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Abstract. In this paper, we establish the notions of reverse first Zagreb
energy, reverse second Zagreb energy, and reverse degree square sum en-
ergy. We show how these energies behave across various graph families.
Furthermore, we analyze the splitting graph and shadow graph energies,
i.e. their context in the complete graph family. Our research adds to the
overall knowledge about graph energies and their use within mathematical
graph theory.
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1. INTRODUCTION

Since graph energy was introduced, graph theory, a subfield of discrete mathematics,
has gained a lot of popularity. Graphs are used extensively for solving problems since they
provide an intuitive approach prior to formal definitions. Graph theory is applied in a broad
spectrum of fields such as mathematics, artificial intelligence, biology, genetics, physics,
social sciences, data structures, pattern recognition, and cybernetics.

Graph energies and spectra have had an outstanding application in science and engineer-
ing fields like satellite communication [1} 3], facial recognition and air transport. They are
increasingly used to analyze the complexity of realworld systems, such as modular and dis-
tributed architectures found in fractionated spacecraft [20]. While traditional approaches
focus on structural or functional dependencies, spectral techniques including graph energy
and its variants offer a powerful perspective by quantifying complexity through eigenvalue-
based measures. The eigenvalues of an adjacency matrix were once studied through the
application of matrix theory and linear algebra. However, these days, algebraic methods
can also successfully deal with symmetric and regular graphs [15]].
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The application of characteristic polynomials to chemical graph theory commenced in
1930 when in his molecular orbital theory for II-electron networks of conjugated hydrocar-
bons, E. Huckel demonstrated the chemical uses of graph theory [10]. Horn in [[L1] utilized
matrix analysis in examining the energy of graphs. Bapat illustrated that a graph’s energy
can never be an odd number [2], while Parizada revealed that the square root of an odd
number can never be the energy of a graph [19]. Different results for bounds of energies
of graphs are presented in [[18]]. Meenakshi computed different energies of regular, non-
regular, circulant, and random graphs [16]. Das established upper and lower bounds for
Zagreb energy [6], and maximal eccentricity energy of complete bipartite and star graphs
was computed in [17]. Zheng studied different splitting graph energies as a multiple of the
original graph energy [5].

Additional results for various energies of shadow graphs in [22] and the adjacency en-
ergy of m-splitting and m-shadow graphs as multiples of the input graph are given in [23]].

Kousar and Nazeer have given results for several graph energies of subdivision graphs in
[[14]. Moreover, reverse Laplacian energy for some classes of graphs was computed in [13]],
and reverse maximum degree energy of complete graphs was established in [4,[12]. Lastly,
statistical information regarding the studies of graph energies and their uses is presented
in [8]]. Structural transformations have long been central to graph theory, particularly in
the context of connectivity and flow optimization [7]. These operations also influence the
spectral characteristics of graphs, motivating the study of reverse graph energies as a tool to
understand how such structural changes affect graph complexity. In this paper, we propose
and investigate three new graph energy measures: the reverse first Zagreb energy, reverse
second Zagreb energy, and reverse degree square sum energy.

Our results show that these new energy measures offer interesting information about the
structural properties of different families of graphs.

In particular, we calculate these energies for some standard graph families and study
their behaviors in splitting and shadow graphs, with special attention to complete graphs.
The findings point to the success of these reverse energy measures in being able to capture
the special properties and nuances of various graph structures, thus extending the applica-
tion of graph energy concepts to theoretical graph analysis.

2. PRELIMINARIES

The idea of graph energy was given by [24]. Let v1, 72,73, . . ., 7Y, be the eigenvalues of
a graph H. The graph’s energy can therefore be defined as the sum of the absolute values
of the eigenvalues and is denoted by [9]

4

B(H) =3 Jil-

=1

Graph energy is a significant measure in the study of spectral graph theory, provid-
ing insights into various structural properties of graphs. This concept has applications in
chemistry, particularly in the study of molecular orbitals where the graph’s eigenvalues
correspond to the energies of electron states in a molecule.
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Let H be a simple graph having o vertices and ) edges. Let A(H) be the largest degree
among the vertices of H. The reverse vertex degree of a vertex w; in H is given as [[12]

Yo, =AH)—d,, +1,

where d,,; is the vertex degree of vertex w;. This definition scales the vertex degree to
take the maximum degree within the graph into consideration, delivering a normalized
measurement that may find application in comparison studies across multiple graphs.

In [21]], based on the first and second Zagreb topological indices, Gutman presented the
first and second Zagreb energies. These were initially formulated for describing molecular
structure in chemistry but have now seen applications in more areas of graph theory.

A connected simple graph H’s first Zagreb energy E Z; is determined by adding the ab-
solute values of its eigenvalues of the first Zagreb matrix Z(M) (H) of H, where Z()(H) =
[zz(jl )] and

Z(l) _ dy, + dwj, if wiw; € ¥(H),
b 0, otherwise.

This is a measure that considers the degrees of the neighboring vertices and thus a means
of expressing the structural complexity of the graph.

A connected simple graph H’s second Zagreb energy FZ, is determined by adding
the absolute values of its eigenvalues of the second Zagreb matrix Z®)(H) of H, where

Z®(H) = [2{)] and

2(2) — {dw1 ' dwj? lfwzw] € \IJ(H),

*J 0, otherwise.

This is included as the product of the adjacent vertices’ degrees, adding additional stress
on connected nodes’ interaction.

A connected simple graph H’s degree square sum energy EDSS(H) is determined by
adding the absolute values of its eigenvalues of degree square sum matrix DSS(H) =
[dssi;],

i A2, +d2,, ifww; € U(H),
$855 = ‘ .
/ 0, otherwise.

Based on the ideas of first Zagreb energy, second Zagreb energy, and reverse vertex
degree, we introduce the reverse first Zagreb energy, reverse second Zagreb energy, and
reverse degree square sum energy. The reverse first Zagreb matrix is given as

Twi + ij, ifwiwj € \I/(H),
A =
e 0, otherwise.

The reverse first Zagreb energy is the sum of the absolute eigenvalues of the reverse first
Zagreb matrix and is represented as EZ , (H).
In the same manner, the reverse second Zagreb matrix is defined as

Yo, - Yo, ifww; € V(H),
2(2)r = .
0, otherwise.
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The reverse second Zagreb energy is the sum of the absolute eigenvalues of the reverse
second Zagreb matrix and is represented as EZ5,, (H).
This is the representation of the reverse degree square sum matrix

dssy {Tg +T2 i wioy € W(H),
otherwise.

)

The sum of the absolute eigenvalues of the reverse degree square sum matrix is known
as the reverse degree square sum energy and is represented as EDSSg(H).

The current study examines the relationship between different graph energies and ener-
gies of extended graphs derived via some graph operations like the splitting and shadow
graphs. Adding a new vertex w’ to each vertex w with the property that w’ is connected
with every vertex with which w is connected in H creates the splitting graph S’(H) of a
graph H.

By taking two copies of H, represented by H; and Hs, and connecting each vertex w in
H; to the neighbours of the corresponding vertex w in Hy, the shadow graph Dy (H) of a
connected graph H is created.

Let A = [a;;] and B = [b;;] be matrices of order a x ¢ and b X p, respectively. Their
tensor product, A ® B, is the matrix formed by replacing each entry a;; by the block a;; B
and is of order ab times o).

Proposition 2.1. [11] Letr A € M? and B € MP. Also, let o be an eigenvalue of the
matrix A with corresponding eigenvector y and [3 be an eigenvalue of the matrix B with
corresponding eigenvector z. Then, a3 is an eigenvalue of A ® B with corresponding
eigenvector yz.

3. MAIN RESULTS AND DISCUSSIONS

3.1. Reverse First Zagreb Energy. In this section, the £Z;,, for star graph, complete
graph and complete bipartite graph has been shown. The EZ; , offers a quantitative mea-
sure of the structural complexity of the graph in terms of the adjusted degrees of the ver-
tices.

3.1.1. Reverse First Zagreb Energy of Star Graph. The eigenvalues of a matrix connected
to a graph are used to calculate the EZ; . It is determined specifically for the star graph
So.

Theorem 3.2. For the star graph S, the reverse first Zagreb energy is given by
EZ1,(S,) =2(e+1)Ve-

Proof. Consider the star graph S, with vertices w1, ws, ... ,w,. Then,
0 o+1 o+1 -+ p+1
o+1 0 0 e 0
Z1,(S,) = o+1 0 0 0

o+1 0 0o - 0
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This matrix’s characteristic polynomial is

-y o+1 o+1 -+ o+1
o+1 —v 0 0
o+1 0 e R 0
o+1 0 0 R

The spectrum of the Z7,(S,)

sec(zia(5,) = (, 0, T IVE T VE),

Thus, the reverse first Zagreb energy is

EZ1,(Sy) = (e = D)0+ | = (e + 1)y/ol + (e + 1)y/o| = 2(e + 1) /o
0

3.2.1. Reverse First Zagreb Energy of Complete Graph. For the complete graph K, the
EZ,,, can also be calculated.

Theorem 3.3. For the complete graph K ,, the reverse first Zagreb energy is given by
EZy1(Kp) = 4(e—1).

Proof. Let K, be a complete graph with vertices w1y, ws, .. .,w,. Then,
02 2 ... 2
2 0 2 -+ 2
Z1,(K,) = 22 0 -+ 2
2 2 2 -+ 0

This matrix’s characteristic polynomial is

—~ 2 2 2
2 -y 2 2
2 2 —y 2
2 2 2 —

The spectrum of the Z; , (K,) is

-2 20-2
SpeC(ZlR(KQ)) = (Q_l 1 ) .
Thus, the reverse first Zagreb energy is

EZ1,(Kp) = (0= 1) =2+ 20— 2[=4(0 - 1).
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3.3.1. Reverse First Zagreb Energy of Complete Bipartite Graph. For the complete bipar-
tite graph K, ,, the /71, can also be calculated.

Theorem 3.4. For the complete bipartite graph K, ,, the reverse first Zagreb energy is
given by

EZ,(K,,) = 4o.

Proof. Let K, , be a complete bipartite graph with vertices wq,ws, . . .,w,. Then,
0 o 0 -~ 0 2 2 ... 2]
oo0oo0 - 022 ... 2
oo0oo0o -+ 022 ... 2
Z1y(Kpo)=10 0 0 --- 0 2 2 --- 2
22 2 .-+ 2 00 0
2 2 2 2 00 0
2 2 2 -~ 2 0 0 --- 0]

This matrix’s characteristic polynomial is

-y 0 0 0 2 2 2
0 —v O 0 2 2 2
0 0 —v 0 2 2 2
0 0 0 —~ 2 2 2
2 2 2 2 —y 0 0
2 2 2 2 0 —v 0
2 2 2 . 2 0 0 - —5

The spectrum of the Z; , (K, ,) is

0 20 —2p
SpeC(ZlR(Ké’yg)) = (QQ_ 2 1 1 ) .

Thus, the reverse first Zagreb energy is
EZ1,(Ko,) = (20— 2)[0] + | — 20| + [20] = 4o.
O
3.5. Reverse Second Zagreb Energy. In this section the EZ,,, for stat graph, complete

graph and complete bipartite graph is calculated. The E'Z,, provides a numerical assess-
ment of the graph’s structural complexity based on the vertices’ adjusted degrees.
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3.5.1. Reverse Second Zagreb Energy of Star Graph. The EZ,, is a measure derived from
the eigenvalues of a matrix associated with a graph. Specifically, it is computed for the star
graph S,.

Theorem 3.6. The star graph S,’s reverse second Zagreb energy is provided by

EZQR (Sg) = 29\/5'

Proof. Consider the star graph .S, with vertices wy,ws, . .., w,. Then,
0 0 o 0
o 0 0 0
Zon(Sp) =12 00 0
o 0 O 0

The characteristic polynomial of Z5,,(S,) is:

- 0 Y 0
o — O 0
0 0 —v 0
c 0 0 -

The spectrum of Z3,,(S,) is:

SpCC(ZZR(SQ)):< ’ _91\/5 Q\l/é)

o—1
The reverse second Zagreb energy is given by:
EZ34(S0) = (0= 1) [0] + |=0/2| + |ov/e| = 20v0.
a
3.6.1. Reverse Second Zagreb Energy of Complete Graph. The EZ,,, can also be com-
puted for the complete graph K.
Theorem 3.7. The complete graph K ,’s reverse second Zagreb energy is provided by

EZs,(K,) = 2(0 — 1).

Proof. Let K, be a complete graph with vertices wy,ws, . . .,w,. Then,
011 -+ 1
101 --- 1
Zon(Kp)= |1 10
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This matrix’s characteristic polynomial is

—y 1 1 1
1 —y 1 1
1 1 —y 1
1 1 1 —

Zy,, (K,)’s spectrum is

Spec(Za, (K,))

I

S

T
‘»—

—_

=)

=
p—
~~

Now, the reverse second Zagreb energy

EZs,(Kp) = (0= 1) [-1| + o= 1| = 2(e - 1).

3.7.1. Reverse Second Zagreb Energy of Complete Bipartite Graph. The EZ5, can also
be computed for the complete bipartite graph K, ,.

Theorem 3.8. The complete bipartite graph K, ,’s reverse second Zagreb energy is pro-
vided by

EZ,, (KQ,Q) = 2p.

Proof. Suppose that K, , is a complete bipartite graph with vertices w1, ws, . ..,w,. Then,

[0 0 0 00 11 1]

0 0 0 01 01 1

0 0 0 01 10 1

0 0 0 01 11 0

ZonKoo) = 1o 1 1000 0

1 0 1 10 0 0 0

110 10 0 0 0

1 11 00 0 0 0]
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The characteristic polynomial of Zs, (K, ,) is:

—~ 0 0 o o0 1 1 1
0O -y 0 -~ 0 1 0 1
0 0 -y -~ 0 1 1 0 1
0 0 0 —~ 1 1 1 0
0 1 1 1 —y 0 0
1 0 1 1 0 —y 0 0
1 1 0 1 0 0 -—v 0
1 1 1 -+ 0 0 0 0 - —v

The spectrum of Z, (K, ,) is:

_( 0 o —o
SpeC(ZQR(K&Q)) - <29 ~92 1 1 ) .
The reverse second Zagreb energy is given as
B2 (Ko.0) = (20 = 2) 0] + |=o| + [o] = 20.
O

3.9. Reverse Degree Square Sum Energy of Star Graph. The £ DSSk, is another spec-
tral measure derived from the eigenvalues of a matrix associated with a graph. Specifically,
it is computed for the star graph .S,.

Theorem 3.10. The EDSSR of the star graph S, is given by

EDSSg(S,) = 2(0* + 1)1/o.

Proof. Consider the star graph .S, with vertices wy,ws, . ..,w,. Then,
O g2 g2 e g2
92 o 0 --- 0
2
DSSR(S,)= (¢ 0 0 - 0
> 0 0 0

The characteristic polynomial of DSSg(S,) is:

-y ¢ & - 0
0> -y 0 - 0
0? 0 —v - 0
0? 0 0 - —x

The spectrum of DSSR(S,) is:
(2 2
Spec(DSSR(S,)) = (QO (@ +1ve (o +W@>.
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The reverse degree square sum energy is given by:
EDSSR(S,) = (0= 1) [0] + |=(* + )/2| + |(&* + 1)ye| = 2(0° + 1) Ve
O
4. REVERSE ENERGIES OF SPLITTING GRAPH OF COMPLETE GRAPH

In this section, EZ; ,, EZ5, and EDSSR, of the splitting graph of complete graph have
been shown.

4.1. Reverse First Zagreb Energy of Splitting Graph of Complete graph. This section
contains the expression for the £'Z; , of the splitting graph of the complete graph.

Theorem 4.2. The reverse first Zagreb energy of splitting graph for a complete graph K ,
is as follows

EZ]-R(SI(KQ)) = \/%Ele(KQ)'

Proof. A complete graph’s K, with vertices w1, wa, w3, ..., w, reverse first Zagreb matrix
is define as

w1 w2 w3 Wo

w1 0 T]_ +T2 Tl —|—T3 Tl —f—TQ

%) T2+T1 0 T2+T3 TQ"’TQ

ZIR(KQ) _ W3 T3+T1 T3+d2 0 T3+TQ
Wy Tg—FTl TQ+T2 TQ—I—Tg 0

where, for j = 1,2,3, ..., 0, T; is the reverse degree of vertex w;. To obtain S’(K,) such
that N(w;) = N(wj), let wy,wy,ws, ..., w, be vertices inserted in K, corresponding to
w1, W2, w3, ..., we.Then, S’ (K ,)’s reverse first Zagreb matrix can be expressed as a block
matrix in the manner shown below.:

/

wq (55} w3 Wo wq Wy wé W,
w1 0 Ti+YTe YTi1+T3 ... Y147, 0 Ty +Y5 Ty+Th . T1+T’Q
wo To + Y1 0 Yo+ Y3 ... To+T, Yo+ 7T 0 dy + Y5 .. ’I‘2+T/Q
w3 T3 +YT; Y3+ To 0 . Y34+ T, Y3+ 7Y Y3+ 7Th 0 T3+T’g
wo | To+YT1 YTo+Y2 Yo+ T3 ... 0 Yo+ Y] Yo+ Y5 Yo+ Th .. 0
wf 0 Ti+Te Yi+T3 ... T+, 0 0 0 0
wh | YhL+Ty 0 Yo+ Ts ... Yo+ 7T, 0 0 0 0
wh | YE+T YL+ Yo 0 B A 0 0 0 0
wle T/Q-»-Tl T/Q+T2 T’Q+T3 0 0 0 0 0

where, for j = 1,2,3, ..., o, T;- is the reverse degree of vertex w;-.

= ElK, 150
Or 5
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Here, the reverse first Zagreb spectrum of S’ (K,) is
((12@)% (”ﬁm) ,
1% 4
where the eigenvalues of 77, (K,) are ; for j = 1,2, 3, ..., o and (&27\/%)

1 2
Valuesof[s 2].

are the eigen-

5 0
Hence,
) 8 /1+ 26
EZ1,(S'(K,p) =) — )i

j=1
= 1—+26 1426

=2l 5| T3 7
j=1
=¢ V26-1 1426

= > |l 5 T ,
j=1

= V26EZ,(K,)

O

4.3. Reverse Second Zagreb Energy of Splitting Graph of Complete graph. This sec-
tion contains the expression for the reverse second Zagreb energy of the splitting graph of
the complete graph.

Theorem 4.4. The reverse second Zagreb energy of splitting graph for a complete graph
K, is as follows

EZ5,(S'(K,)) = V65EZ, (K,).

Proof. A complete graph’s K, with vertices wy, w2, ws, ..., w, reverse second Zagreb ma-
trix is define as

w1 w2 w3 W
w1 0 Tl.TQ Tl.Tg Tl.TQ
W Tg.Tl 0 T2T3 TQ.TQ
ZQR(KQ) — w3 Tg.Tl Tg.TQ 0 Tg.Tg
wo \ T, X1 Ty Xo Y,Xs . 0

where, for j = 1,2,3,...,0, T; is the reverse degree of vertex w;. To obtain S’(K,)
such that N(w;) = N(w)), let w},ws, ws, ..., w, be vertices inserted in K, corresponding
t0 w1, Wa, Ws, ..., w,. Next, Za, (S'(K,)) is the reverse second Zagreb matrix of S’(K,),
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which can be expressed as a square matrix as follows

w1 w2 w3 Wo wi wh wh w,,
w1 0 Tl.TQ Tl.Tg Tl.Tg 0 TlTIQ T1Té TlT’Q
w2 TQ.Tl 0 TQ.T:’, TQ.TQ TQT& 0 TQT% TQT/Q
w3 T3.T1 TS.TQ 0 T3.TQ Tg’rll TgTIQ 0 Tg’r/g
we | ToX1 YoX2 YoXs .0 0 Y,YL Y, Y, T,Y% 0
w) 0  TiYy YiYs ... YLY, O 0 0 o |
wy | Y50 0 YhYs .. YRY, 0 0 0 0
w;’; T:;T1 TgTz 0 é.’rg 0 0 0 0

where, for j = 1,2,3, ..., o, T, is the reverse degree of vertex wj.

Zan(s'(05) = | el B ),

2aSED = | | o | @2zl
S’(K,)’s reverse second Zagreb spectrum is
<1+W,yj 15/@%) 7
1% 1%

where the eigenvalues of Zs, (K,) are y; for j = 1,2,3, ..., o and 11[27\/% are the eigenval-

1 4
ues of [ 40 }
Hence,
1+ \/
EZs,(S'(K Z|

22'%'()“5%112“%!)7

= V65—1 1+ 65

=> il 5t :
j=1

= V65EZs,,(K,).

O

4.5. Reverse Degree Square Sum Energy of Splitting Graph of Complete graph. This
section contains the expression for the splitting graph’s EDSSg.

Theorem 4.6. The EDSSR, of splitting graph for a complete graph K, is as follows

EDSSg(S'(K,)) = 1+ (¢* +1)2EDSSg(K,
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Proof. Letw],ws,ws, ..., 0, be the vertices added in K, corresponding to w1, wa, w3, ..., W,.
This creates the splitting graph S’(K,) such that for j = 1,2,3,--- , 0, N(w;) = N(w)).
Then, K, and S"(K,)’s DSSp are provided as follows:

w1 w2 w3 Wy
wy 0 TI+T3 Y343 .. YI+72
we | T3+ 7% 0 T3+713 ... Y3+72
2 2 2 2 2 2
DSSR(KQ) — w3 T3+T1 T3—|—T2 0 T3+TQ ,
2 2 2 2 2 2
we \ To+7T7 To+7T5 T, +7T5 . 0
and
w1 wo w3 wo wi wé wé w;
w1 0 TIHT3 YT4+Y3 .. YT 4T 0 T HTE YT 4R L YT 4P
wp | Y3+ 713 0 T3+73 .. T34+T2 Y4+ 0 T3+TE . T3+ TP
ws | T24+712 1242 0 o Y34TE T34 TR T4 T 0 o TR
we | T2+ Y2413 Y242 0 2412 Y24 124 0
wh 0 TE+7r3 Y2+ . TR+ 0 0 0 0
wh | TR+ 2 0 TE4+T; L TE + 2 0 0 0 0
wh | TR+ 2 v 3 0 o TR 42 0 0 0 0
W \T257 12473 Y2 4r? o 0 0 0 0 0

where for j = 1,2,3,...,0, T; is the reverse degree of vertex w; and T;- is the reverse
degree of vertex w’.

DSSR(K,)  (£32)DSSk(K,)

DSSr(D(K,)) = (£42)DSSR(K,) 0 |
1 (4
DSSr(D(K,)) = (££41) (2) Q) Dssilics)
2

DSSgr(D(K,))’s spectrum is

VitH@)? 1@
2 J 2 J

% o

)
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where v; for j = 1,2,3, ..., ¢ are the eigenvalues of DSSr(K,) and w are
%41

2 1 2
Q;r 0

the eigenvalues of [ . Hence,

9 2 +1)2

EDSSgr(D Z |

Yil,

=Zl|w|(\1‘ i
—ZWJ(W 1 1+\/ﬁ)

2

:\/1+ Q +1 EDSSR(K

g+1

)

5. REVERSE ENERGIES OF SHADOW GRAPH OF COMPLETE GRAPH

In this section, the reverse first Zagreb energy, reverse second Zagreb energy and reverse
degree square sum energy of the shadow graph of complete graph have been shown.

5.1. Reverse First Zagreb Energy of Shadow Graph of Complete graph. This section
contains the expression for the shadow graph of reverse first Zagreb energy.

Theorem 5.2. The reverse first Zagreb energy of a shadow graph for a complete graph K ,
is as follows:

EZ1,(D(K,)) = V34EZy,(K,).

Proof. Take acomplete graph K, with vertices wy, wa, w3, ..., w,. Following that, Z(1) (K )
is the reverse first Zagreb matrix of K, and is defined as

w1 wa w3 Wy
w1 0 T1+T2 T1+T3 T1+TQ
Wa T2+T1 0 T2+T3 T2+TQ
ZlR(Kg) _ w3 Ts+7T; Ts+do 0 TS—I-TQ
UJQ T9+T1 T9+T2 T9+T3 0
where, for j = 1,2,3, ..., o, T; is the reverse degree of vertex w,;. To obtain D(K,) such
that N(w;) = N(wj), let wi,wsy,ws, ..., w, be vertices inserted in K, corresponding to

W1, W, W3, ...\ Q. Then, the reverse first Zagreb matrix of D(K,) can then be expressed
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as a block matrix in the manner described below

w1 wo w3 wo wy wo wg Wy
w1 0 Ti+YTs Ti4+YT3 ... T1+7, 0 T+ Y5 Ty +Th T1+T’Q
wo [ Yo+ Ty 0 Yo+ T3 ... To+T, Yo+ 7T 0 dg + Y5 ... To+7,
w3 T3+ Y1 Y3+ 7To 0 . T34+ Y, Y3+ 7Y Y3+ 7Th 0 T3+T’Q
wo | Yo+ Y1 YTo+T2 YTo+T3 ... 0 Yo+ Y] Yo+ YTh5 Yo+ Th .. 0
wl 0 Ti+YTe Yi+T3 ... Yi+7T, 0 Ty +Yy YTi+7T; . T+,
wh | THL+ Ty 0 YhL+ T3 ... Yh+Y, Yh+7T) 0 Yo+ Y5 . Yo+,
wh | YL+ YL+ T 0 o YE4 Y, YLAYL YL+ 0 o TH4TY,
W \TL4T) T, 4Te T, 4Ty ... 0 YL, YLAT, YL ‘
Wy ot 11 o T T2 o T T3 - o T T o T T o+ T3 - 0

_ ZIR(KQ) ﬂlle(Kﬁ’)
Z1,(D(K,)) = [ L 71 (K,) ZZIR(KQ) }

where, for j =1,2,3, ..., o, T;- is the reverse degree of vertex w

1 otl
2u) = | e T | @2l
2
Here, D(K,)’s reverse first Zagreb spectrum is

(0+1)—/2+20% (0+1)++/2+202
=) =),

2
4 0

1)£+/24202
(gﬂ%)arethe

where the eigenvalues of Z , (K,) are ; for j = 1,2,3,..., o and (

o+1
eigenvalues of { o041 2 } Hence,

EZlR(D(Kg)):g <(Q+ 1)i2 2+292)%7
glvﬂ(‘(“”;/m +‘<g+1>gm)7

)

S (e D+v2 128 (ot 1)+ /2120
=Z|7j| +
2 2
j=1
=2+ 20°EZ1,,(K,).

O

5.3. Reverse Second Zagreb Energy of Shadow Graph of Complete graph. This sec-
tion contains the expression for the shadow graph’s reverse second Zagreb energy.

Theorem 5.4. The reverse Second Zagreb energy of a shadow graph for a complete graph
K, is as follows

EZ3,(D(K,)) = (92 +1)EZs,, (K,).



Some New Results for Reverse Graph Energies and Graph Operations

Proof. Letw],ws,ws, ..., 0, be the vertices added in K, corresponding to w1, wa, w3, ..., Wp.
This creates the shadow graph D(K,) such that for j = 1,2,3,---, 0, N(w;) = N(w)).
Then, K, and D(K,)’s reverse second Zagreb matrix are provided as follows

w1 wo w3 Wy
w1 0 Tl.TQ Tl.'r3 Tl.Tg
w2 TQ.Tl 0 TQ.TS TQ.TQ
_ ws | T3.1T7 T3.7 0 B P
Z2R(Kg)* 3 3-11 3-12 3-1p
Wy TQ.Tl TQ.TQ TQ.Tg 0
and
wq w2 w3 Wo wi wé wé wlg
wy 0 T1.Y2 T1.T3 ... YT1.7, 0 T1.Y5 Y105 .. Y17,
wa | Ta.T1 0 Y3. Y5 ... To.T, Yo.Y} 0 To. Y5 ... Y27,
w3 | T3.T1 T3.72 0 . Y3 T, YT3.T) T3.7) 0 I T 4
we | To¥1 Yoo To¥s . 0 Yo, Yo X, T, .0
w 0 Ti.T2 Y).Ts ... Yi.T, 0 RO S S S A % o
wh | Yh.ry 0 Th.Ys ... Yh.Y, YL.Y) 0 T5.Y5 ... YT,
wh | TEY LYo 0 o YR, YLYD TLY) 0 R S A
;/.)27 ’I"Q:’I‘l T/Q:TZ T;:Tg 0 T;:T/l T’g:’rf‘, T’Q:Tg 0

where, for j = 1,2,3, ..., o, T;. is the reverse degree of vertex w}.

N 7 R(KQ) Z. R(KQ)
Z2r(D(K,)) = { QZ22R(KQ) §2§2R(Kg }

2D = | ) b | @ (i)
Here, D'(K,)’s reverse second Zagreb spectrum is
(0%' (0* + 1)%‘) .
o 0
where the eigenvalues of Z, (K,) are v, for j = 1,2,3,..., 0 and 0 and (¢ + 1) are the

eigenvalues of { 1 Q2Tj_1 . Hence,
j=e
EZy,(D(Kp)) = )10+ (¢° + 1),

Jj=1

Jj=0
=> hle* + 1),
j=1

= (0® + 1)EZy,,(K,).
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5.5. Reverse Degree Square Sum Energy of Shadow Graph of Complete graph. This
section contains the expression for the shadow graph’s £ DSSR of the complete graph.

Theorem 5.6. The E DS SR of the shadow graph for a complete graph K, is as follows

EDSSg(D(K,)) = \/20* + 2EDSSg(K,).

Proof. Letw,wy,ws, ..., w, be the vertices added in K, corresponding to wy, w2, w3, ..., w,
to obtain the shadow graph D(K,) such that for j = 1,2,3,--- , 0, N(w;) = N(w}). Next,
K, and D(K,)’s DSSR are provided a

w1 w2 w3 Wy
Wy 0 TI+7Y3 TiI+7Y3 .. Y7472
wy | Y3+73 0 T3+7T3 .. T3+72
2 2 2 2 2 2
DSSR(KQ) — w3 T3 +T1 T3 +T2 O TS —|—TQ ,
2 2 2 2 2 2
we \ T2+ T24+73 12473 .. 0
and
w1 w2 w3 wo wi wé wé wlg
w1 0 TIHYS YT 4T3 .. YT 4T 0 RS o T S e
wg | TZ 4+ 2 0 R & I & o & S & o 0 T3H+TE L Y342
ws | T24+712 12473 0 o YR34TE YRR Y34 TR 0 o Y34
we | T2477 Y2473 YI47T3 0 T24T2 YL YI4TP 0
Wi 0 TE+7r3 YP+7r3 o YR+ 0 TR+ 12 TE+r8 L TR+
A e 0 TP 4T3 TR+ TR 4T 0 TE+TE . TR+ TP
wh | YR+ v 4 0 e TR 4TI TR+ TP TR 47 0 L
W \T2577 12473 Y2 4r? o 0 T2HTR T24TR T24TR 0

where for j = 1,2,3,..., 0, T; is the reverse degree of vertex w; and T; is the reverse
degree of vertex w’.

DSSp(K,)  (451)DSSR(K,)

DSSgr(D(K,)) = (%)DSSR(KQ) QQDSSR(KQ) ’
1 (S
DSSa(DIE) = | oy 5 | QDS

Here, DSSRr(D(K,))’s spectrum is

(@+1)+v/20*+2  (&°+1)—/20%+2
2 ’7] 2 7j )

o o



Some New Results for Reverse Graph Energies and Graph Operations 121

2
Where v; for j = 1,2,3, ..., o are the eigenvalues of DSSg(K,) and % V2042 e
+1
; 2
the eigenvalues of 011 Q2 . Hence,
2

+ /208 +2
3 Yil,

EDSSR(D(K,) = | &+

Jj=1

=§lwl('(92“)2m\+\@2“)2m‘)’

)

2 2

_§|7_|<,/2g4+2—(92+1) L (@+D+ 2g4+2>
- J

j=1

= /20" + 2EDSSR(K,).

6. CONCLUSION

In this research, we have explained the reverse first Zagreb energy, reverse second Za-
greb energy, and reverse degree square sum energy, offering a complete explanation of
these measures of energy in graph theory. Through a detailed examination of these mea-
sures of energy, we have obtained explicit formulas for their values with respect to certain
classes of graphs, such as star graphs, complete graphs, and complete bipartite graphs.
In addition, we have introduced the proofs describing the behavior of these energy mea-
sures under graph operations like splitting and shadowing, specifically for the family of
complete graphs. Although this research provides significant insights into the behavior of
reverse graph energies, there are a number of avenues that need to be explored in the future.
One such direction is exploring the correlation of these reverse energies with other graph
parameters, including vertex degrees, graph diameters, or connectivity measures. Further
extrapolating these studies to more general classes of graphs than the ones discussed here
may provide additional insight into the underlying mechanism controlling graph energy
measures. In addition, investigating potential uses of these reverse energies in practical
contexts, like network analysis or optimization problems, may reveal practical implications
and further elucidate their importance in various fields. In general, this research provides a
foundation for future research efforts to demystify the complex properties of graph energy
measures and their general implications across different fields.
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