
No -2.6396
N3 1.5449
Ny -0.8270
N5 -2.0432
Ns 3.2719
N7 0.8226

6. COMPARATIVE ANALYSIS

In comparatively simple decision contexts, PUL-TOPSIS provides an intuitive
framework for recognizing, evaluating, and selecting the most suitable alternative
among numerous options. Even so, its ability to interpret convoluted, imprecise,
or reluctant data is restricted. Although it makes extensive use of keeping away
from perfect answers, it rejects the vague and contradictory assessments that DMs
commonly face in real-life scenarios. It is capable of recognizing the best options,
but it is unable to convey how much it prefers or believes in those choices. On
the other hand, PULg-ROF-CODAS incorporates probabilistic uncertain linguistic
data, which enables DMs to more precisely represent resistance, confusion, and in-
consistency. This method assists in emphasizing more accurate variations among
comparable alternatives, particularly when such variations are not particularly ap-
parent. It also employs a strong distance-based process that is more conscious of
contradiction in everyday situations. Consequently, PULg-ROF-CODAS produces
rankings that are both scientifically valid and linguistically significant. In com-
parison with TOPSIS simple approach, it more accurately depicts an individual
element of uncertainties.

In organized circumstances, the traditional CODAS technique, which ranks objects
based on both beneficial and detrimental measurements, is effective. Meanwhile, it
excludes the vagueness of individual judgments and professional perspectives. In
contrast, PULg-ROF-CODAS is far more descriptive since it expands on this basis
by incorporating the capability to deal with linguistic phrases, statistical doubts,
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and imprecise confusion. This improvement makes it possible for the approach
to more accurately simulate the intricate structures of everyday life. Additionally,
because of its sophisticated aggregation operators, PULg-ROF-CODAS is able to
depict the amount of desire with much better consistency. As a result, rankings
become more reliable and sophisticated. PULg-ROF-CODAS provides a far more
comprehensive evaluation in instances in which human perception is crucial and
frequently erratic. It turns the identical framework of CODAS into a more adapt-
able, perceptive, and cognitive instrument that reacts more effectively to specula-
tive and reluctant choice issues.

In an attempt to reconcile competing requirements, VIKOR is a useful technique
that puts an emphasis on acceptable ideas. If the best alternatives are inconsistent
throughout all dimensions, such a compromise may occasionally lead to their rat-
ing being inferior. It has a tendency to balance out the variations between options,
which may not always be the best choice to undertake in circumstances involv-
ing competition or large values. On the other hand, PULg-ROF-CODAS doesn’t
reduce the effectiveness of powerful substitutes. Dominance is emphasized, and
alternatives that perform noticeably better than others, as well as those that per-
form differently throughout some criteria, are given greater weight. Furthermore,
by integrating probabilistic linguistic values, PULg-ROF-CODAS provides greater
understanding into disorientation, rendering the ultimate choice closer to human
thinking in difficult and reluctant situations. In contrast to VIKOR, it offers a clear
and strong rating instead of presuming that teamwork is necessary. This renders
it more appropriate for choices that need assurance and accuracy, especially when
rewarding exceptional options is the aim instead of reaching an equitable solution.

TABLE 19. Using various techniques to rank findings according to

the PULEWA operator
Methods Ranking
PUL-TOPSIS [26] N3 > N7 > Ng >Ny >N1 >Ns >N
PUL-CODAS [29] N3 > N7 > Ng >Ny > N1 >Ns > No
PULg-ROF-VIKOR [20] | NVg > N7 > N3 > Ny > N1 > Ny > N
PUL-EDAS [18] Ne > N3 > N7 > N1 >Ny >Ns > No
PULq-ROF-CODAS Ne > N3 > N7 > N1 >Ny >Ns > No

The effectiveness and compatibility of PUL-EDAS in rating choices according to
divergence from an average solution are well known. In particular, it is simple
to calculate and understand, providing a moderate level of choice difference. Al-
though when the circumstance calls for more complex choices or when there is a lot
of confusion in the choice area, this kind of equilibrium turns into a constraint. The
genuine value of exceptional alternatives may be obscured by EDAS’s tendency
to distort the line between high and average options. As an alternative, PULg-
ROF-CODAS adds an exceptionally high-quality focus to the DM procedure. It
takes probability-based reluctance and language misunderstanding into considera-
tion while capturing even the smallest deviations in performance. This makes eval-
uations more important and transparent. In addition, whereas PULg-ROF-CODAS
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performs well in certain situations, EDAS may struggle dealing with sophisticated
or other types of information. It effectively transforms subjective opinions into an
accurate statistical foundation. Consequently, it is particularly suited for common
issues when figuring out the best option of action requires both comprehension and
credibility.

The PULg-ROF-CODAS method stands apart as one influential tool, and it is adaptable
among the compared techniques. It integrates most of the strengths within customary
decision-making frameworks in a masterful way. It conquers the central faults of frame-
works. Its ability to handle various linguistic expressions, uncertainty, and hesitation, as
well as probabilistic beliefs, makes it a true reflection of how human experts think and
also decide under real-world complexity. PULg-ROF-CODAS brings depth, as well as
clarity and intelligence, in situations where other methods oversimplify or lack any repre-
sentation of ambiguity. It ranks each alternative option, and it justifies each of them with
reasoning within a context. This method gives decision-makers exact, assured, and dis-
cerning outcomes, especially in cases where stakes are extreme and information is distant
from flawless. Its superior performance in sufficient aspects makes it virtually not only a
preferred method but also quite a necessary one for modern decision analysis.

7. CONCLUSION

In this article, we employed PULg-ROFSs, an expanded form of PULTSs and ¢g-ROFSs,
to appropriately manage uncertainty and imprecision within detailed DM issues. Standard
aggregation operators of PULg-ROF information often rely on basic algebraic operations
as well as lack the ability to model interrelationships among criteria. For resolution of
such limitations, we have proposed dual aggregation operators PULg-ROFEWA (Einstein
Weighted Average) and PULg-ROFEOWA (Einstein Ordered Weighted Average) within
the PULg-ROF environment. These operators are examined and validated through several
properties. These properties include monotonicity, boundedness, and idempotency. In or-
der to evaluate the performance of the approach proposed, we applied the CODAS method
in the PULg-ROF framework so as to rank cybersecurity risk alternatives. The entropy
method has been employed for objective determination of criteria weights; expert opinions
are integrated for incorporation of subjectivity, thus improving decision accuracy. A case
study for practical use in cybersecurity risk assessment has been done so as to show the ap-
plicability, also effectiveness, of the method that was developed. Further comparative anal-
ysis established the superiority and robustness of the proposed approach for management
of real-world cybersecurity decision problems under uncertainty. The integration of such
Einstein aggregation operators with such PULg-ROFSs indeed adds one new dimension to
fuzzy MCDM for catching non-linear relationships among criteria in a more effective way.
This enhancement enables DMs to achieve more realistic as well as adaptable evaluations in
highly sensitive domains such as cybersecurity. Furthermore, the flexibility within the pro-
posed framework allows for its extension into various other fields, such as into healthcare,
into supply chain management, as well as into ecological risk assessment. This research
virtually closes one specific theoretical gap, joining certain probabilistic linguistic models
and Einstein operations, barely studied in prior work. This framework herein helps cy-
bersecurity experts prioritize threats as well as vulnerabilities under vague and uncertain
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information. It also offers unto various policy makers a tool providing decision-support of
great value. This is for people seeking firm data plans in dire situations. Future studies will
integrate this model with hybrid MCDM and machine learning in real-time data systems
for dynamic risk monitoring and assessment.

7.1. Future Work. Building off the existing research opens up many flexible and relevant
gaps that can be pursued. One such opening can be the combination of PULg-ROFS ap-
proaches with other MCDM methods like TOPSIS, MOORA, or EDAS that create hybrid
structures for dealing with different instances of DM problems. Moreover, the problem
might be more effectively managed by shifting risk in cybersecurity through immediate
information and adaptive balancing algorithm infusion responsive structures. In addi-
tion, using neural networks or cognitive computing can strengthen the highly vulnerable
areas through the proposed PULg-ROFEWA and PULg-ROFEOWA operators, enabling
controlled and immediate guidance on decision-making. Incorporating this methodology,
future research might add computable decision support systems in the form of software
and web applications usable by organizations or by security professionals. In addition,
other modifications of the theory, such as the application of the Einstein-based aggrega-
tion method onto other fuzzy models like spherical fuzzy sets, complex intuitionistic fuzzy
sets, or even within neutrosophic environments, could be made to expand the boundaries of
the framework. Other interdisciplinary cross-domains include healthcare diagnostics, risk
assessment in disasters, planning for smart cities, and evaluating risks in finance, which
warrant exploration as well. Lastly, implementing the model with larger and more region-
ally diverse data sets would further contribute to the richness of the insights as well as the
generalizability of the outlined approach.
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