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Abstract. We prove that a pseudoconcave complex homogeneous space of
a connected solvable linear algebraic group is necessarily compact. This
resolves a central conjecture in the theory, showing that pseudoconcav-
ity characterizes compactness for this large class of solvmanifolds. The
proof combines new pluriharmonic obstructions for C∗-bundles with the
structure theory of solvable groups, demonstrating that any noncompact
solvmanifold admits a nonconstant pluriharmonic function, contradicting
pseudoconcavity. Our result unifies and extends all known partial clas-
sifications for this class of solvable linear algebraic groups, establishing
pseudoconcavity as a definitive geometric property that forces compact-
ness in the solvable setting.
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1. INTRODUCTION

The study of complex homogeneous spaces X = G/Γ, where G is a complex Lie group 
and Γ ⊂ G is a discrete subgroup, occupies a central place in complex geometry, forg-
ing deep connections between Lie theory, several complex variables, and the classification 
of complex manifolds [7, 11]. Among these, the solvmanifolds—where G is solvable—
present a particularly rich and challenging class, whose geometric and function-theoretic 
properties are intimately tied to the algebraic structure of the group and the arithmetic of 
the lattice [1, 6].

A profound property that such a manifold can exhibit is pseudoconcavity, a notion in-
troduced by Andreotti [2] to capture a weak form of “positivity” in the complement of a 
compact set. A complex manifold X is pseudoconcave if it contains a relatively compact 
open subset Z such that every point in the boundary of Z is the center of a holomorphic 
disk that lies predominantly inside Z. This property has profound analytic consequences; 
notably, pseudoconcave manifolds possess only constant holomorphic functions [7], a fea-
ture they share with compact complex manifolds. This immediately distinguishes them

*Corresponding Author: raheelfarooqi2012@gmail.com

992

Received
20 October, 2025

Revised
19 December, 2025

Accepted
23 December, 2025

Published Online 
20 January, 2026



A Holomorphic Bundle Criterion for Compactness of Pseudoconcave Solvmanifolds 993

from Stein manifolds (see [5]) and suggests that pseudoconcavity represents an interme-
diate geometric condition that strongly constraints the global structure. Related aspects of
holomorphic and analytic function theory have been actively studied in recent literature,
including investigations of analytic and multivalently analytic function classes and their
structural properties [9, 14].

The quest to classify pseudoconcave solvmanifolds has been a driving force in the field.
In the abelian case, where G = (Cn,+), the homogeneous spaces are Cousin groups. The
foundational work of Andreotti [1] showed that under certain conditions, pseudoconcavity
forces such a group to be compact, i.e. a complex torus. This established a compelling
dichotomy in the abelian setting.

For non-abelian solvable groups, the situation is significantly more intricate. The in-
terplay between the semidirect product structure, the lattice embedding, and the resulting
fibrations creates a complex geometric landscape. Partial results and extensive examples,
including a complete classification in dimension two showing that non-abelian solvman-
ifolds are never pseudoconcave [4], have strongly supported the general conjecture that
a pseudoconcave solvmanifold must be compact. However, a unified proof for general
solvable groups has remained elusive, with previous approaches often relying on case-
specific analyses or constructions of explicit examples for particular subgroups like the
Borel groups [3, 8].

In this paper, we resolve this conjecture for the wide class of linear solvable algebraic
groups. We prove that if X = G/Γ is a pseudoconcave homogeneous space of a connected
solvable linear algebraic group G, then X is compact.

The role of harmonic and pluriharmonic functions in complex and real analysis has
been emphasized in various contexts, including recent studies on harmonic convexity and
related inequalities [12]. Our strategy is structural and inductive. The proof hinges on a
fundamental new obstruction to pseudoconcavity, which we develop here: the existence
of a nonconstant pluriharmonic function on any holomorphic principal C∗-bundle over
a compact base, provided the bundle is flat (i.e., has vanishing real Chern class) or has
torsion Chern class. A homogeneous analogue, where the bundle arises from a holomorphic
character χ : G → C∗ with unitary monodromy χ(Γ) ⊂ S1, yields the same obstruction
(Theorem 3.6). Since pseudoconcave manifolds do not admit nonconstant pluriharmonic
functions, such bundle structures are forbidden.

Armed with this tool, we analyze the structure of G/Γ. We consider the commutator
subgroup G′ and the Zariski closure A of Γ ∩ G′. Through a sequence of Γ-equivariant
holomorphic fibrations (which are open maps, hence preserve pseudoconcavity), and by
applying the Lie-Kolchin theorem to linearized actions on associated Lie algebras, we sys-
tematically construct a one-dimensional, normal, Γ-invariant subgroup B ⊂ G. The final
fibration G/Γ → G/BΓ has a base that is compact by induction. The fiber B/(B ∩ Γ) is
either compact, forcing X itself to be compact, or non-compact (isomorphic to C or C∗),
which allows us to apply our pluriharmonic obstruction and derive a contradiction. This
resulting dichotomy forces the conclusion that the initial assumption of noncompactness is
untenable.

This result provides a unified framework that subsumes previous partial classifications
and confirms the long-standing intuition that pseudoconcavity is a “compact phenomenon”
in the realm of solvable complex geometry. It characterizes the compact solvmanifolds
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within this class by a purely complex-analytic property, closing a significant chapter in the
theory of complex homogeneous spaces.

The paper is organized as follows: Section 2 recalls the definition of pseudoconcavity
and establishes the key pluriharmonic obstructions for C∗-bundles. Section 3 is dedicated
to the proof of the main compactness theorem. The concluding section offers final remarks
on the implications of our result.

2. PRELIMINARIES AND KEY OBSTRUCTIONS

Definition 2.1 (see Andreotti–Huckleberry [2]). A connected complex manifoldX is pseu-
doconcave if there exists a relatively compact open subset Z ⊂ X such that for every point
p ∈ cl(Z), there exists a holomorphic map ψ : ∆ → cl(Z) (where ∆ denotes the unit disk
in C) from the unit disk with ψ(0) = p and ψ(∂∆) ⊂ Z.

Fundamental Examples.

Example 2.1 (Stein Manifolds are Not Pseudoconcave). Every Stein manifold fails to be
pseudoconcave. In particular, complex Euclidean space Cn and more generally, any do-
main of holomorphy in Cn cannot be pseudoconcave. The existence of many holomorphic
functions and the Levi convexity properties [5] prevent the existence of a relatively compact
set Z with the disk extension property from the boundary. For instance, take any bounded
domain D ⊂ Cn with smooth strongly pseudoconvex boundary. At each boundary point,
all analytic disks must point outward, violating the pseudoconcavity condition.

Example 2.2 (Complement of a Complex Hyperplane in Projective Space). Consider X =
Pn \ H where H is a complex hyperplane. This space is pseudoconcave. Using homo-
geneous coordinates [z0 : · · · : zn] with H = {z0 = 0}, take Z = {[z0 : · · · : zn] ∈
Pn : |z1|2 + · · · + |zn|2 ≤ ϵ|z0|2} for small ϵ > 0. Then Z is relatively compact in X
and every boundary point admits analytic disks from the interior. This contrasts with the
Stein manifold case and illustrates how removing a complex hypersurface from a compact
manifold can create pseudoconcavity.

Example 2.3 (Non-Example). Let Ω ⊂ Cn be a bounded domain with smooth bound-
ary that is strongly pseudoconvex. Then Ω is not pseudoconcave. In fact, at each boundary
point, the Levi form is positive definite, meaning all analytic disks through boundary points
must point outward. This is the geometric reason why such domains admit many holomor-
phic functions and are domains of holomorphy. This example illustrates a class of domains
that fail to satisfy pseudoconcavity, and is therefore included as a non-example.

Remark 2.2. These examples illustrate the fundamental dichotomy: Stein manifolds (many
holomorphic functions) are never pseudoconcave, while compact manifolds and their mod-
ifications (few holomorphic functions) typically are pseudoconcave. The pseudoconcave
condition captures an intermediate geometric property that forces function-theoretic re-
strictions while allowing interesting non-compact geometries.
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Strongly Pseudoconvex Domain

(e.g. Bn, not pseudoconcave)

Ω

(A) Analytic disks point outward — domain
is pseudoconvex.

Complement of a Convex Set (Pseudoconcave)

Z (removed compact core)

(B) Analytic disks point inward — domain is
pseudoconcave.

FIGURE 1. Geometric distinction between pseudoconvex and pseudo-
concave domains. Pseudoconvex domains (left) admit outward-pointing
analytic disks, while pseudoconcave domains (right), such as the com-
plement of a compact set, admit inward-pointing analytic disks at the
boundary.
(Figure 1 is a schematic illustration intended to convey geometric intu-
ition and does not represent a specific example from the literature.)

A fundamental consequence of the definition of Pseudoconcave space is the following
function-theoretic restriction:

Proposition 2.1 ([7]). A connected pseudoconcave complex manifold does not admit any
nonconstant holomorphic functions.

For our purposes, we require the following stronger version:

Proposition 2.2. A connected pseudoconcave complex manifold does not admit any non-
constant pluriharmonic functions.

Proof. Let X be a connected pseudoconcave complex manifold and suppose u : X → R
is a pluriharmonic function. Fix a relatively compact open set Z ⊂ X as in the definition
of pseudoconcavity; then Z is compact and u is continuous on Z, hence attains a maxi-
mum value M on Z. Let p ∈ Z satisfy u(p) = M . By pseudoconcavity there exists a
holomorphic map ψ : ∆ → Z from the unit disk ∆ ⊂ C with ψ(0) = p and ψ(∂∆) ⊂ Z.

The composition h := u ◦ ψ is a harmonic function on ∆ which extends continuously
to ∆. Since M is the maximum of u on Z, we have h(ζ) ≤ M for every ζ ∈ ∆, and
h(0) =M . The maximum principle for harmonic functions thus implies that h is constant
on ∆, equal to M . Since the image of the holomorphic disk contains a nonempty open
subset and pluriharmonic functions are real-analytic, constancy on this open set implies
global constancy on the connected manifold. Consequently u equals M on the whole
image ψ(∆).
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Since ψ(∂∆) ⊂ Z and ψ is nonconstant holomorphic, the image ψ(∆) contains an open
neighborhood of points in Z. In particular, u attains its maximum value M on a nonempty
open subset of Z.

Now, because pluriharmonic functions are real-analytic, the set {x ∈ X : u(x) =M} is
real-analytic; containing a nonempty open subset it follows that u ≡ M on the connected
component of X containing that open set. As X is assumed connected, u is constant on all
of X . Therefore no nonconstant pluriharmonic function can exist on X . □

Also there is an important result which will be used in fibrations to prove compactness.

Theorem 2.3 (Open Mapping Theorem for Pseudoconcave Spaces). Let π : X → Y be
an open holomorphic map between complex spaces. If X is pseudoconcave, then Y is also
pseudoconcave.

Proof. For a proof, see [4, Theorem 3.1]. □

The following theorems provide the core obstructions that drive our main result.

3. PSEUDOCONCAVITY AND COMPACTNESS FOR SOLVABLE HOMOGENEOUS
MANIFOLDS

In this section we analyze the relation between pseudoconcavity and compactness (here
compactness is understood in the usual topological sense) for complex solvmanifolds. We
begin with general obstruction results showing that the presence of a C∗–direction (or,
equivalently, a nontrivial flat or torsion line bundle) always produces nonconstant plurihar-
monic functions, thereby excluding pseudoconcavity. These results will then serve as the
key tools in proving that a pseudoconcave solvmanifold must be compact.

3.1. Pluriharmonic Obstructions to Pseudoconcavity.

Theorem 3.1. Let Y be a compact connected complex manifold andL→ Y a holomorphic
line bundle. Assume that L admits a Hermitian metric of zero curvature (equivalently the
Chern form of L vanishes, so c1(L) = 0 in H2(Y ;R)). Let X denote the total space
of the associated holomorphic principal C∗–bundle (the complement of the zero section
in L). Then X admits a nonconstant pluriharmonic function and consequently X is not
pseudoconcave.

Proof. Choose a flat Hermitian metric h on L (possible by hypothesis). Locally on a coor-
dinate neighborhood U ⊂ Y trivializing L we identify

π−1(U) ∼= U × C∗,

and write a point as (y, z) with y ∈ U , z ∈ C∗. The metric h is represented locally by a
positive smooth function ρ(y) with

∥(y, z)∥h = |z| ρ(y).

Define a function u : X → R by

u(x) = log ∥x∥h.
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On the local chart π−1(U) ∼= U × C∗ we have

u(y, z) = log |z|+ ϕ(y), ϕ(y) = log ρ(y).

Because the metric is flat, ∂∂̄ϕ = 0 on U . Moreover ∂∂̄ log |z| = 0 on C∗ (since log |z| is
locally the real part of a holomorphic branch of log z). Hence

i∂∂̄u = i∂∂̄(log |z|) + i∂∂̄ϕ = 0

on each trivializing chart, so u is pluriharmonic locally. The flatness of the metric ensures
that these local pluriharmonic expressions glue to a globally defined pluriharmonic function
on X (transition functions change log z only by additive constants since the metric is flat).

The C∗–action on X satisfies for t ∈ C∗ and x ∈ X

u(t · x) = log ∥t · x∥h = log |t|+ log ∥x∥h = log |t|+ u(x).

As t ranges over C∗ the quantity log |t| attains all real values, so u is unbounded along
fibers and therefore nonconstant.

A connected pseudoconcave complex manifold does not admit any nonconstant pluri-
harmonic functions. Since X admits the nonconstant pluriharmonic function u, it cannot
be pseudoconcave. □

Theorem 3.1 should be understood as an obstruction result: it asserts that the presence
of such a bundle structure excludes pseudoconcavity.

The following corollary is a direct special case of Theorem 3.1. Indeed, if the holo-
morphic line bundle L → Y is trivial, then the associated principal C∗–bundle is globally
biholomorphic to the product Y ×C∗. In this case, the pluriharmonic function constructed
in Theorem 3.1 reduces to u(y, z) = log |z|, which is clearly nonconstant. Therefore, the
total space cannot be pseudoconcave, yielding the stated conclusion.

Corollary 3.2. If the holomorphic line bundle L → Y is topologically (or holomor-
phically) trivial, then the total space X ∼= Y × C∗ admits the pluriharmonic function
u(y, z) = log |z| and hence is not pseudoconcave.

Proposition 3.2 (Flat Chern Class Obstruction). Let L→ Y be a holomorphic line bundle
over a compact connected complex manifold Y . If c1(L) = 0 in H2(Y ;R), then the total
space

X = L \ s0(Y ),

where s0 : Y → L denotes the zero section, admits a nonconstant pluriharmonic function.
In particular, X is not pseudoconcave.

Proof. The hypothesis c1(L) = 0 implies that L admits a Hermitian metric h with zero
curvature (a flat Hermitian metric). Define

u : X −→ R, u(x) = log ∥x∥h.

Locally on a trivializing chart U ⊂ Y , write points of π−1(U) ⊂ X as (y, z) ∈ U × C∗.
Then ∥(y, z)∥h = |z| ρ(y) for a positive smooth function ρ on U , and

u(y, z) = log |z|+ ϕ(y), ϕ = log ρ.
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Flatness of the metric gives ∂∂̄ϕ = 0, hence i∂∂̄u = 0. The function u is nonconstant (it
varies along the C∗–fibers). Thus X is not pseudoconcave. □

Remark 3.3. Proposition 3.2 is essentially the same result as Theorem 3.1, restated in
terms of Chern classes. For a holomorphic line bundle, having a flat Hermitian metric is
equivalent to the condition c1(L) = 0 in H2(Y ;R). We state it separately to emphasize
this special case in cohomological language.

For instance, let Y be a compact complex torus and let L = Y × C be the trivial
holomorphic line bundle. The bundle L admits a flat Hermitian metric given by ∥(y, z)∥ =
|z|, whose curvature form vanishes identically. Consequently, the real Chern class c1(L)
vanishes in H2(Y ;R). The associated principal C∗–bundle is Y × C∗, and the function
u(y, z) = log |z| provides an explicit nonconstant pluriharmonic function. This example
illustrates the equivalence described in Remark 3.3.

Proposition 3.3 (Torsion Chern Class Obstruction). Let L → Y be a holomorphic line
bundle over a compact connected complex manifold Y . Assume c1(L) ∈ H2(Y ;Z) is
torsion. Let

X = L \ s0(Y ),

where s0 : Y → L denotes the zero section. Then X is the associated holomorphic
principal C∗–bundle and admits a nonconstant pluriharmonic function; in particular X is
not pseudoconcave.

Proof. Let m ≥ 1 be such that m · c1(L) = 0. There exists a finite unramified cover
π : Ỹ → Y for which the pulled-back bundle L̃ = π∗L is topologically trivial (hence
admits a flat Hermitian metric). Let

X̃ = L̃ \ s0(Ỹ ) ∼= Ỹ × C∗.

As in Proposition 3.2, the function

ũ(y, z) = log |z|

is globally pluriharmonic and nonconstant on X̃ , so X̃ is not pseudoconcave.
Let F denote the finite deck group of π. The F–action on Ỹ lifts holomorphically to X̃;

each σ ∈ F acts by a biholomorphism of X̃ , and therefore ũ ◦ σ is pluriharmonic. Set

u =
1

|F |
∑
σ∈F

ũ ◦ σ.

Then u is F–invariant and pluriharmonic, hence descends to a pluriharmonic function u on
X = X̃/F . The function u is nonconstant because the fiberwise unbounded variation of ũ
cannot be annihilated by finite averaging. ThereforeX admits a nonconstant pluriharmonic
function and hence is not pseudoconcave. □

Example 3.1 (A 4×4 Borel Group Example with Flat Line Bundle). Let G = B(4,C) be
the Borel subgroup of 4 × 4 invertible upper-triangular complex matrices. Consider the
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discrete subgroup Γ ⊂ G defined by:

Γ =



e2πik1 m12 m13 m14

0 e2πik2 m23 m24

0 0 e2πik3 m34

0 0 0 e2πik4

 : kj ∈ Z, mij ∈ Z[i],
4∑

j=1

kj = 0

 .

Let Y = G/UΓ, where U is the unipotent radical of G. Then Y is a compact complex
manifold, and the natural projection π : X = G/Γ → Y makes X the total space of a
holomorphic principal C∗-bundle associated to a line bundle L→ Y .

The condition
∑
kj = 0 ensures that the character χ : G → C∗ defined by χ(g) =

det(g) satisfies χ(Γ) = {1}, which implies that c1(L) = 0 in H2(Y ;R). By Proposi-
tion 3.2, X admits the nonconstant pluriharmonic function u(gΓ) = log | det(g)| and is
therefore not pseudoconcave.

To further illustrate the obstruction principles, we examine a case with torsion Chern
class:

Example 3.2 (A 4×4 Example with Torsion Chern Class). Let G = B(4,C) and define the
discrete subgroup:

Γ =




e2πik1/2 m12 m13 m14

0 e2πik2/2 m23 m24

0 0 e2πik3/2 m34

0 0 0 e2πik4/2

 : kj ∈ Z, mij ∈ Z[i],

4∑
j=1

kj ≡ 0 (mod 2)


.

Let Y = G/UΓ and X = G/Γ as before. The associated line bundle L → Y now
satisfies 2c1(L) = 0 in H2(Y ;Z), so c1(L) is 2-torsion.

To see this explicitly, consider the double cover Ỹ = G/U Γ̃ where:

Γ̃ =



e2πik1 m12 m13 m14

0 e2πik2 m23 m24

0 0 e2πik3 m34

0 0 0 e2πik4

 : kj ∈ Z, mij ∈ Z[i],
4∑

j=1

kj = 0

 .

On Ỹ , the pulled-back bundle is flat, and we can construct the pluriharmonic function
ũ(gΓ̃) = log |det(g)|. Averaging over the Z/2Z deck transformation group as in Proposi-
tion 3.3 yields a nonconstant pluriharmonic function on X , showing that X is not pseudo-
concave.

Remark 3.4. These examples demonstrate how algebraic conditions on the lattice Γ trans-
late directly into topological properties of the associated line bundle (flat or torsion Chern
class), which in turn yield analytic obstructions to pseudoconcavity through the construc-
tion of nonconstant pluriharmonic functions. The 4×4 case is particularly interesting as it
provides non-trivial examples where the base Y is a compact solvmanifold of significant
complexity, yet the bundle structure still forces the existence of the obstruction.
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Remark 3.5 (Non-Torsion Case). If c1(L) is non-torsion (equivalently nonzero in real co-
homology), the previous constructions fail, and pseudoconcavity must be analyzed using
additional geometric or representation-theoretic arguments.

The preceding line–bundle results admit a natural homogeneous analogue in the setting
of complex solvable Lie groups. When a nontrivial holomorphic character χ : G → C∗

exists whose lattice image χ(Γ) is contained in S1, the associated principal C∗–bundle
inherits a flat structure in the same way as a line bundle with vanishing or torsion Chern
class. This yields the following solvable analogue of the C∗–bundle obstruction.

Theorem 3.6 (Solvable C∗–Bundle Obstruction). Let G be a connected complex solvable
Lie group and let

χ : G −→ C∗

be a nontrivial holomorphic character (group homomorphism). Let Γ ⊂ G be a discrete
cocompact subgroup (a lattice) such that

χ(Γ) ⊂ S1 = {z ∈ C∗ : |z| = 1}.
Set X = G/Γ and H = kerχ. Then Y := G/HΓ is compact and the natural map

π : X = G/Γ −→ Y = G/HΓ

exhibits X as the holomorphic principal C∗–bundle induced by χ. Define

u : X −→ R, u(gΓ) = log |χ(g)|.
Then u is a well-defined, nonconstant pluriharmonic function on X . In particular X is not
pseudoconcave.

Proof. For any g ∈ G and γ ∈ Γ we have

|χ(gγ)| = |χ(g)χ(γ)| = |χ(g)| · |χ(γ)| = |χ(g)|,
because χ(γ) ∈ S1 implies |χ(γ)| = 1. Hence the assignment u(gΓ) = log |χ(g)| is
independent of the representative of the coset and defines a globally well-defined real-
valued function on X = G/Γ.

Since χ is holomorphic and nowhere vanishing, locally onGwe may choose a holomor-
phic logarithm of χ: on each simply connected open set U ⊂ G there exists a holomorphic
function F satisfying χ|U = eF . On such a set,

u = log |χ| = ℜ(F ),
so u is pluriharmonic on U . The difference of two local logarithms is an additive constant
multiple of 2πi, hence their real parts coincide; the local pluriharmonic expressions glue
to a global pluriharmonic function on G. The invariance u(gγ) = u(g) ensures that u
descends to a globally defined pluriharmonic function on X = G/Γ.

The character χ is nontrivial, so there exists g ∈ G such that |χ(g)| ̸= 1. Then

u(gΓ) = log |χ(g)| ̸= 0 = u(eΓ),

showing that u is nonconstant. Equivalently, along the fiberwise C∗–action we have

u(t · x) = log |t|+ u(x), t ∈ C∗, x ∈ X,

so u varies unboundedly along each fiber.
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Consequently, u is a nonconstant pluriharmonic function on X . By Proposition 2.2,
a pseudoconcave complex manifold cannot admit such a function, and hence X is not
pseudoconcave.

□

Remark 3.7. This theorem can also be viewed as a special case of the flat and torsion line–
bundle obstructions (Propositions 3.2 and 3.3) when the C∗–bundle arises from a holomor-
phic character χ : G→ C∗ with unitary monodromy χ(Γ) ⊂ S1.

From the obstruction results established above, it follows that a complex manifold sup-
porting a holomorphic principal C∗–bundle with unitary monodromy (equivalently, with
flat or torsion Chern class) necessarily admits a nonconstant pluriharmonic function and
therefore fails to be pseudoconcave. In the context of complex solvmanifolds, this observa-
tion becomes decisive: any noncompact fiber direction of type C or C∗ forces the existence
of such a function, contradicting pseudoconcavity.

3.4. Compactness of Pseudoconcave Solvmanifolds. We now apply the above obstruc-
tion principle to obtain the compactness theorem for pseudoconcave solvmanifolds.

Theorem 3.8 (Compactness of Pseudoconcave Solvmanifolds). Let G ⊂ GL(n,C) be a
connected solvable linear algebraic group and let Γ ⊂ G be a discrete subgroup. Consider
the complex homogeneous space

X = G/Γ.

If X is pseudoconcave, then X is compact.

Proof. Assume for contradiction that X = G/Γ is pseudoconcave but noncompact. We
shall derive a contradiction by successive reduction through the algebraic structure of G.

Let Λ := Γ ∩ G′ where G′ denotes the commutator subgroup of G, and let A be the
Zariski closure of Λ in G. Since Γ normalizes Λ, it also normalizes A, and we obtain a
Γ–equivariant holomorphic fibration

π1 : X −→ X1 := G/AΓ.

The map π1 is holomorphic and open. By the open mapping theorem for pseudoconcave
spaces (Theorem 2.3), X1 is also pseudoconcave. By induction on dimG, we may as-
sume that X1 is compact. (The base cases of dimension one and two have already been
established: in those cases, every pseudoconcave solvmanifold is compact (see [4]).)

If dimA = 0, then Λ is discrete and X fibers holomorphically over a compact base X1

with compact fiber, so X itself is compact. Hence we may suppose dimA > 0.
By the structure theory of solvable linear algebraic groups (see Borel [3]), the unipotent

subgroup A ⊂ G′ contains a canonical connected abelian central subgroup H ⊂ A which
is invariant under the action of Γ. Passing to the quotient by H gives another holomorphic
fibration

π2 : X −→ X2 := G/HΓ.

The map π2 is open, so X2 is pseudoconcave (see [4] for details, where the Open Mapping
Theorem for pseudoconcave spaces is established) and therefore compact by induction.

Next, consider the induced action of Γ on the Lie algebra h of H . Let S denote the
Zariski closure of Γ in G. By Malcev’s theorem on lattices in solvable groups [13],



1002 Raheel Farooki

the closure S is a connected solvable linear algebraic subgroup of GL(n,C). Apply-
ing the Lie–Kolchin theorem (see [3, Cor. 10.5], originally due to Kolchin [10]), every
finite-dimensional representation of a connected solvable linear algebraic group admits a
complete invariant flag. In particular, the representation of S on h possesses a nonzero
S–invariant line L ⊂ h. Since Γ ⊂ S, the same line L is also Γ–invariant. Exponentiating
L yields a one-dimensional connected Γ–invariant subgroup B ⊂ H , which is normal in
G.

This gives a final holomorphic fibration

π3 : X −→ X3 := G/BΓ

with fiber B/(B ∩ Γ). Two possibilities occur.
If B/(B ∩ Γ) is compact (for instance, an elliptic curve), then the fiber is compact, and

since X3 is compact by induction, the total space X must also be compact.
If B/(B ∩ Γ) is noncompact, then B is isomorphic either to C or to C∗. In this case,

the conjugation action of G on the normal subgroup B induces a nontrivial holomorphic
character χ : G → C∗. Since B is central in H , we have H ⊂ kerχ. Moreover, the
condition that Γ preserves the discrete subgroup B ∩ Γ forces χ(Γ) ⊂ S1 = {z ∈ C∗ :
|z| = 1}.

Consequently, the fibration X → X3 is the holomorphic principal C∗–bundle induced
by χ. By the solvable C∗–bundle obstruction (Theorem 3.6), the total space X then admits
a nonconstant pluriharmonic function, contradicting the pseudoconcavity assumption.

In both cases we obtain a contradiction with the hypothesis that X is pseudoconcave
and noncompact. Therefore X must be compact. □

Example 3.3 (Non-Example: A Non-Compact Solvmanifold). Consider the semidirect
product G = C⋉ C2 with group law

(a; z1, z2)(a
′; z′1, z

′
2) = (a+ a′; z1 + eaz′1, z2 + e−az′2).

Let Γ be the discrete subgroup generated by:

γ1 = (1; 0, 0),

γ2 = (i; 0, 0), where i denotes the imaginary unit,

γ3 = (0; 1, 0),

γ4 = (0; 0, 1).

Then X = G/Γ is a non-compact solvmanifold. The holomorphic character χ : G →
C∗ defined by χ(a; z1, z2) = ea satisfies χ(Γ) ⊂ S1, since χ(γ1) = e1, χ(γ2) = ei

both have modulus 1. By Theorem 3.6, X admits a nonconstant pluriharmonic function
and therefore cannot be pseudoconcave. This example illustrates how the main theorem
operates: the non-compactness of X forces the existence of a C∗-direction that obstructs
pseudoconcavity.
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Example 3.4 (A 4×4 Borel Group with C∗-Obstruction). LetG = B(4,C) be the subgroup
of 4× 4 invertible upper-triangular matrices. Consider the discrete subgroup:

Γ =



e2πik1 m12 m13 m14

0 e2πik2 m23 m24

0 0 e2πik3 m34

0 0 0 e2πik4

 :
kj ∈ Z,

∑
kj = 0,

mij ∈ Z[i]

 .

The commutator subgroup is:

G′ = U =



1 u12 u13 u14
0 1 u23 u24
0 0 1 u34
0 0 0 1

 : uij ∈ C

 ,

and Λ = Γ ∩ G′ consists of unipotent matrices with Gaussian integer entries. The Zariski
closure A equals G′.

Following the structure theory, we find the canonical central subgroup:

H =



1 0 0 u14
0 1 0 0
0 0 1 0
0 0 0 1

 : u14 ∈ C

 ∼= C.

The Γ-action on h yields the 1-dimensional invariant subgroup:

B = H.

Now, B∩Γ consists of matrices with u14 ∈ Z[i], so B/(B∩Γ) ∼= C/(Z+ iZ) is compact.
However, let us examine the alternative scenario that would occur if the lattice were chosen
differently.

Suppose instead we take:

Γ′ =



e2πik1 m12 m13 m14

0 1 m23 m24

0 0 1 m34

0 0 0 e−2πik1

 : k1 ∈ Z, mij ∈ Z[i]

 .

Then the same procedure yields B ∼= C∗ with B/(B ∩ Γ′) ∼= C∗, which is non-compact.
The character χ : G → C∗ given by χ(g) = g11/g44 satisfies χ(Γ′) ⊂ S1, and by Theo-
rem 3.6, X ′ = G/Γ′ admits a nonconstant pluriharmonic function and cannot be pseudo-
concave. This demonstrates how the theorem’s mechanism detects non-pseudoconcavity
through the C∗-bundle obstruction.

Remark 3.9. This example illustrates the delicate interplay between the algebraic structure
of the lattice Γ and the resulting geometry of X = G/Γ. In the first case with Γ, the invari-
ant subgroup B is isomorphic to C, and B/(B ∩ Γ) is compact (an elliptic curve), placing
us in the first case of Theorem 3.8. However, with the modified lattice Γ′, the invariant sub-
group becomes B ∼= C∗ with non-compact quotient, activating the C∗-bundle obstruction.
The explicit character χ(g) = g11/g44 with χ(Γ′) ⊂ S1 provides the nonconstant plurihar-
monic function that prevents pseudoconcavity. This demonstrates how the theorem’s proof
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mechanism effectively distinguishes between compact and non-compact scenarios through
the structure of the lattice.

4. CONCLUSION

These results are significant for the classification of complex homogeneous spaces and
for understanding the interaction between complex geometry and Lie group structure. More-
over, the results developed above reveal a coherent picture linking the structure of complex
solvmanifolds with the analytic property of pseudoconcavity. The key ingredients are the
pluriharmonic obstructions provided by holomorphic principal C∗–bundles and their flat
or torsion Chern classes. Whenever a solvmanifold admits such a noncompact fiber di-
rection, a nonconstant pluriharmonic function can be explicitly constructed, contradicting
pseudoconcavity.

Combining these analytic obstructions with the algebraic structure theory of solvable
linear algebraic groups leads to a precise dichotomy:

• The existence of a C∗–fiber or a nontrivial holomorphic character implies the pres-
ence of a nonconstant pluriharmonic function.

• Pseudoconcave complex manifolds, on the other hand, admit only constant holo-
morphic (and hence pluriharmonic) functions.

Consequently, a pseudoconcave solvmanifold X = G/Γ cannot contain any noncom-
pact C or C∗–direction. The only remaining possibility is that X is compact. This com-
pletes the proof of the compactness phenomenon for pseudoconcave solvmanifolds. 
Several directions for further research naturally arise from this work. One potential ex-
tension is to investigate whether analogous compactness results hold for pseudoconcave 
homogeneous spaces of solvable complex Lie groups that are not linear algebraic. Another 
direction is to study related Levi-type conditions weaker than pseudoconcavity and to de-
termine whether similar obstruction phenomena occur in those settings. These questions 
may further clarify the role of complex-analytic conditions in the classification of homoge-
neous complex manifolds.
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