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Abstract. Topological indices, symmetric functions in graph theory, are
critical tools for characterizing the structural and topological properties
of molecules and networks. The Forgotten index (F-index), defined as
the sum of the cubes of vertex degrees in a molecular graph, was intro-
duced by Furtula and Gutman to model the structural dependence of total
π-electron energy. Tricyclic graphs, connected graphs of orderm and size
m + 2, are of particular interest due to their intermediate complexity be-
tween bicyclic and tetracyclic structures. In this work, we establish sharp
upper and lower bounds for the Forgotten index within the class of tri-
cyclic graphs and identify the extremal graphs achieving these bounds. To
extend the theoretical contributions, we also propose to integrate artificial
intelligence (AI) and machine learning (ML) methodologies, for their util-
ity in three key areas: (1) Predictive modeling via graph neural networks
(GNNs) to estimate F-indices for large-scale tricyclic graphs, bypassing
combinatorial complexity; (2) Generative design using variational autoen-
coders (VAEs) to synthesize novel tricyclic graphs with near-optimal F-
indices for materials science applications; and (3) AI-driven optimization
employing reinforcement learning (RL) to validate extremal graph struc-
tures and explore uncharted regions of the tricyclic graph space. We com-
bine mathematical and AI approaches to improve F-index analysis in tri-
cyclic graphs.

AMS (MOS) Subject Classification Codes: 05C92; 05C09; 05C07
Key Words: Tricyclic graphs; Graph transformations; Forgotten chemical invariant.

201



202 Salma Kanwal, Maria Fazal, Muhammad Taskeen Raza

1. INTRODUCTION

Graph theory [1] is the enormous and ideally disciplined field of mathematics that
deals with the modeling of mathematics using graphical representations to create multi-
dimensional graphs and describe them under multi-dimension science philosophy simulta-
neously.
All the graphs related to this paper are simple and strict graph of order m and size q. An
undirected connected graph that has no multiple edges or loops is referred to as a strict
graph, having V (Γ) as vertex set and E(Γ) as edge set respectively is known as a molec-
ular graph [2]. The atoms are denoted by xi ∈ V (Γ), and the covalent bonds between
the corresponding atoms are indicated by xixj ∈ E(Γ). Let ℵΓ(x) stand for the neighbor
set of vertex x in Γ, then dΓ(x) =| ℵΓ(x) | is the degree of x in Γ. A vertex x of Γ is
called a pendent if vertex x has degree 1. A path in Γ is said to be pendent if its one end
vertex has degree at least 3, the other vertex has degree one, and the degree of intermediate
vertices is 2. An internal path of Γ is described as a walk x0, x1, x2, . . . , xs(s ≥ 1) such
that the vertices x0, x1, x2, . . . , xs are distinct, dΓ(x0), dΓ(xs) ≥ 2 and dΓ(xi) = 2, when-
ever 0 < i < s. In this paper, we will consider some graph transformations, that involve
swapping of edges from one vertex to other and reduction of edges that result in increase or
decrease of degree of vertices involved. Moreover we will convert pendent path to internal
path and internal path to pendent vertices.
A multigraph is a graph that allows for multiple edges, or edges with identical end nodes.
Thus, more than one edge may join two vertices. Let Pm, Sm and Cm be respectively
the path, star and cycle with m vertices respectively. A connected graph Γ is called a tree
(respectively, unicyclic, bicyclic and tricyclic graph) if q = m − 1 (respectively q = m,
q = m + 1 and q = m + 2). In this work, family of tricyclic graphs will be considered
along with Forgotten topological invariant.
A connectivity index is a numerical value that is linked to a graph Γ and has the prop-
erty of having the same value for all graphs that are isomorphic to Γ. Topological indices,
which are numerical measurements derived from a molecular graph and correlate well with
the molecular graph’s physicochemical properties, have been shown to be useful in iso-
mer discrimination, QSAR, and QSPR research. Understanding the chemical features of a
molecular graph requires examining specific changes in the values of these invariants, see
[15]. Assume that Ωm represent the class of connected graphs of size m+ 2 and order m.
Brace of a tricyclic graph is defined as graph obtained by removing vertices of degree one.
All braces set of tricyclic graph represented by Ω0

m and are given in Figure 10, Ω1
m and Ω2

m

represent the class of tricyclic graphs given in Figure 9 and 11.
Wiener (1947) established the first distance-based TI, for more information, see [25], when
he was working on paraffin. Later, it was identified as the Wiener index, and a great deal
of research was done on it. In 1972, Gutman and Trinajstic [14] have shown that the total
ϕ energy (ϵ) depends on the sum of squares of vertex degrees in a molecular graph. This
term was later called as first Zagreb index and provides a measure of branching of carbon
atom skeleton. For any graph Γ, the first and second Zagreb indices are defined as

M1(Γ) =
∑

xy∈E(Γ)

dΓ(x) + dΓ(y)
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M2(Γ) =
∑

xy∈E(Γ)

dΓ(x)dΓ(y)

Yan et al. [30], studied the second Zagreb index of unicyclic graphs with m vertices and k
pendant vertices for extremal values. Zhu et al. [31], determined the tricyclic graph with
cyclomatic number 3, m vertices, and having maximum Merrifield-Simmons index. The
total number of independent sets in a graph is its total Merrifield-Simmons index, whereas
an independent set of graph is a set of vertices that are not adjacent to one another. Li and
Yang [22], identified all tricyclic graphs having less than 1 second largest eigenvalue. Zhu
and Yu [32], characterized the smallest number of independent sets for the class of graphs
having size m + 2. Chen et al. [10], described the graphs that attained the upper bound
and provided an upper bound for the revised Szeged index for tricyclic graphs. The revised
Szeged index is described as

Sz∗(Γ) =
∑

e=xy∈E(Γ)

[mx(e) +
m0(e)

2
][my(e) +

m0(e)

2
]

where mx(e) represents the number of nodes nearer to vertex x, m0(e) is the number of
nodes that are equally spaced from x and y. In [28], for m ≥ 15 Tomescu and Kanwal
established unicyclic graph having minimum degree distance. Ashrafi et al. [4], presented
the class of all m-vertex tricyclic graphs for first, second, and third maximum atom-bond
connectivity index values. The atom-bond connectivity index is described as

ABC(Γ) =
∑

xy∈E(Γ)

√
dΓ(x) + dΓ(y)− 2

dΓ(x)dΓ(y)

Akram et al. [6], characterized the graphs attaining the largest and smallest values and
demonstrated the ordering of the various graphs subfamilies for Forgotten topological in-
variant in Ωm

α , where Ωm
α describes the entire class of graphs having three cycles, having

α ≥ 1 vertices of degree one and order m ≥ 16 + α. Ali [3], characterized the unique
graph with minimal augmented Zagreb index AZI among all classes of connected tricyclic
graphs of order m for every m ≥ 6. The augmented Zagreb index AZI is described as

AZI(Γ) =
∑

xy∈E(Γ)

(
dΓ(x)dΓ(y)

dΓ(x) + dΓ(y)− 2
)3

Imtiaz et al. [18] presented the upper bound for acyclic graph for first Gourava index.
Wang et al. [29], determined the maximum value of Forgotten topological index using
transformations. A degree-based topological index was recently re-evaluated by Furtula
and Gutman [13] named it forgotten index (F-index). De et al. [11], Milovanovic et al.
[24] and Basavanagoud et al. [8] examined F-index and co-index of F-index for different
graphs. Khaksari and Ghorbani [21] determined for F-index the particular product of
graphs. In [5, 19] the Forgotten chemical invariant was extensively studied for the graphs
having one and two cycles.
Sardar et al. [26], determined the extremal values for the Kirchhoff index of line graph
of unicyclic graphs and extremal unicyclic graphs by using some graph transformations
and techniques derived from electrical networks. Gao [17], explored the extremal graphs
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as regular graphs by giving some conditions on the function f(x, y) and using vertex-
degree based topological indices. The author also computed the extremal values for the
considered indices among c-cyclic graphs, and found the extremal c-cyclic graphs. Su and
Tang [27], determined the minimal and the maximal unicyclic graphs with girth k for some
exponential vertex degree based topological indices. In this work we use the technique of
swapping of edges from one vertex of tricyclic graphs to another vertex. We have observed
the increase or decrease in the behavior of F-index under different graph transformations.
This helped us to find the extremal values of F-index for tricyclic graphs and the whole
work is shown in figure 1.
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FIGURE 1. Flowchart for finding extremals using transformations
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2. EDGE SWAPPING TRANSFORMATIONS

We observe the behavior of F index under some graph transformations. These transfor-
mations involve the swapping of edges from one vertex to another vertex and reduction of
edges that result in increase or decrease of degrees of vertices involved, of a tricyclic graph.
These transformations are applied to connected graphs (i.e, having path from any point to
any other point in the graph) and nontrivial (i.e, having two or more than two vertices).
Transformation 1: Let xy be such an edge of simple graph Γ with dΓ(y) ≥ 2. Pre-
sumed that {y, u1, u2, . . . , ut} are all adjacent to the vertex x while u1, u2, . . . , ut are ver-
tices having degree 1. If

Υ = Γ− {xu1, xu2, . . . , xut}+ {yu1, yu2, . . . , yut}

we say that Υ is obtained from Γ by transformation 1, as given in Figure 2. Transformation

u1

u2

ut

x
y

u1

u2

ut

x

y
Γ0

Γ0

Γ
ϒ

T1

FIGURE 2. Transformation 1

1 increases the F-index as exhibited in Lemma 2.1.

Lemma 2.1. If Υ is derived from Γ using transformation 1, then

F(Γ) < F(Υ)

Proof. Evidently, dΓ(y) < dΥ(y) and d(x) + d(y) remains unchanged during transforma-
tion 1. Hence,

F(Υ)−F(Γ) > [dΥ(y)
2 + dΥ(x)

2] +
t∑

i=1

[dΥ(y)
2 + dΥ(ui)

2]

− [dΓ(x)
2 + dΓ(y)

2]−
t∑

i=1

[dΓ(x)
2 + dΓ(ui)

2]

= (t+ 1)[(dΓ(y) + t)2 + 1]− [dΓ(y)
2 + (t+ 1)2]

− t[(t+ 1)2 + 1]

= tdΓ(y)
2 + 2dΓ(y)t

2 + 2dΓ(y)t− 3t− 2t2

= [dΓ(y)− 1][2t2 + 3t+ tdΓ(y)] > 0; dΓ(y) ≥ 2

As a result, the proof is complete. �
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Transformation 2: Let Γ be a connected graph and x, y ∈ V (Γ). Let Pa = (x =
)u1, u2, . . . , ua(= y) is a nontrivial path of length “a” of Γ joining vertices x and y. If
w = x+ y, then

Υ = Γ− {u1u2, u2u3, . . . , ua−1ua}+ {wu1, wu2, . . . , wua−1}
we say that Υ is obtained from Γ, as presented in Figure 3 using transformation 2.

u1 u2

x y

ua-1

wΓ1 Γ1

Γ

ϒ

Γ2Γ2

pa

u2 ua-1
T2

FIGURE 3. Transformation 2

Lemma 2.2. If Υ is derived from Γ using transformation 2, as illustrated in Figure 3, then

F(Γ) < F(Υ)

Proof. From transformation 2 we discern that, let dΓ1(x) = u and dΓ2(y) = v while
w = x + y (fusing x and y to attain w) with dΥ(w) = u + v + a − 1, where a ≥ 2. If
a = 2,

F(Υ)−F(Γ) > [dΥ(w)
2 + dΥ(u1)

2]− [dΓ(x)
2 + dΓ(y)

2]

= (u+ v + 2− 1)2 + 1− (u+ 1)2 − (v + 1)2

= 2uv > 0; (u, v) ≥ 1

If a ≥ 3

F(Υ)−F(Γ) >
a−1∑
i=1

[dΥ(w)
2 + dΥ(ui)

2]− [dΓ(x)
2 + dΓ(u2)

2]

− [dΓ(y)
2 + dΓ(ua−1)

2]− (a− 3)(8)

= (a− 1)[(u+ v + a− 1)2 + 1]− [(u+ 1)2 + 4]

− [(v + 1)2 + 4]− 8(a− 3)

= u2(a− 2) + v2(a− 2) + 2uv(a− 1) + 2ua2 − 4ua

+ 2vaa − 4va+ a3 − 3a2 − 4a+ 12

= u2(a− 2) + v2(a− 2) + 2ua(a− 2) + 2va(a− 2)

+ 2uv(a− 1) + (a2 − 4)(a− 3) > 0; (u, v) ≥ 1

As a result, the proof is complete. �
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Transformation 3: Let K be a acyclic subgraph of Γ with V (| K |) = t that is
affixed to u1 in graph Γ and x, y being two neighbors of u1 other than that in K. If

Υ = Γ− {K − u1}+ {u1u2, u2u3, . . . , uty}

we claim that Υ is derived from Γ, as presented in Figure 4.

ut

u1

u2

y

Γ1 Γ ϒ

ut-1

u1
u1 u2

yy

Κ

x x x
utT3

FIGURE 4. Transformation 3

Lemma 2.3. If Υ is derived from Γ using transformation 3, then

F(Γ) > F(Υ)

Proof. From Lemma 2.1 we discern F(Γ) ≥ F(Γ1). So we simply prove the following
inequality,

F (Γ1) > F(Υ)

By definition of Forgotten invariant,

F(Γ1)−F(Υ) = [dΓ1(u1)
2 + dΓ1(u2)

2] + [dΓ1(u1)
2 + dΓ1(y)

2]

+ [dΓ1(ut−1)
2 + dΓ1(ut)

2]− [dΥ(u1)
2 + dΥ(u2)

2]

− [dΥ(ut−1)
2 + dΥ(ut)

2]− [dΥ(ut)
2 + dΥ(y)

2]

= [dΓ1(u1)
2 + 4] + [dΓ1(u1)

2 + dΓ1(y)
2] + 5− 16

− [dΓ1(u1)− 1]2 − dΓ1(y)
2

= 2dΓ1(u1)
2 − dΓ1(u1)

2 − 8 + 2dΓ1(u1)

= dΓ1(u1)
2 + 2dΓ1(u1)− 8 > 0; dΓ1(u1) ≥ 2

As a result, the proof is complete. �
Let Γ be a connected graph. Two vertices x and y are said to be equivalent, If Γ− x ∼=

Γ − y. Evidently, | ℵ(x) |=| ℵ(y) | and their neighbors contain identical lists of degrees
for all of the graph’s vertices.
Transformation 4: Let Γ0 be a graph and x, y are two nodes in Γ0 with dΓ0(x) = u and
dΓ0(y) = v and ℵΓ0(y) ⊆ ℵΓ0(x). Let Γ be the graph derived by affixing Ss+1 and St+1

on the nodes x and y of Γ0, respectively. If Υ is the graph gained by removing t vertices
having degree one at y in Γ and joining them to x of Γ. As a result Υ is obtained from Γ
by transformation 4 as presented in Figure 5.



Bounds on F -Index of Tricyclic Graphs with AI Applications 209

u1

v1

us

x

y

u1

Γ0
Γ0

Γ
ϒ

vt

v1

x

us

vt

T4

FIGURE 5. Transformation 4

Lemma 2.4. If Υ is derived from Γ using transformation 4, then

F(Γ) < F(Υ)

Proof. Since dΓ0(x) = u and dΓ0(y) = v and ℵΓ0(y) ⊆ ℵΓ0(x), u > v. Thus, by the
definition of forgotten topological invariant,

F(Υ)−F(Γ) =
s∑

i=1

[dΥ(x)
2 + dΥ(ui)

2 − dΓ(x)
2 − dΓ(ui)

2]

+
t∑

i=1

[dΥ(x)
2 + dΥ(vi)

2 − dΓ(y)
2 − dΓ(vi)

2]

+
∑

w∈ℵΓ0 (y)

[dΥ(x)
2 + dΥ(w)

2 + dΥ(y)
2 + dΥ(w)

2]

−
∑

w∈ℵΓ0 (y)

[dΓ(x)
2 + dΓ(w)

2 + dΓ(y)
2 + dΓ(w)

2]

= s[(u+ s+ t)2 + 1− (u+ s)2 − 1] + t[(t+ s+ u)2

+ 1− (t+ v)2 − 1] +
∑

w∈ℵΓ0
(y)

[(s+ t+ u)2 + dΓ0(w)
2 + v2

+ dΓ0(w)
2 − (u+ s)2 − (v + t)2 − 2dΓ0(w)

2]

= s[t2 + 2t(u+ s)] + t[(s+ u)2 + 2t(s+ u)− v2 − 2tv]

+
∑

w∈ℵΓ0
(y)

[2st+ 2tu− 2tv]

= 3st2 + 3ts2 + 4stu+ t(u2 − v2) + 2t2(u− v)

+
∑

w∈ℵΓ0
(y)

[2t(s+ u− v)] > 0; (s, t) ≥ 1

As a result, the proof is complete. �
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3. AI AND MACHINE LEARNING APPLICATIONS FOR F-INDEX ANALYSIS

On the one hand, the derivation of extremal F-index bounds for tricyclic graphs provides
foundational knowledge. On the other hand, integrating AI/ML Approaches bridges theo-
retical graph theory with real-world applications. Relevant to our study, these applications
may be in the fields of drug discovery, materials science, and chemical informatics. In the
following, we discuss three novel AI-driven frameworks that leverage the extremal bounds
established in this work.

3.1. Predictive Modeling with Graph Neural Networks (GNNs). In this proposed frame-
work, scalable models are developed to predict F-indices for large or synthesized tricyclic
graphs. In this way, reliance on exhaustive enumeration is reduced, shown in figure 6.

FIGURE 6. Predictive modeling via graph neural networks (GNNs)

3.1.1. Methodology: Firstly, in Dataset Generation, it is proposed to synthesize a diverse
dataset of tricyclic graphs (with m ≤ 50) using combinatorial generators. In this ap-
proach, each graph is labeled with its F-index. Secondly, for Graph Representation, to
encode graphs using adjacency matrices or degree sequences. These are augmented with
vertex-level features (e.g., degree, connectivity). Thirdly, for Model Architecture, to Train
a Graph Convolutional Network (GCN) or Graph Attention Network (GAT) [20]. This
is performed to regress F-indices, using the extremal bounds as validation checkpoints.
For example, predictions which exceed theoretical maxima or minima signal model errors.
Lastly, regarding Interpretability, it is proposed to apply gradient-based attribution (e.g.,
Saliency Maps). This is useful in identifying substructures (e.g., branching patterns) most
influential to F-index values [16]. The significance of this framework is, that it enables
rapid screening of virtual chemical libraries for molecules with desired F-index ranges. In
addition, the proposed framework validates theoretical bounds by detecting anomalies in
model predictions.
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3.2. Generative Design via Variational Autoencoders (VAEs). In the VAE proposed
framework, novel tricyclic graphs with F-indices is generated near the derived extremal
values. This helps in the design of materials with customized electronic properties, shown
in figure 7.

FIGURE 7. Generative design using variational autoencoders (VAEs)

3.2.1. Methodology: Firstly, in Latent Space Construction, a VAE on the tricyclic graph
dataset is trained, which maps graphs to a continuous latent spaceZ. Secondly, for the Con-
trolled Generation part, gradient-based optimization is used in Z to steer generation toward
regions corresponding to high or low F-indices, according to the extremal bounds. Lastly,
for the Validity Constraints stage, graph-theoretic rules (e.g., tricyclicity, connectivity) are
integrated into the loss function. This integration ensures chemically plausible outputs
[23]. For this framework, a case study is proposed as follows. Generate tricyclic graphs
with F-indices close to the upper bound (maximally branched structures) for applications
in conductive polymers. In these, high π-electron density correlates with conductivity. The
proposed framework is highly significant in, Accelerating the discovery of functional mate-
rials. This is possible by prioritizing synthetically accessible candidates. The framework is
also appropriate for demonstrating the utility of topological indices as optimization targets
in generative AI.

3.3. Reinforcement Learning (RL) for Extremal Graph Exploration. This proposed
framework is to deploy RL agents to navigate the tricyclic graph space. It also encompasses
rediscovering/extending extremal graphs and validating theoretical results, shown in figure
8.
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FIGURE 8. AI-driven optimization employing reinforcement learning (RL)

3.3.1. Methodology: Firstly, in the State-Action Formulation, specify State and Actions.

(1) State: It is the current graph configuration (encoded as a vector).
(2) Actions: These are edge additions/removals preserving tricyclicity.

Secondly, in the Reward Function, Penalize deviations from target F-index bounds. For
example:

Reward =

{
+1, if F (Γ) approaches upper bound
−1, if F (Γ) diverges.

Lastly, in the Agent Training phase, use Proximal Policy Optimization (PPO) to learn edge-
modification policies that maximize cumulative reward. Expected results are, the RL agent
successfully reconstructs the extremal graphs identified analytically, confirming their op-
timality. Additionally, it discovers alternative near-optimal configurations in larger graphs
(m > 20), and suggests potential extensions to the bounds. The framework is significant
in that it provides an automated framework for exploring complex graph spaces that are
beyond human analytical capacity. In addition, it bridges combinatorial optimization with
deep learning, enabling adaptive hypothesis testing.

(1) Saliency Maps: Heatmaps highlighting graph substructures (e.g., branched chains)
most influential to the GNN’s F -index prediction. Example: A high-saliency edge
indicates its removal would drastically change F .
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(2) PPO (Proximal Policy Optimization): An RL algorithm training agents to modify
graphs via edge swaps. Analogous to teaching a robot to rebuild molecules while
maximizing reward (e.g., +1 for nearing Fmax).

(3) Latent Space Optimization: In the VAE, a ’hidden blueprint’ of graphs. Steer this
space (e.g., via gradients) to generate graphs with F ≈ 8m+ 76 (lower bound) or
F ≈ Fmax (upper bound).

We propose generating 500 tricyclic graphs (connected graphs with n vertices and n + 2
edges) using combinatorial generation algorithms (combgen) [7]. The generation process
follows these steps:
Vertex Range
Graphs will be generated across orders m = 6 to m = 20. This covers:
Small graphs m = 6: Minimal tricyclic structures (e.g., three fused cycles)
Medium graphs m = 10− 15: Intermediate complexity
Larger graphs m = 20: Approaching practical molecular sizes
Generation Method
Algorithm: Systematic combinatorial enumeration ensuring:
Connectivity
Exactly m+ 2 edges
No duplicate graphs (isomorphism checking)
Output: Edge-list representations (e.g., [(v1, v2), (v2, v3), ...])
Labeling
Each graph is labeled with its Forgotten index F calculated as:

F (G) =
∑
v∈V

[d(v)]3

where d(v) = degree of vertex v.
Example: A 6-vertex tricyclic graph might have F = 124.
Distribution
Balanced sampling across vertex sizes
Diverse topologies: Linear chains, branched structures, fused cycles
Includes extremal graphs from Theorem 1 (e.g., Ω1

m)
Implementation Tools
python
Pseudocode for graph generation from combgen import tricyclic-generator
dataset = []
for m in range (6, 21): m = 6 to 20
for m in range (25): 25 graphs per order
Γ = tricyclic-generator m-vertices= m
F -index =

∑
(d(v)3 for d in Γ.degree sequence())

dataset.append (Γ, F − index).
Practical Significance
This dataset bridges theoretical graph theory with ML applications by:
Providing computable labels F for supervised learning
Enabling benchmarking of GNN performance
Including chemically relevant structures (e.g., m = 20 mimics real organic molecules)
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4. RESULTS AND DISCUSSION

In this section, we derived the extremal tricyclic graphs for Forgotten topological invari-
ant. We have employed the transformations that were just explained in order to achieve the
intended result.

ψ5ψ4ψ3ψ2
ψ1

FIGURE 9. ψi in Ω1
m

Theorem 4.1. Let Γ be any tricyclic graph with order m, then

F(Γ) ≥ 8m+ 76; m ≥ 4

equality holds if and only if Γ ∈ Ω1
m

Proof. Suppose Γ be a tricyclic graph. Using Lemma 2.2, Γ can be transformed into any
one of the fifteen braces indicated in Figure 10. In the meanwhile, for each graph Γ there
is a graph ωi ∈ Ω0

m, where i ≤ 15, such that F(ωi) ≤ F(Γ) using Lemma 2.3. Clearly,
F(ψi) = 8m+ 76, for i = 1, 2, 3, 4, 5.
As a result, the proof is complete. �

Theorem 4.2. Let Γ be any tricyclic graph of size m+ 2 and order m, then

F(Γ) ≤ m3 − 3m2 + 4m+ 82; m ≥ 4

equality holds if and only if Γ ∼= Sm+2
m

Proof. Suppose Γ be a tricyclic graph, as indicated in Figure 9, Γ can be converted into
any one of ηi by repeatedly applying transformation 2 and 4. Alternatively, for any graph Γ
havingm+2 edges and of orderm there is a ηi ∈ Ω2

m,where i ≤ 6 such that F(Γ) ≤ F(ωi)
by Lemma 2.2 and 2.4. Observe that,

F(η1) = m3 − 3m2 + 4m+ 64

F(η2) = m3 − 3m2 + 4m+ 52

F(η3) = m3 − 3m2 + 4m+ 40

F(η4) = m3 − 3m2 + 4m+ 28

F(Sk4
m ) = m3 − 3m2 + 4m+ 76

F(Sm+2
m ) = m3 − 3m2 + 4m+ 82
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ω1 ω4
ω3ω2

ω15ω14ω13
ω12ω11

ω10ω9ω8ω7ω6

ω5

FIGURE 10. All possible braces ωi of tricyclic graphs in Ω0
m

S
m+2

m S
k4

m

η1 η4η3
η2

FIGURE 11. ηi in Ω2
m

As a result, the proof is complete. �

5. CONCLUSION

In this work, we have observed the behavior of F -index under the graph transforma-
tions for tricyclic graphs of order m. We have observed that in transformation 1, when
we converted vertex of internal path to pendent vertex then as a result, all the indices in-
creased similarly, transformation 2 and 4, increased the indices under consideration which
gave us upper bound, but in transformation 3, when we converted pendent path to internal
path, as a result invariants decreased, which gave us lower bound. Further, extreme val-
ues of these chemical invariants are determined. In addition to theoretical contributions,
this work pioneers in proposing the integration of artificial intelligence (AI) and machine
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learning (ML) to enhance the utilization of topological indices in cheminformatics. We
propose three transformative AI-driven frameworks: (i) Predictive modeling via graph neu-
ral networks (GNNs) to estimate F-indices for large-scale tricyclic graphs, circumventing
combinatorial enumeration; (ii) Generative design using variational autoencoders (VAEs)
to synthesize novel tricyclic architectures with near-optimal F-indices, enabling targeted
materials discovery; and (3) Reinforcement learning (RL)-guided optimization to validate
extremal structures and explore uncharted regions of the tricyclic graph space. This dual
methodology-bridging rigorous mathematical analysis with data-driven AI-not only vali-
dates our derived bounds but also unlocks scalable strategies for molecular property pre-
diction and design. By embedding F-index optimization within generative and exploratory
AI pipelines, we advance cheminformatics into a paradigm where theoretical invariants
directly inform actionable design principles, accelerating the discovery of functional mate-
rials with tailored π-electron properties. Future work will focus on experimental validation
of AI-generated graphs and extending these synergies to higher cyclic systems. Moreover,
the expected Outcome of the study is that the F -index improves model accuracy compared
to baseline models, underscoring its physicochemical relevance.

6. INNOVATIONS AND STRATEGIC DIRECTIONS

It is suggested to demonstrate the practical value of the F-index by incorporating it into
a Quantitative Structure-Property Relationship (QSPR) model for predicting the boiling
points of tricyclic hydrocarbons. To do this, in the Feature Engineering stage, combine F-
index with other indices (e.g., Wiener, Zagreb) as input features. Next, in model Training,
Train a Random Forest regressor on experimental boiling point data (e.g., NIST Chemistry
WebBook). This work can be extended for more indices. Finally, for the validation, use
SHAP (SHapley Additive exPlanations) to quantify F-index contributions, revealing its role
in modeling non-covalent interactions [12, 9].
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