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Abstract. Lie symmetry analysis is a highly effective tool for finding ex-
act solutions to differential equations, decreasing the number of indepen-
dent variables, or at least reducing the equations order and nonlinearity.
This article presents exact solutions for the (1+1)-dimensional modified
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Thomas and (1+2)-dimensional Chaffee-Infante equations through the ap-
plication of the symmetry reduction method. These equations yield exact
solutions under specific parametric conditions. Multiple exact solutions,
such as periodic, soliton, and solitary wave solutions, along with newly
found solitary wave solutions, are derived to validate their physical rele-
vance. The findings are graphically illustrated with appropriate paramet-
ric settings, shown in both 2D and 3D. The outcomes of this study are
expected to have applications across a wide range of scientific fields.

AMS (MOS) Subject Classification Codes: 35B06; 58J70; 37J39
Key Words: Lie point symmetries, modified Thomas equation, Chaffee-Infante equation,
exact solutions.

1. INTRODUCTION

Nonlinear partial differential equations (NPDEs) are used to model physical phenom-
ena and abstract systems. The study of analytical solutions to NPDEs finds applications
in fields like plasma physics, meteorology, quantum mechanics, fluid dynamics, biology,
and more. The analysis of solutions, including traveling wave and soliton solutions, is a
key area of research. Thus, the investigation of NPDEs plays a crucial role in both theo-
retical exploration and practical applications, Wang et al. [44], Li et al. [26], and Salamat
et al. [38]. Widely used nonlinear equations include the Thomson, Burgers, Schamel,
Chaffee-Infante, and Schamel–K-dV equations. Several methods have been proposed by
researchers to find solutions, with notable approaches including a new ϕ6 model expan-
sion method, Expansion (G

′

G ) method [8], Bell polynomial method [41], Darboux trans-
formation method [12], Variational iteration method [45], Bäcklund transformation [15],
Extended direct algebraic technique [17], and Jacobi elliptic function expansion method
[22]. Kumar and Singh [23] discover new precise solutions for a second-grade MHD flow
through porous media using the traveling wave method. The work of Khater et al. delves
into the propagation of new dynamic phenomena in the longitudinal bud equation within
a magneto-electro-elastic cylindrical rod. The Lie symmetry method is employed to de-
rive exact solutions for the (3+1)-dimensional Kadomtsev-Petviashvili equation. Consid-
ered one of the most effective methods for studying differential equations, the Lie group
approach is often called Lie symmetry analysis. Its applications are vast, ranging from
constructing analytical solutions to reducing the order and the number of independent vari-
ables. This approach, described in several textbooks, has been applied to investigate nu-
merous physical and engineering models, focusing on their invariance properties and the
formulation of exact solutions [30, 14, 43, 31, 32]. Additionally, several extensions of the
Lie group analysis have been suggested, including the development of approximate symme-
tries [19], nonlocal residual symmetries [27] and nonclassical symmetries [28], for partial
differential equations and systems. The soliton and complexiton solutions of the (1+2)-
dimensional Date–Jimbo–Kashiwara–Miwa equation were found by Adem, Yildirim, and
Yasar [2] who used the extended transformed rational function algorithm based on the Hi-
rota bilinear form. Yıldırım [47] determined the optimal solutions for the Biswas-Arshed
model through different techniques, which are important in various fields of engineering
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and mathematics. Amir et al. [6] apply the natural decomposition method (NDM) to solve
the inviscid Burger equation and obtain an approximate solution, which they compare with
the exact solution.

Since exact solutions to most PDEs are difficult to obtain, both analytical and numeri-
cal approaches [1, 34] must be utilized. Various authors have investigated the solutions of
PDEs using powerful analytical methods. Several computational techniques, such as the
Adomian decomposition method [33] and the homotopy perturbation method [13], have
been recommended for solving PDEs. Despite the solutions provided by these methods
being of a local nature, it is crucial to explore other approaches to find exact analytical
solutions for PDEs. The Lie point symmetry method is fundamental in various scientific
fields, particularly in integrable systems, where an infinite number of symmetries are in-
volved. Lie symmetry analysis is widely recognized as a powerful technique for finding
analytical solutions to NPDEs. Numerous studies focus on the theory of Lie point symme-
try and its applications to differential equations. A concept in advanced mathematics, Lie
point symmetry was introduced by Sophus Lie in the late nineteenth century through the
notion of Lie groups, aimed at studying differential equations [24, 25]. Alexandrino and
Bettiol [5] explored the connection between Lie groups and the geometric aspects of iso-
metric actions. Schwichtenberg’s work [40] focuses on the application of physics through
symmetry. Agnus et al. [3] applied the Lie approach to derive the exact solutions of the Ra-
mani equation. Using the Lie approach, Irshad et al. [16] determined the invariant solutions
of a nonlinear fifth-order partial differential equation. By implementing the multiple exp-
function approach, exact solutions are constructed for the shallow water wave equations,
establishing crucial benchmarks for numerical simulations. Jarad et al. analyze the gener-
alized Calogero–Bogoyavlenskii–Schiff equation using the Lie symmetry method, deriving
wave solutions and identifying conservation laws. Examined nonlinear wave propagation
phenomena in the (3+1)-dimensional generalized Boiti-Leon-Manna-Pempinelli equation
using Lie symmetry analysis.

Ordinary differential equations (ODEs) and partial differential equations (PDEs) have
gained significant popularity for describing various physical effects and nonlinear phenom-
ena. Their effectiveness in capturing complex phenomena in fluid mechanics, viscoelastic-
ity, electrochemistry, quantum biology, physics, and engineering explains their broad usage
[29, 39, 7]. As a result, the study of ODEs and PDEs has become a prominent research area.
Using derivative theory, a wide range of physical phenomena can be accurately modeled.
Kumar and Kumar [21] applied Lie point symmetries to find solitary wave solutions of
the pZK equation, while Faridi et al. [11] analyzed modulational instability and obtained
power series solutions for a coupled system. Akhound-Sadegh et al. [4] explored the con-
nection between Lie point symmetry and physics-informed networks. Yıldırım and Yaşar
[46] utilized Lie group analysis to uncover the Lie point symmetry generators, symmetry
reductions, and conservation laws for the (1+2) dimensional breaking soliton equation.

In 1944, Thomas introduced [42] the nonlinear equation. The (1+1)-dimensional Thomas
equation can be represented conventionally as follows:

uxt + αut + βux + γutux = 0. (1. 1)
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A modified version of this equation, which includes additional terms or adjustments based
on specific applications, may take the following form:

uxt + αut + βux + γutux + f(u) = 0. (1. 2)

The Thomas equation is a nonlinear partial differential equation used to model chemical
reactions, wave propagation, and diffusion, focusing on soliton solutions and complex sys-
tem dynamics [37]. To simplify the equation and obtain precise solutions that reveal the
system’s structure, we apply the symmetry method to identify its symmetries.

The Chaffee-Infante equation is a fundamental model in nonlinear physics, particu-
larly in reaction-diffusion processes. The standard form of the (2+1)-dimensional Chaffee-
Infante equation is given by:

uxt − uxxx + 3αu2ux − αuxuy + σuyy = 0. (1. 3)

The constant parameter α denotes the response rate. Equation ( 1. 3 ) serves as a basic
model in heat conduction research. In this study, bright, dark, periodic, kink, anti-kink,
and singular wave solutions to the (2+1)-dimensional Chaffee-Infante problem are derived
using the extended sinh-Gordon equation expansion technique [36]. Additionally, we ap-
ply the symmetry method, which focuses on the equation’s inherent symmetries to derive
precise solutions and more thoroughly analyze its underlying dynamics and structure. The
study by Yıldırım et al. focuses on dispersive optical solitons in birefringent fibers, uti-
lizing a range of integration technologies. Nucci’s reduction approaches were employed
to investigate the Ivancevic option pricing model and extract soliton solutions. Through
the application of the Laplace transform method, Jamil, Khan, and Shah [18] determine
the exact analytical solutions of linear dissipative wave equations. The Painlevé analysis
is used by Kudryashov et al. [20] to solve the Lakshmanan–Porsezian–Daniel model, non-
linear Schrödinger’s equation, and Sasa–Satsuma equation, yielding soliton solutions. We
apply the Lie symmetry method [9] in this study, known as one of the most commonly
used and efficient methods for solving PDEs. In this case, a given PDEs are invariant
under a transformation of Lie groups. The symmetries of the PDEs are derived by apply-
ing the invariance conditions. By employing various techniques, the invariant solutions of
the symmetry reduced equations [10] are derived. The results highlight the methods ef-
ficiency, accuracy, and adaptability, underscoring its broad applicability in fields such as
engineering, mathematical physics, and other scientific disciplines. The future direction
of this research involves enhancing the methods for obtaining exact solutions to the given
PDEs by leveraging Lie subalgebras to construct optimal systems. This approach has the
potential to uncover more general and complex solutions, further advancing the application
of Lie point symmetries in solving other nonlinear PDEs. It could also provide valuable
insights for various fields, including fluid dynamics, quantum mechanics, and nonlinear
optics. The Lie symmetry approach was employed to derive novel invariant solutions and
examine their graphical characteristics for the generalized unstable nonlinear Schrödinger
equation. Advances in mathematics, theoretical physics, computational techniques, in-
terdisciplinary research, quantum symmetry, environmental studies, logistics, physiology,
geometry, and topology are all likely to influence the future trajectory of Lie symmetry
theory. The structure of this paper is as follows: Section 2 outlines the methodology for
Lie symmetry analysis of PDEs. Sections 3 and 4 apply this approach to obtain symmetry
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reductions and exact solutions for Eq. ( 3. 17 ) and Eq. ( 4. 63 ), respectively. Section 5
discusses the evaluation and graphical representation of the results. The paper concludes
in Section 6 with a summary of the main findings.

Objective: The primary goal of this study is to obtain new exact solutions for the (1+1)
dimensional modified Thomas equation and the (1+2) dimensional Chaffee-Infante equa-
tion. These solutions are derived using the Lie point symmetry reduction method. By ap-
plying this approach, we aim to uncover previously unknown solutions to these nonlinear
equations. This method offers a systematic way to reduce the complexity of the equations
and find precise analytical solutions.

2. BASIC PRINCIPLES AND THE APPLICATION OF LIE SYMMETRY METHODS

This section outlines the fundamental notation and tools used throughout this work.
Consider an nth-order partial differential equation (PDE) system with p independent vari-
ables, denoted by x = (x1, x2, ..., xp) and m dependent variables u = (u1, u2, ..., um).
The system can be written as:

Dα(x, u, u(1), ..., u(p)) = 0, β = 1, 2, ...,m , (2. 4)

where u(1), ..., u(l) represent the collections of 1st, 2nd,..., nth-order partial derivatives;
specifically, uβ

i =Ci(u
β), uβ

ij= CiCj ,..., and so on. Correspondingly, the operator for the
total derivative with respect to xj is denoted as

Ci =
∂

∂xj
+ uβ

j

∂

∂uβ
+ uβ

ji

∂

∂uβ
j

+, ... j = 1, 2, ..., p , (2. 5)

and operator of Lie-Bäcklund is

P = µi ∂

∂xj
+ ωβ ∂

∂uβ
, µi, ωβ ∈ B , (2. 6)

where D represents the functions of spatial differentials. The operator ( 2. 6 ) is a compact
form of the infinite formal series:

P = µi ∂

∂xj
+ ωβ ∂

∂uβ
+
∑
r≥1

δβj1,j2,...,jr
∂

∂uβ
j1,j2,...,jr

. (2. 7)

Through the prolongation formulas, the additional coefficients are uniquely determined:

δβj = Dj(E
β) + µiuβ

ji ,

δj1,...,jr = Dj1, ..., Djr (E
β) + µiuβ

ij1,...,ir
, r ≥ 1 ,

(2. 8)

in which (Eβ) is a function of Lie characteristic :

Eβ = ωβ − µiuβ
i . (2. 9)

Next, we consider the successive transformations of the Lie group with independent vari-
ables t, x, y, and the dependent variable u:

u∗ = (x∗, x, y, t, u), t∗ = (x∗, x, y, t, u),

x∗ = (x∗, x, y, t, u), y∗ = (x∗, x, y, t, u) .
(2. 10)
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A one-parameter Lie transformation of the group is expressed in the following form (c):

x̃ ≈ x+ µ1H(x∗, x, y, t, u) ,

ỹ ≈ y + µ2H(x∗, x, y, t, u) ,

t̃ ≈ t+ µ3H(x∗, x, y, t, u) ,

ũ ≈ u+ϖ1H(x∗, x, y, t, u) .

(2. 11)

Here, O represents the group parameter, and the infinitesimal generator corresponding to
the transformations above is given by:

P = µ1(u, x, y, t)
∂

∂t
+ µ2(u, x, y, t)

∂

∂x
+ µ3(u, x, y, t)

∂

∂y
+ϖ1(u, x, y, t)

∂

∂u
. (2. 12)

The infinitesimal generators of the Lie group transformations can be written in the follow-
ing form.

P = µ
∂

∂x
+ ϕ

∂

∂y
+ τ

∂

∂t
+ϖ

∂

∂u
. (2. 13)

Solving the Lie equations yields the group transformations of x̃, ỹ, t̃.

Ost +Xsx + Y sy + Zsx = 0 ,

Ort +Xrx + Y ry + Zrx = 0 ,

Ovt +Xvx + Y vy + Zvx = 0 ,

Out +Xux + Y uy + Zux = 0 .

(2. 14)

The addition of dependent variables u, v and independent variables r, s through equation (
2. 14 ) facilitates the transformation of the nonlinear system into a linear one.
Lemma 1: The one-parameter (ε) Lie group of transformations X∗=X(x; ε) satisfies the
relation

X(x; ε+∆ε) = X(X(x; ε);φ(ε−1, ε+∆ε)) (2. 15)
Proof:

X(X(x; ε);φ(ε−1, ε+∆ε)) = X(x;φ(ε, φ(ε−1, ε+∆ε)))

= X(x;φ(, φ(ε, ε−1), ε+∆ε))

= X(x;φ(ε, 0),+∆ε)

= X(x; ε+∆ε) (2. 16)

3. LIE POINT SYMMETRIES AND EXACT SOLUTIONS OF (1+1) DIMENSIONAL
MODIFIED THOMAS EQUATION

The (1+1) dimensional modified Thomas equation is a nonlinear partial differential
equation that is crucial in understanding various physical phenomena, especially in the
study of soliton solutions, wave propagation, and integrable systems. This equation mod-
els the dynamics of fields or wave-like behaviors in one spatial dimension and one time
dimension, classifying it as a (1+1) dimensional equation.

uxt + αut + βux + γutux + f(u) = 0, (3. 17)

where the coefficients α, β, and γ, are parameters, and f(u) is arbitrary function while u
varies with t and x. This equation is commonly studied in the context of physical sciences,
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particularly for modeling chemical processes (e.g., Henry Thomas model). Equation ( 3.
17 ) LPS generators are derived through the application of the invariance condition

W [2][uxt + αut + βux + γutux + f(u) = 0] |(3.17)= 0 , (3. 18)

here, W [2] is referred to as the second-order prolongation of the invariant transformation
of W and |(3.17) applies the surface conditions that remain invariant. In equation After
separation and expansion with respect to the different derivatives and powers of u, W [2]

is found, and a linear PDE structure in terms of the new coefficients ξ1, ξ2, ξ3 and ϕ is
formed. The determining equations are:

ξ1u = 0, ξ2u = 0, ξ1t = 0, ξ1uu = 0, ξ2uu = 0, ξ1tt = 0,

ξ1ux = 0, ξ2xt = 0, ξ2x = 0, ξ2ux = 0, ϕuu = 0 .
(3. 19)

The following determining equation, in which the function is involved, is given.

fuϕ = 0. (3. 20)

Taking the partial derivative of Eq. ( 3. 20 ) with respect to u:

fuϕu + fuuϕ = 0. (3. 21)

Taking the again partial derivative of Eq. ( 3. 21 ) with respect to u:

fuϕuu + fuuϕu + ϕfuuu + ϕufuu = 0. (3. 22)

Substitute ϕuu=0 in Eq. ( 3. 22 )

fuuϕu + ϕfuuu + ϕufuu = 0 . (3. 23)

From Eq. ( 3. 21 )

fuϕu = −fuuϕ, (3. 24)
fu

−fuu
ϕu = ϕ. (3. 25)

Substitute the value into Eq. ( 3. 23 )

fuuϕu + (
−fu
fuu

ϕu)fuuu + ϕufuu = 0, (3. 26)

2fuuϕu + (
−fu
fuu

ϕu)fuuu = 0, (3. 27)

2f2
uuϕu + fufuuuϕu = 0, (3. 28)

(2f2
uu + fufuuu)ϕu = 0, (3. 29)

2f2
uu + fufuuu = 0. (3. 30)

From Eq. ( 3. 30 ), we have the following equations:

f(u) = au+ b, (3. 31)

f(u) =
1

2
au2 + bu+ c, (3. 32)

f(u) =
ln(u+ b)

a
+ c. (3. 33)
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When applying Lie theory to a differential equation, the process begins with introducing a
symmetry generator. This leads to the formulation of determining equations, which help
identify the Lie symmetries and invariants. These results are then used to derive the cor-
responding ordinary differential equation (ODE). Since the Thomas equation is a second-
order partial differential equation (PDE), the symmetry generator must be extended to its
second-order form for a thorough analysis.

3.1. Lie point symmetries and exact solutions of Eq. ( 3. 17 ) using f(u) = au+ b.

uxt + αut + βux + γutux + au+ b = 0. (3. 34)

Lie symmetries of Eq. ( 3. 34 )

Z1 =
∂

∂t
& Z2 =

∂

∂x
. (3. 35)

Exact solutions of Eq. ( 3. 17 ) using Z1 & Z2 LPS:
Z=Z1+ α Z2,

Z =
∂

∂t
+ α

∂

∂x
, (3. 36)

Z = µ1 ∂

∂t
+ µ2 ∂

∂x
+ϖ1 ∂

∂u
. (3. 37)

The terms µ1, µ2, and ϖ1 represent the infinitesimals associated with the variables x, t and
u, respectively.
By comparing expressions, we find the relationships between these infinitesimals.

µ1 = 1, µ2 = α,ϖ1 = 0. (3. 38)

The coordinates in their canonical form are defined as follows.

v(r) = u(t, x), (3. 39)

r = −αt+ x, s = t. (3. 40)

Using these coordinates, find the derivatives and substitute them into Eq. ( 3. 34 )

b+ av(r)− α2vr + βvr − αγv2r − αvrr = 0. (3. 41)

Solution of Eq. ( 3. 41 ) by substituting a = b = 0

v (r) = ln

(
−γ

(
C1 α e−

(α2−β)r
α − C2 α2 + C2 β

)(
α2 − β

)−1

)
γ−1.

Solution in the original variables u(t,x) form

u(t, x) = ln

(
−γ

(
C1 α e

(α2−β)(α t−x)

α − C2 α2 + C2 β

)(
α2 − β

)−1

)
γ−1. (3. 42)
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FIGURE 1. Analysis of the transverse displacement behavior of the
beam wave solutions ( 3. 42 ) with all parameters equal to 1.

3.2. Lie point symmetries and exact solutions of Eq. ( 3. 17 ) using f(u) = 1
2au

2 +
bu+ c.

uxt + αut + βux + γutux +
1

2
au2 + bu+ c = 0. (3. 43)

Lie symmetries of Eq. ( 3. 43 )

Z1 =
∂

∂t
& Z2 =

∂

∂x
. (3. 44)

Exact solutions of Eq. ( 3. 17 ) using Z1 & Z2 LPS:
Z=Z1+ ϑ Z2,

Z =
∂

∂t
+ ϑ

∂

∂x
. (3. 45)

By comparing expressions, we find the relationships between these infinitesimals.

µ1 = 1, µ2 = ϑ, ϖ1 = 0. (3. 46)

The coordinates in their canonical form are defined as follows.

v(r) = u(t, x), (3. 47)

r = −ϑt+ x, s = t. (3. 48)
Using these coordinates, find the derivatives and substitute them into Eq. ( 3. 43 )

−ϑvrr − αϑvr + βvr − ϑγv2r +
1

2
av(r)2 + b(v(r)) + c = 0. (3. 49)

Solution of Eq. ( 3. 49 ) by substituting b = c = ϑ=α = 0

v (r) = 2
β

ar + 2C1 β
. (3. 50)

Solution in the original variables u(t, x) form

u (t, x) = 2
β

ax+ 2C1 β
. (3. 51)

Solution of Eq. ( 3. 49 ) by substituting b = ϑ = 0
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FIGURE 2. Analysis of the transverse displacement behavior of the
beam wave solutions ( 3. 51 ) with all parameters equal to 1.

v (r) = − tan

(
1/2

√
ca (r + C1 )

√
2

β

)
√
ca
√
2a−1. (3. 52)

Solution in the original variables u(t, x) form

u (t, x) = − tan

(
1/2

√
ca (x+ C1 )

√
2

β

)
√
ca
√
2a−1. (3. 53)

FIGURE 3. Analysis of the transverse displacement behavior of the
beam wave solutions ( 3. 53 )with all parameters equal to 1.
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3.3. Lie point symmetries and exact solutions of Eq. ( 3. 17 ) using f(u) = ln(u+b)
a +c.

uxt + αut + βux + γutux +− ln(u+ b)

a
+ c = 0. (3. 54)

Lie symmetries of Eq. ( 3. 54 )

Z1 =
∂

∂x
& Z2 = α

∂

∂t
− β

∂

∂x
. (3. 55)

Exact solutions of Eq. ( 3. 17 ) using Z1 & Z2 LPS:
Z=Z1+ θ Z2,

Z = θα
∂

∂t
+ (1− θβ)

∂

∂x
. (3. 56)

By comparing expressions, we find the relationships between these infinitesimals.

µ1 = αθ, µ2 = 1− θβ, ϖ1 = 0. (3. 57)

The coordinates in their canonical form are defined as follows.

v(r) = u(t, x), (3. 58)

r =
−t+ tβθ + xαθ

θα
, s =

t

θα
. (3. 59)

Using these coordinates, find the derivatives and substitute them into Eq. ( 3. 43 )
αaθ c− α θ ln (v (r) + b)+

a

(
d

dr
v (r)

)(
α (−1 + 2β θ) + γ (−1 + β θ)

d

dr
v (r)

)
+

a (−1 + β θ)
d2

dr2
v (r) = 0

(3. 60)

Solution of Eq. ( 3. 60 ) by substituting θ = α = β = b = 1, γ = 0

v (r) = eRootOf (r+aeacEi(1,− Z+ac)+C1) − 1 (3. 61)
Solution in the original variables u(t, x) form

u(t, x) = eRootOf (x+aeacEi(1,− Z+ac)+C1) − 1 (3. 62)

4. LIE POINT SYMMETRIES AND EXACT SOLUTIONS OF (2+1) DIMENSIONAL
CHAFFEE-INFANTE EQUATION

Riaz et al. [35] derive exact solutions and study conservation laws for the Chaffee-
Infante (CI) equation. They determine optimal systems through Lie subalgebra techniques
and derive conserved vector quantities using the multiplier method. By employing classical
symmetry analysis and group classification, we derive exact solutions for the CI equation.
This specific partial differential equation is analyzed for its symmetry properties to identify
possible invariant forms and solutions.

uxt − uxxx + 3αu2ux − αux + σuyy = 0 . (4. 63)

Various computer algebra systems provide packages that facilitate Lie symmetry calcula-
tions and related techniques. In this paper, we introduce a package designed for the sym-
metry analysis of differential equations (SADE), which is implemented in MAPLE, along
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with several other useful packages available for the MAPLE environment.

4.1. Lie point symmetries and exact solutions of Eq. ( 4. 63 ). Upon solving the corre-
sponding equation ( 4. 63 ), we uncover three Lie point symmetries (LPS):

P1 =
∂

∂t
, P2 =

∂

∂x
, P3 =

∂

∂y
. (4. 64)

Exact solutions of Eq. ( 4. 63 ) using P1 LPS:
Next, determine the exact solution of the LPS P1.

P = P1 =
∂

∂t
, (4. 65)

P = µ1 ∂

∂t
+ µ2 ∂

∂x
+ µ3 ∂

∂y
+ϖ1 ∂

∂u
. (4. 66)

The terms µ1, µ2, µ3 and ϖ1 represent the infinitesimals associated with the variables x,
y, t and u, respectively.
By comparing expressions, we find the relationships between these infinitesimals.

µ1 = 1, µ2 = 0, µ3 = 0, ϖ1 = 0. (4. 67)

The coordinates in their canonical form are defined as follows.

v(r, s) = u(t, x, y), (4. 68)

r = y, s = x, w = t. (4. 69)
Using these coordinates, find the derivatives and substitute them into Eq. ( 4. 63 )

α(−1 + 3v2)vs + σ4vrr + vsss = 0. (4. 70)

Determine the LPS again and proceed to solve Eq. ( 4. 70 )

P1 =
∂

∂r
, P2 =

∂

∂s
, (4. 71)

Now, find the ES of given LPS P1 & P2.

P = P1 + aP2, (4. 72)

P =
∂

∂r
+ a

∂

∂s
, (4. 73)

P = µ1 ∂

∂r
+ µ2 ∂

∂s
+ϖ1 ∂

∂v
, (4. 74)

µ1 = 1, µ2 = a, ϖ1 = 0. (4. 75)
The coordinates in their canonical form are defined as follows.

v(r, s) = P (l), (4. 76)

l = −ar + s, m = r. (4. 77)
Find the derivatives and put in Eq. ( 4. 70 )

α(−1 + 3p2)Pl + a2σPll − Plll = 0. (4. 78)

This form of the (2+1)-dimensional Chaffee-Infante equation is already simplified and can-
not be further reduced. A general explanation for this reduction process isn’t feasible, so
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we derive some conditional solutions by assigning specific values to the constants. We now
proceed to examine several distinct cases of equation ( 4. 78 ).

Solution of Eq. ( 4. 78 ) by substituting α = 0

P (l) = C1 + C2l + C3e
a2σl. (4. 79)

Solution in the original variables u(t, x, y) form

u(t, x, y) = C1 + C2(−ay + x) + C3e
a2σ(−ay+x). (4. 80)
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FIGURE 4. Analysis of the transverse displacement behavior of the
beam wave solutions ( 4. 80 )with all parameters equal to 1.

Solution of Eq. ( 4. 78 ) by substituting a = 0

P (l) = C1

∫ p(l)

(− 2

8C2 − 4αa2 + 2αa4 − 8c1α
)dl − l − C3 = 0, (4. 81)

P (l) = C1

∫ p(l)

(
2

8C2 − 4αa2 + 2αa4 − 8c1α
)dl − l − C3 = 0. (4. 82)

Solution in the original variables u(t, x, y) form

u(t, x, y) = C1

∫ u(t,x,y)

(− 2

8C2 + 2α− 8c1α
)dx− x− C3 = 0, (4. 83)

u(t, x, y) = C1

∫ u(t,x,y)

(
2

8C2 + 2α− 8c1α
)dx− x− C3 = 0. (4. 84)
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FIGURE 5. Analysis of the transverse displacement behavior of the
beam wave solutions ( 4. 84 ) with all parameters equal to 1.

Solution of Eq. ( 4. 78 ) by substituting a = α = 0

P (l) =
1

2
C1l

2 + C2l + C3. (4. 85)

Solution in the original variables u(t, x, y) form

u(t, x, y) =
1

2
C1x

2 + C2x+ C3. (4. 86)

FIGURE 6. Analysis of the transverse displacement behavior of the
beam wave solutions ( 4. 86 ) with all parameters equal to 1.

The classical LPS transformations are derived as follows. way.
Exact solutions of Eq. ( 4. 63 ) using P2 LPS:

P = P2 =
∂

∂x
, (4. 87)
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P = µ1 ∂

∂t
+ µ2 ∂

∂x
+ µ3 ∂

∂y
+ϖ1 ∂

∂u
, (4. 88)

By comparing expressions, we find the relationships between these infinitesimals.

µ1 = 0, µ2 = 1, µ3 = 0, ϖ1 = 0. (4. 89)

The coordinates in their canonical form are defined as follows.

v(r, s) = u(t, x, y), (4. 90)

r = y s = t, w = x. (4. 91)
Using these coordinates, find the derivatives and substitute them into eq.( 4. 63 )

σ4vrr = 0, (4. 92)

Determine the LPS again and proceed to solve Eq. ( 4. 92 )

P1 =
∂

∂r
, P2 =

∂

∂s
, (4. 93)

Now, find the ES of given LPS P1 & P2.

P = P1 + aP2, (4. 94)

P =
∂

∂r
+ a

∂

∂s
. (4. 95)

µ1 = 1, µ2 = a, ϖ1 = 0. (4. 96)
The coordinates in their canonical form are defined as follows.

v(r, s) = P (l), (4. 97)

l = −ar + s, m = r. (4. 98)
find the derivatives and put in Eq. ( 4. 92 )

pll = 0. (4. 99)

This form of the (2+1)-dimensional Chaffee-Infante equation is already simplified and can-
not be further reduced. A general explanation for this reduction process isn’t feasible, so
we derive some conditional solutions by assigning specific values to the constants. We now
proceed to examine several distinct cases of equation ( 4. 99 ).

Solution of Eq. ( 4. 99 )

P (l) = C1l + C2. (4. 100)
Solution in the original variables u(t, x, y) form

u(t, x, y) = C1(−ay + t) + C2. (4. 101)
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FIGURE 7. Analysis of the transverse displacement behavior of the beam
wave solutions ( 4. 101 ) with all parameters equal to 1.

Exact solutions of Eq. ( 4. 63 ) using P3 LPS:

P = P3 =
∂

∂y
, (4. 102)

P = µ1 ∂

∂t
+ µ2 ∂

∂x
+ µ3 ∂

∂y
+ϖ1 ∂

∂u
, (4. 103)

By comparing expressions, we find the relationships between these infinitesimals.

µ1 = 0, µ2 = 0, µ3 = 1, ϖ1 = 0. (4. 104)

The coordinates in their canonical form are defined as follows.

v(r, s) = u(t, x, y), (4. 105)

r = x, s = t, w = y. (4. 106)
Using these coordinates, find the derivatives and substitute them into eq.( 4. 63 )

α(−1 + 3v2)vr + 4vrs + vrrr = 0, (4. 107)

Determine the LPS again and proceed to solve Eq. ( 4. 107 )

P1 =
∂

∂r
, P2 =

∂

∂s
, (4. 108)

Now, find the ES of given LPS Y1 & Y2.

P = P1 + bP2, (4. 109)

P =
∂

∂r
+ a

∂

∂s
. (4. 110)

P = µ1 ∂

∂r
+ µ2 ∂

∂s
+ϖ1 ∂

∂v
, (4. 111)

µ1 = 1, µ2 = a, ϖ1 = 0. (4. 112)
The coordinates in their canonical form are defined as follows.

v(r, s) = P (l), (4. 113)
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l = −br + s, m = r. (4. 114)
find the derivatives and put in Eq. ( 4. 107 )

α(1− 3p2)Pl + b2Plll − Pll = 0. (4. 115)

This form of the (2+1)-dimensional Chaffee-Infante equation is already simplified and can-
not be further reduced. A general explanation for this reduction process isn’t feasible, so
we derive some conditional solutions by assigning specific values to the constants. We now
proceed to examine several distinct cases of equation ( 4. 115 ).

Solution of Eq. ( 4. 115 ) by substituting α = 0

P (l) = C1 + C2l + C3e
l
b2 . (4. 116)

Solution in the original variables u(t, x, y) form

u(t, x, y) = C1 + C2(−bx+ t) + C3e
(−bx+t)

b2 . (4. 117)

FIGURE 8. Analysis of the transverse displacement behavior of the beam
wave solutions ( 4. 117 )with all parameters equal to 1.

Solution of Eq. ( 4. 115 ) by substituting b = 0

P (l) = C1

∫ p(l)

(− 2

C1
)α− l − C3 = 0. (4. 118)

Solution in the original variables u(t, x, y) form

u(t, x, y) = C1

∫ u(t,x,y)

(− 2

C1
)α− t− C3 = 0. (4. 119)
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FIGURE 9. Analysis of the transverse displacement behavior of the
beam wave solutions ( 4. 119 )with all parameters equal to 1.

Solution of Eq. ( 4. 115 ) by substituting b = α = 0

P (l) = C1l + C2. (4. 120)

Solution in the original variables u(t, x, y) form

u(t, x, y) = C1t+ C2. (4. 121)

FIGURE 10. Analysis of the transverse displacement behavior of the
beam wave solutions ( 4. 121 )with all parameters equal to 1.

Exact solutions of Eq. ( 4. 63 ) using P = P1 + aP2 + bP3 LPS:

P = P1 + aP2 + bP3 =
∂

∂t
+ a

∂

∂x
+ b

∂

∂y
, (4. 122)

P = µ1 ∂

∂t
+ µ2 ∂

∂x
+ µ3 ∂

∂y
+ϖ1 ∂

∂u
, (4. 123)
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The terms µ1, µ2, µ3 and ϖ1 represent the infinitesimals associated with the variables x,
y, t and u, respectively.
By comparing expressions, we find the relationships between these infinitesimals.

µ1 = 1, µ2 = a, µ3 = b,ϖ1 = 0. (4. 124)

The coordinates in their canonical form are defined as follows.

v(r, s) = u(t, x, y), (4. 125)

r = −bt+ y, s = −at+ x, w = t. (4. 126)
Using these coordinates, find the derivatives and substitute them into eq.( 4. 63 )

α(−1 + 3v2)vs + σ4vrr − avss − bvrs + vsss = 0. (4. 127)

Determine the LPS again and proceed to solve Eq.( 4. 127 )

P1 =
∂

∂r
, P2 =

∂

∂s
, (4. 128)

Now, find the ES of given LPS Y1 & Y2.

P = P1 + cP2, (4. 129)

P =
∂

∂r
+ c

∂

∂s
, (4. 130)

P = µ1 ∂

∂r
+ µ2 ∂

∂s
+ϖ1 ∂

∂v
, (4. 131)

µ1 = 1, µ2 = c, ϖ1 = 0. (4. 132)
The coordinates in their canonical form are defined as follows.

v(r, s) = P (l), (4. 133)

l = −cr + s, m = r. (4. 134)
find the derivatives and put in eq.( 4. 127 )

α(−1 + 3p2)Pl + (−a+ c(b+ cσ))Pll − Plll = 0. (4. 135)

This form of the (2+1)-dimensional Chaffee-Infante equation is already simplified and can-
not be further reduced. A general explanation for this reduction process isn’t feasible, so
we derive some conditional solutions by assigning specific values to the constants. We now
proceed to examine several distinct cases.

Solution of Eq. ( 4. 135 ) by substituting a = b = c = α = 0

P (l) =
1

2
C1 + C2l + C3. (4. 136)

Solution in the original variables u(t, x, y) form

u(t, x, y) =
1

2
C1 + C2x+ C3. (4. 137)
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FIGURE 11. Analysis of the transverse displacement behavior of the
beam wave solutions ( 4. 137 ) with all parameters equal to 1.

Solution of Eq. ( 4. 135 ) by substituting a = b = α = 0

P (l) = C1 + C2l + C3e
c2σl. (4. 138)

Solution in the original variables u(t, x, y) form

u(t, x, y) = C1 + C2(−cy + x) + C3e
c2σ(−cy+x). (4. 139)

FIGURE 12. Analysis of the transverse displacement behavior of the
beam wave solutions ( 4. 139 ) with all parameters equal to 1.

Solution of Eq. ( 4. 135 ) by substituting a = α = 0

P (l) = C1l
2 + C2l + C3e

(cb+c2σ)l. (4. 140)
Solution in the original variables u(t, x, y) form

u(t, x, y) = C1(cbt− cy + x)2 + C2(cbt− cy + x) + C3e
(cb+c2σ)(cbt−cy+x). (4. 141)
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FIGURE 13. Analysis of the transverse displacement behavior of the
beam wave solutions ( 4. 141 ) with all parameters equal to 1.

Solution of Eq. ( 4. 135 ) by substituting a = b = α = 0

P (l) = C1 + C2l + C3e
(−a+cb+c2σ)l. (4. 142)

Solution in the original variables u(t, x, y) form

u(t, x, y) = C1 + C2(cbt− cy − at+ x) + C3e
(−a+cb+c2σ)(cbt−cy−at+x). (4. 143)
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FIGURE 14. Analysis of the transverse displacement behavior of the
beam wave solutions ( 4. 143 ) with all parameters equal to 1.

Solution of Eq. ( 4. 135 ) by substituting a = b = α = σ = 0

P (l) =
1

c
C1l

2 + C2l + C3. (4. 144)

Solution in the original variables u(t, x, y) form

u(t, x, y) =
1

c
C1(y + x)2 + C2(y + x) + C3. (4. 145)
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FIGURE 15. Analysis of the transverse displacement behavior of the
beam wave solutions ( 4. 145 ) with all parameters equal to 1.

5. EVALUATION AND DISCUSSION

In this article, we investigate the geometric representation of group solutions for the
(1+1)-dimensional Modified Thomas equation and the (1+2)-dimensional Chaffee-Infante
equation. We apply the Lie method to solve the given PDEs and construct their symmetries.
The application of these symmetries is crucial in various scientific fields, such as biological
modeling, nonlinear optics, and fluid dynamics. By applying symmetry reductions, we ob-
tain exact solutions. The derived solutions, which include wave solitons, double solitons,
and parabolic solitons, reveal various dynamical behaviors, such as soliton interactions
and annihilations. These behaviors are visualized through 3D and 2D plots created using
Mathematica, as shown in Figures (1-15). Graphically representing invariant solutions in
2D and 3D demonstrates how transformations preserve the same solution patterns or struc-
tures across various dimensions. In a 2D graph, curves that are unchanged by symmetry
operations can illustrate this concept, while in a 3D graph, surfaces that exhibit invariant
behavior despite transformations convey the same idea. Through these graphical repre-
sentations, one gains insight into the fundamental symmetries and stability of the solution
systems.

6. CONCLUSION

In this study, we explored the (1+1)-dimensional modified Thomas equation and the
(1+2)-dimensional Chaffee-Infante equation using Lie group analysis. We identified Lie
point symmetries and applied symmetry reduction to transform the PDEs into ODEs, which
were further simplified using canonical coordinates. Through group classification, the exact
solutions for the equations under Lie analysis were successfully derived. These solutions
are efficient, accurate, and versatile, with significant applications in engineering and math-
ematical physics. The Lie symmetry method proved to be highly effective, robust, and
powerful for simplifying and solving nonlinear PDEs. This approach is also applicable to
other nonlinear evolution equations and Schrödinger-type systems. Beyond their practical
applications, closed-form solutions of nonlinear PDEs assist numerical solvers in stability
analysis and provide a benchmark for validating the accuracy of their results. In the next
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phase, we will utilize the Lie symmetry analysis method to study this newly extended sys-
tem.
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