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Abstract. This paper presents a novel class of non-stationary 
ternary 4-point subdivision schemes, capable of generating C3 con-
tinuous limit curves. These schemes are built upon the generalized 
ternary scheme of order 5 presented in [19] and iterated functions. A 
distinctive feature is that the shape of the resulting limit curve varies 
with alterations in the initial parameters. To facilitate lo-calized 
shaping adjustments, we devise a non-uniform subdivision scheme 
that extends our non-stationary schemes. This method al-lows for 
tension paramters to be assigned to each edge of the initial control 
polygon, offering enhanced flexibility and precision in curve shaping.
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Key Words: Non-stationary ternary scheme; Smoothness; Iteration;
Non-uniform.

1. Introduction

Over the last few decades, subdivision algorithms have emerged as the most effi-cient 
iterative methods for creating curves and surfaces in the domains of Computer Aided 
Geometric Design and Computer Graphics [4, 5, 9, 10]. Generally speaking, a subdivision 
scheme is divided into a non-stationary one and a stationary one depending on whether 
the subdivision rules change during each recursion level. Compared with the stationary 
schemes [12, 13], a notable benefit of non-stationary
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schemes lies in its capacity to reproduce exponential polynomials used in biomedical
imaging [1]. Beccari et al. [2] constructed a ternary, non-stationary 4-point scheme
employing an iterative method. Likewise, Tan et al. [16] introduced a binary, non-
stationary 3-point approximating scheme bulid upon a distinct iterative method,
capable of generating a diverse range of curves. Based on hyperbolic B-spline basis
functions, Siddiqi et al. [15] presented ternary non-stationary three point and four
point subdivision schemes. Zhang et al. [17] proposed a generalized cubic exponen-
tial B-spline scheme, offering versatility in producing various curve types, among
which conics are also included. Since the ternary subdivision scheme yields a limit
function exhibiting equal or superior smoothness with significantly reducing its sup-
port width (see [3, 11]), this paper presents a new family of non-stationary ternary
4-point schemes, which are derived through iterative modification of the generalized
ternary subdivision scheme of order 5. Compared to the non-stationary schemes
[2, 16, 17], the proposed non-stationary scheme surpasses them in terms of support
width and smoothness. Further, the resulting curves generated by the proposed
schemes will be changed when assigning the different initial parameters. To achieve
localized management of the curve’s shape, we refine the presented non-stationary
ternary subdivision method by adopting a non-uniform approach. This is achieved
by uniquely assigning a local tension parameter to each side of the initial control
polygon.

The article is structured as outlined below. Section 2 provides foundational
concepts and definitions related to subdivision schemes. In Section 3, we develop a
new class of non-stationary ternary 4-point schemes through an iterative approach,
and analyze their convergence and smoothness. Subsequently, Section 4 presents
another non-stationary ternary scheme, utilizing a different iteration method. To
improve localized management of the generated curve, we introduce a non-uniform
scheme. Lastly, Section 5 gives the comprehensive conclusion.

2. Preliminaries

In this section, we introduce the notations for the remainder of the paper and
briefly review those tools used in the analysis of the non-stationary subdivision
schemes.

Provided a set of initial control points, denoted as P 0 = {P 0
j : j ∈ Z} ∈ ℓ0(Z),

where ℓ0(Z) represents the vector space of real-valued sequences that have finite

support. For k ∈ N, P k+1 = {P k+1
j : j ∈ Z} is produced through the non-stationary

ternary scheme

(P k+1)j = (SakP k)j :=
∑
i∈Z

akj−3iP
k
i ,

where ak = {akj : j ∈ Z} is the k-level mask with finite length. We use {Sak}k∈N
to represent the non-stationary scheme. The k-level symbol corresponding to ak

is reprsented as ak(z) =
∑

j∈Z a
k
j z

j . If ak = a, i.e., the mask is not influenced by
changes in k, the subdivision scheme is classified as stationary and labeled as Sa.

To analyze the convergence and smoothness of the non-stationary ternary subd-
vision scheme, we review the relevant definitions and results.
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Definition 2.1. [7] A non-stationary ternary subdivision scheme {Sak}k∈N con-
verges to a continuous function fP 0 ∈ C0, if

lim
k→∞

||fP 0(j3−k)− P k
j ||∞ = 0.

Under the circumstance, we say that {Sak}k∈N is C0 convergent. If fP 0 ∈ Cl,
{Sak}k∈N is said to be Cl convergent.

Theorem 2.2. [18] Suppose a stationary ternary subdivision scheme Sa with a =
{aj}j∈Z satisfies

∑
j∈Z a3j =

∑
j∈Z a3j+1 =

∑
j∈Z a3j+2 = 1. Denote Sn be the nth

order difference scheme of Sa which satisfies∑
j∈Z

a
(n)
3j =

∑
j∈Z

a
(n)
3j+1 =

∑
j∈Z

a
(n)
3j+2 = 1, a(n)(z) =

∑
j∈Z

a
(n)
j zj =

( 3z2

1 + z + z2
)n

a(z).

If there exists a positive integer L such that ∥( 13Sn+1)
L∥∞ < 1, then the scheme Sa

is Cn convergent, where∥∥(1
3
Sn+1)

L
∥∥
∞ =

{∑
j∈Z

∣∣∣(1
3
a
(n+1)

3Lj+i
)(L)

∣∣∣ : i = 0, 1, · · · , 3L − 1
}
.

Definition 2.3. [7] We say that a non-stationary ternary subdivision scheme {Sak}k∈N
is asymptotically equivalent a stationary scheme Sa, if∑

k∈Z
||Sak − Sa||∞ < ∞, with ||Sak ||∞ = max

{∑
j∈Z

|aki−3j | : i = 0, 1, 2
}
.

Theorem 2.4. [7] A non-stationary subdivision scheme {Sak}k∈N is convergent, if
there exists a convergent subdivision scheme Sa, which is asymptotically equivalent
to {Sak}k∈N.

Theorem 2.5. [7] Consider two asymptotically equivalent subdvision schemes with
finite support: a non-stationary ternary scheme denoted by {Sak}k∈N and a station-
ary ternary scheme represented by Sa. Suppose Sa is Cn convergent and

∞∑
k=0

3nk||Sak − Sa||∞ < ∞,

then {Sak}k∈N is Cn convergent.

Next, we revisit fundamental concepts regarding the generation of exponential
polynomials.

Definition 2.6. [14] Given m ∈ N and a finite collection of real or imaginary num-
bers α = {α0, α1, · · · , αm} with αm ̸= 0. The space of m-dimensional exponential
polynomials Vm,α is defined as follows

Vm,α :=
{
f : R → C, f ∈ Cm(R) :

m∑
j=0

αjD
jf = 0

}
.
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Lemma 2.7. [14] Let α(z) =
∑m

j=0 αjz
j and denote by {(θj , τj)}j=0,··· ,N the col-

lection of zeros with multiplicity, fulfilling

Dβα(θj) = 0, β = 0, 1, · · · , τj − 1, j = 0, 1, · · · , N.

Then m =
∑N

j=0 τj, Vm,α :=span{xβeθjx, β = 0, 1, · · · , τj − 1, j = 0, 1, · · · , N}.

Definition 2.8. [8] Given a sequence of subdivision symbols {ak(z)}k∈N, the asso-
ciated subdivision scheme is termed Vm,α-generating, if it converges and, for any

g ∈ Vm,α, there exists an initial sequence g(0) uniformly selected from g̃ ∈ Vm,α

fulfilling the property stated below:

lim
k→∞

San+kSan+k−1 · · ·Sang(0) = g, n ≥ 0.

The subsequent results outline the necesessary conditions for {Sak}k∈N to gen-
erate Vm,α.

Theorem 2.9. [6] A non-stationary ternary subdivision scheme linked to the sym-
bols {ak(z)}k∈N generates Vm,α, under the fulfillment of the following conditions

Dβak(µ) = 0, β = 0, 1, · · · , τj − 1,

for all µ ∈ Uk :=
{
εe−θj3

−k−1

: ε ∈ {e2πι/3, e4πι/3}, ι2 = −1, j = 1, 2, · · · , N
}
.

3. The non-stationary ternary 4-point subdivision scheme based on an
iteration

The goal of this section is to give a class of non-stationary ternary 4-point sub-
division schemes, employing an iteration method that builds upon the generalized
ternary subdivision scheme of order 5 in [19], and study its smoothness.

3.1. Construction of non-stationary ternary 4-point subdivision schemes.
The generalized ternary subdivision scheme of order 5 in [19] is characterized by
the following refinement rules

P
k+1
3i−1=

4(vk)2 + 6vk + 5

9(1 + 2vk)2
P

k
i−1 +

28(vk)2 + 24vk − 1

9(1 + 2vk)2
P

k
i +

4(vk)2 + 6vk + 5

9(1 + 2vk)2
P

k
i+1,

P
k+1
3i =

2vk + 3

9(1 + 2vk)2
P

k
i−1 +

24(vk)2 + 20vk + 1

9(1 + 2vk)2
P

k
i +

12(vk)2 + 14vk + 4

9(1 + 2vk)2
P

k
i+1 +

1

9(1 + 2vk)2
P

k
i+2,

P
k+1
3i+1=

1

9(1 + 2vk)2
P

k
i−1 +

12(vk)2 + 14vk + 4

9(1 + 2vk)2
P

k
i +

24(vk)2 + 20vk + 1

9(1 + 2vk)2
P

k
i+1 +

2vk + 3

9(1 + 2vk)2
P

k
i+2,

(3.1)

where
v
k
=

1

2
(e

t
3k+1 + e

− t
3k+1 ), t ∈ {0, s, ιs|s > 0}, k ∈ N. (3.2)

From Proposition 2 of [3], we know vk and vk+1 fulfill the subsequent iteration

v
k+1

=
1

2
Re

((
v
k
+

√
(vk)2 − 1

) 1
3 +

(
v
k
+

√
(vk)2 − 1

)− 1
3

)
, v

0 ∈ (0,+∞). (3.3)

It can be seen from (3.3) that {vk}k∈N exhibits strictly increasing and converges to
1 as k → +∞ for v0 ∈ (0, 1), while {vk}k∈N is strictly decreasing and vk converges
to 1 as k → +∞ when v0 ∈ (1,+∞). Correspondingly, when v0 = 1, vk = 1 for
k ∈ N, which means that the scheme (3.3) simplified to the ternary quartic B-spline.
Hence limk→+∞ vk = 1.
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In view of Theorem 2.5, it is straightward to deduce that the generalized ternary
subdivision scheme of order 5 is C3 convergent. And according to Theorem 2.9, it
has the capacity to generate the function space E := span{1, x, x2, e±tx}. Conse-
quently, the scheme is capable of generating conic sections.

Actually, the non-stationarity of the subdivision scheme (3.1) results from the
iteration (3.3). And the mask of the scheme (3.1) can be regarded as functions of
this iteration. Additionally, the utilization of the function g(x) = 1

1+2x allows for a

reformulation of the generalized ternary subdivision scheme of order 5 in (3.1), into
an alternative representation

P k+1
3i−1=ak

2P
k
i−1 + ak

−1P
k
i + ak

−4P
k
i+1,

P k+1
3i =ak

3P
k
i−1 + ak

0P
k
i + ak

−3P
k
i+1 + ak

−6P
k
i+2,

P k+1
3i+1=ak

4P
k
i−1 + ak

1P
k
i + ak

−2P
k
i+1 + ak

−5P
k
i+2,

(3.4)

with the k-level mask

a
k
−6 = a

k
4 =

1

9
g
2
(v

k
), a

k
−5 = a

k
3 =

1

9
g(v

k
) +

2

9
g
2
(v

k
), a

k
−4 = a

k
2 =

1

9
+

1

9
g(v

k
) +

1

3
g
2
(v

k
),

a
k
−3 = a

k
1 =

1

3
+

1

9
g(v

k
), a

k
−2 = a

k
0 =

2

3
−

2

9
g(v

k
) −

1

3
g
2
(v

k
), a

k
−1 =

7

9
−

2

9
g(v

k
) −

2

3
g
2
(v

k
).

(3.5)

Regarding the function g(x), it is noteworthy limx→0+ g(x) = 1, limx→1 g(x) =
1
3 .

Together with the fact that limv0→0+ g(v0) = 1, limk→∞ vk = 1, we actually have
limk→∞ g(vk) = 1

3 .
Indeed, there exists potential candidates for the function g(x), if using different

functions instead of the function g(x) or the iteration (3.3) in (3.4), we can get a
different non-stationary ternary subdivision scheme. Hence, we can take a candidate

gk1 (x) =
1

2x+xγk with an iteration γk+1 = γk

3 and γ0 ≥ 0. Note that gk1 (x) for γ
0 > 0

exhibits the same characteristic as g(x), namely, limx→1 g
k
1 (x) =

1
3 . Besides, when

γ0 = 0, gk1 (x) simplifies to g(x). We define the scheme {Sak
1
}k∈N as the one whose

mask is the one in (3.5) with g(vk) replaced by gk1 (v
k). In this case, the scheme can

be seen as one version of the modified generalized ternary scheme of order 5.

Remark 3.1. Note that if γ0 = 0, then γk = 1 for k ∈ N, and the scheme {Sak
1
}k∈N

reduces to the generalized ternary scheme of order 5 in [19]. In particular, when
v0 = 1, the scheme transforms into the ternary quartic B-spline scheme.

Fig 1 illustrates visual comparision of the limit curves generated by the schemes
in [?, ?] and the scheme {Sak

1
}k∈N from the same control polygon. From Fig 1 we can

see that the scheme {Sak
1
}k∈N exhibits superior performance relative to the other

two schemes, due to the existence of γ0. Fig 2 and Fig 3 illustrate the generation
of some limit curves by the non-stationary ternary scheme {Sak

1
}k∈N with different

parameters v0 and γ0. From Fig 3, it shows that when v0 ∈ (0, 1), the limit curves
tend to converge towards the initial control polygon as γ0 decreases. Conversely,
when v0 ∈ (1,+∞), the limit curves are close to the initial control polygon with
the increasing of the parameter γ0. When v0 = 1, the limit curve does not change
with the variation of the parameter γ0, because the scheme {Sak

1
}k∈N turns into a

stationary scheme in this case.
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(a) (b) (c) (d) (e)

Figure 1. Comparison between the limit curves obtained by the generalized

ternary subdivision scheme of order 5 in [19](a), the scheme in [15](b-c), the

non-stationary ternary subdivision scheme in [15] and the scheme {Sak
1
}k∈N

(d-e). (a) for v0 = 10, (b) for α = 0.17π, (c) for α = 0.5π, (d) for γ0 =

1.5, v0 = 10, (e) for γ0 = 15, v0 = 10.
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Figure 2. Limit curves generated by the scheme {Sak
1
}k∈N with v0 = 0.1 and

γ0 = 0, 4, 8, 16, 64 (from left to right).
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Figure 3. Limit curves generated by the scheme {Sak
1
}k∈N with v0 =

0.1, 1, 10, 100 (from left to right) and γ0 = 0(red), 5(green), 25(blue) and
125(magenta), respectively. The black is the initial control polygon.

3.2. Smoothness of non-stationary ternary 4-point subdivision schemes.

Theorem 3.2. For γ0 ≥ 0 and v0 ∈ (0,+∞), the non-stationary ternary 4-point
subdivision scheme {Sak

1
}k∈N is convergent. And the convergence rate of {Sak

1
}k∈N

is bounded by

∥Fk(t)− S∞
akf

0∥∞ ≤ 12C

7
(
5

12
)k−M ,

where C is a generic constant.

Proof. Note that the symbol about the scheme {Sak
1
}k∈N can be expressed in the

following form:

a
k
(z)=

[ 1
9

+
1

9
g
k
1 (v

k
) +

1

3
(g

k
1 (v

k
))

2
]
(z

2
+ z

−4
) +

[ 1
9
g
k
1 (v

k
) +

2

9
(g

k
1 (v

k
))

2
]
(z

3
+ z

−5
)+[ 2

3
−

2

9
g
k
1 (v

k
) −

1

3
(g

k
1 (v

k
))

2
]
(1 + z

−2
) +

[ 1
3

+
1

9
g
k
1 (v

k
)
]
(z + z

−3
) +

1

9
(g

k
1 (v

k
))

2

(z
−6

+ z
4
) +

[ 7
9

−
2

9
g
k
1 (v

k
) −

2

3
(g

k
1 (v

k
))

2
]
z
−1

.
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Let ak(z) = (1 + z + z2)bk(z), then

b
k
(z) =

1

9
g
k
1 (v

k
)(z

2
+ z

−6
) + [

1

9
g
k
1 (v

k
) +

1

9
(g

k
1 (v

k
))

2
](z + z

−5
) + [

1

9
g
k
1 (v

k
) +

1

9
(g

k
1 (v

k
))

2
](1 + z

−4
)

+ [
2

9
−

2

9
(g

k
1 (v

k
))

2
](z

−1
+ z

−3
) + [

1

3
−

2

9
(g

k
1 (v

k
))

2 −
2

9
g
k
1 (v

k
)]z

−2
.

From the factorization of ak(z), we have

L(∆fk+1; z) =
∑
j∈Z

(∆fk+1)jz
j =

∑
j∈Z

(fk+1
j − fk+1

j−1 )z
j

= L(fk+1; z)− zL(fk+1; z) = (1− z)L(fk+1; z)

= (1− z)ak(z)L(fk; z3) = (1− z2)bk(z) = L(fk; z3)

= bk(z)L(∆fk; z3).

which implies

Sbk∆fk = ∆(Sakfk). (3.6)

Consider the sequence {Fk(t)}k∈Z defined by Fk(3
kα) = fk

α, α ∈ Z. To show
convergence of Sak , it is sufficient to show that {Fk(t)} is a Cauchy sequence with
respect to the sup-norm. By the observation that a piecewise linear function attains
its extreme values at its breakpoints

sup
t∈R

|Fk+1(t) − Fk(t)| = max
{
sup
i∈Z

|fk+1
3i − g

k+1
3i |, sup

i∈Z
|fk+1

3i+1 − g
k+1
3i+1|, sup

i∈Z
|fk+1

3i+2 − g
k+1
3i+2|

}
, (3.7)

where

gk+1
3i =

1

3
fk
i−1 +

2

3
fk
i , gk+1

3i+1 = fk
i , gk+1

3i+2 =
2

3
fk
i +

1

3
fk
i+1. (3.8)

In terms of the z-transform, (3.8) can be represented by

L(gk+1; z) =
(1 + z + z2)2

3z
L(fk; z3).

Thus

L(fk+1; z)− L(gk+1; z) = (ak(z)− (1 + z + z2)2

3z
)L(fk; z3)

= (1 + z + z2)(bk(z)− 1 + z + z2

3z
)L(fk; z3)

= (1 + z)dk(z)L(fk; z3),

with dk(z) = bk(z)− 1+z+z2

3z . Since ak(1) = 3, dk(1) = 0, hence dk(z) = (1−z)ek(z),
which implies

e
k
(z) = −

(gk
1 (v

k))2z

9
+

(gk
1 (v

k)2

9z6
+

3 − gk
1 (v

k) − 2(gk
1 (v

k))2

9
+

5 − gk
1 (v

k) − 3(gk
1 (v

k))2

9z

+
6 − (gk

1 (v
k) − gk

1 (v
k))2

9z2
+

gk
1 (v

k + (gk
1 (v

k)2 + 3

9z3
+

1 + gk
1 (v

k + 3(gk
1 (v

k)2

9z4

+
gk
1 (v

k + 2(gk
1 (v

k)2

9z5
.

This leads finnally to

L(fk+1 − gk+1; z) = ek(z)(1− z3)L(fk; z3) = ek(z)L(∆fk; z3). (3.9)
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Recalling that, by (3.7),

∥Fk+1 − Fk∥∞ = sup
j∈Z

|fk+1
j − gk+1

j | = ∥fk+1 − gk+1∥∞.

Combing (3.6) with (3.7), we obtain

fk+1 − gk+1 = Sek∆fk = SekSb1Sb2 · · ·Sbk∆f0.

So

∥Fk+1 − Fk∥∞ = ∥fk+1 − gk+1∥∞ ≤ ∥Sek∥∞∥Sb1Sb2 · · ·Sbk∆f0∥∞.

Since limk→∞ gk1 (v
k) = 1

3 , then there exists M ∈ Z+ such that for every k > M

we have gk1 (v
k) ≤ 1

2 ≤ 1. Furthermore for every k > M ,

∥S
bk

∥∞ =max
{∑

j∈Z
|bki−3j |

}
= max

{
|
3 − 2(gk

1 (v
k))2 − 2gk

1 (v
k)

9
|,

(gk
1 (v

k))2

9
+ |

2 − 2(gk
1 (v

k)2

9
|

+ |
(gk

1 (v
k))2 + 1

9
| + |

gk
1 (v

k) + (gk
1 (v

k))2

9
| ≤

5

12
,

∥S
ek

∥∞ =max
{∑

j∈Z
|eki−3j |

}
= max

{
|
6 − (gk

1 (v
k))2 − gk

1 (v
k)

9
| + |

gk
1 (v

k) + 2(gk
1 (v

k))2

9
|

+
(gk

1 (v
k))2

9
, |

3 − gk
1 (v

k − 2(gk
1 (v

k)2

9
| + |

gk
1 (v

k) + (gk
1 (v

k))2 + 3

9
| +

(gk
1 (v

k)2

9

5 − gk
1 (v

k − 3(gk
1 (v

k)2

9
+ |

1 + gk
1 (v

k + 3(gk
1 (v

k)2

9
|
}

≤
7

9
.

Hence
∥Fk+1 − Fk∥∞ ≤∥S

ek
∥∞∥Sb1Sb2 · · ·S

bk
∆f

0∥∞

=∥S
ek

∥∞∥∥Sb1Sb2 · · ·SbM SbM+1SbM+2 · · ·S
bk

∆f
0∥∞

≤C(
5

12
)
k−M

,

where C is a generic constant. Thus {Fk(t)}k∈Z is uniformly convergent.
Note that

∥(Fk − S
∞
akf

0
)(x)∥∞ = lim

ℓ→∞
|Fℓ(x) − Fk(x)| ≤

∞∑
j=k

|Fj+1(x) − Fj(x)|

≤
∞∑

j=k

C(
5

12
)
j−M

=
12C

7
(
5

12
)
k−M

.

□

Theorem 3.3. For γ0 ≥ 0 and v0 ∈ (0,+∞), the non-stationary ternary 4-point
subdivision scheme {Sak

1
}k∈N is C3 convergent.

Proof. Let qk(z) = ( 3z
1+z+z2 )

3ak(z), where

qk(z) = 3
[
gk1 (v

k)
]2
(z + z−3) + [3gk1 (v

k)− 3(gk1 (v
k))2](1 + z−2) + 3[1− 2gk1 (v

k)]z−1.

To establish the C3 convergence of the proposed non-stationary ternary scheme,
it suffices to demonstrate that the scheme {Sqk}k∈N, which is associated with the

function qk(z), is C0 convergent.
As k goes to ∞, qk(z) becomes

q(z) =
1

3
(z + z−3) +

2

3
(1 + z−2) + z−1.
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By Theorem 2.2, we have the scheme Sq associated with q(z) is C0. Note that∑
j∈Z

|qk3j − q3j |

=
∑
j∈Z

|qk3j+1 − q3j+1|

=
∣∣∣3gk1 (vk)− 3(gk1 (v

k))2 − 2

3

∣∣∣+ ∣∣∣3(gk1 (vk))2 − 1

3

∣∣∣
≤
∣∣∣3gk1 (vk)− 1

∣∣∣+ 2
∣∣∣3(gk1 (vk))2 − 1

3

∣∣∣.
Together with the definition of fk

1 (x), it can be seen that there exists a constant c1
independent of k such that∑

j∈Z

|qk3j − q3j |=
∑
j∈Z

|qk3j+1 − q3j+1| ≤ c1|vk − 1|.

Similarly, we deduce the existence of another constant c2, which is not reliant on k,
satisfying the following condition:∑

j∈Z

|qk3j+2 − q3j+2|= 2|1− 3gk1 (v
k)| ≤ c2|vk − 1|.

Denote C = max{c1, c2}, to demonstrate the C0 convergence of the scheme
{Sqk}k∈N, it suffices to prove the condition that∑

k∈Z
∥Sqk − Sq∥∞ < ∞, i.e., C|vk − 1| < ∞.

From (3.3), we derive the existence of a constant L ∈ (0, 1) satisfying

|vk − 1| ≤ L|vk−1 − 1|.
Consequently, we obtain

|vk − 1| ≤ L|vk−1 − 1| ≤ L2|vk−2 − 1| ≤ · · · ≤ Lk|v0 − 1|.
Due to L ∈ (0, 1), we get C|vk−1 − 1| < ∞, i.e.,∑

k∈Z
∥Sqk − Sq∥∞ = max

{∑
j∈Z

|qki+3j − qi+3j |, i = 0, 1, 2
}
< ∞.

Therefore, we can easily verify that the scheme {Sqk}k∈N associated with qk(z) is

C0 convergent, which completes the proof. □

In comparison to the non-stationary schemes in [3, 16, 17], the proposed scheme
{Sak

1
}k∈N surpasses the others in both the area of support and smoothness. A

detailed comparison of these non-stationary schemes is outlined in Table 1.

4. Further discussion

In this section, we extend our exploration by empolying a distinct iteration and
a suitable function to derive a similar scheme. Compared to the scheme {Sak

1
}k∈N,

the proposed scheme in this section is capable of generating a greater diversity of
curves, during to the larger scope of the parameter v0. Furthermore, we present
a locally-controlled, non-uniform ternary 4-point subdivision scheme. This scheme
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Table 1. Comparison of the non-stationary schemes.

Schemes Type P-ary Support Continuity

The scheme in [16] Approximating Binary 6 C3

The scheme in [17] Interpolating Binary 4 C2

The scheme in [3] Interpolating Ternary 5 C2

The scheme{Sak
1
}k∈N Approximating Ternary 5 C3

provides the capability of assigning tension values to each edge of the initial control
polygon, offering greater control.

Specially speaking, we replace the functions g(x) by the function g2(x) =
3
x2 and

vk+1 =
√
vk + 6 with v0 ∈ (−6,+∞), respectively. In this way, we can derive a new

non-stationary ternary 4-point scheme denoted by {Sak
2
}k∈N.

Before focusing on the analysis of the scheme , we present some results about
the sequence {vk}k∈N to be used.

Lemma 4.1. For the sequence vk+1 =
√
vk + 6, v0 ∈ (−6,+∞), it satisfies the

following properties:
(i) if v0 = 3, then vk = 3 for k ∈ N;
(ii) if v0 ∈ (−6, 3), then {vk}k∈N is strictly increasing and vk ∈ (0, 3) for k ∈ N;
(iii) if v0 ∈ (3,+∞), then {vk}k∈N is strictly decreasing and vk ∈ (3,+∞) for

k ∈ N.

Proposition 4.2. [3] Given a monotonic sequence {αk}k∈N, if it is nondecreasing
and possesses an upper bound (nonincreasing with a lower bound), then it converges
to the upper (lower) bound.

Based on the implications derived from Lemma 4.1 and Proposition 4.2, the
subsequent conclusion can be drawn.

Proposition 4.3. Given the initial parameter v0 ∈ (−6,+∞) and vk+1 =
√
vk + 6

for k ∈ N. Then limk→∞ vk = 3.

Similar to the proof of Theorem 3.3, together with Proposition 4.3, we have the
conclusion about the smoothness of the scheme {Sak

2
}k∈N.

Theorem 4.4. The new scheme {Sak
2
}k∈N is C3 convergent, for v0 ∈ (−6,+∞).

Fig 4 shows some curves generated by the scheme {Sak
2
}k∈N with different values

of v0. Compared to those limit curves generated by the scheme {Sak
1
}k∈N, these

curves have richer shape, as the wide rage of parameter v0. Note that, for the
scheme {Sak

2
}k∈N, altering the initial value of v0 leads to variations in the shape

of the resulting limit curves. To control the limit curves well, we assign an initial
local tension parameter for each edge of the initial control polygon, i.e., an initial

tension values v0i will be associated with P 0
i P

0
i+1. After k iterations, a tension vki is
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Figure 4. The limit curves generated by the scheme {Sak
2
}k∈N with different

parameters v0.

Figure 5. Generation of Pk+1
3i by the scheme (4.1).

assigned to P k
i P

k
i+1. We make them inherit respectively the tension values

vk+1
3i−1 = vk+1

3i = vk+1
3i+1 =

√
vki + 6.

To align with the specified pattern, the scheme {Sak
2
}k∈N will be consequently de-

scribed by the following nonuniform non-stationary scheme



P
k+1
3i−1=

[ 1

9
+

1

9
g
k
1 (v

k
i ) +

1

3
(g

k
1 (v

k
i ))

2
]
P

k
i−1 +

[ 7

9
−

2

9
g
k
1 (v

k
i ) −

2

3
(g

k
1 (v

k
i ))

2
]
P

k
i +

[ 1

9
+

1

9
g
k
1 (v

k
i ) +

1

3
(g

k
1 (v

k
i ))

2
]
P

k
i+1,

P
k+1
3i =

[ 1

9
g
k
1 (v

k
i ) +

2

9
(g

k
1 (v

k
i ))

2
]
P

k
i−1 +

[ 2

3
−

2

9
g
k
1 (v

k
i ) −

1

3
(g

k
1 (v

k
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2
]
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i +

[ 1

3
+

1

9
g
k
1 (v
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i )

]
P
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1

9
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k
1 (v

k
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2
P
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P
k+1
3i+1=

1

9
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k
1 (v

k
i ))

2
P
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i−1 +

[ 1

3
+

1

9
g
k
1 (v

k
i )
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P

k
i +

[ 2

3
−

2

9
g
k
1 (v

k
i ) −

1
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k
1 (v
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i ))
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P

k
i+1+[ 1

9
g
k
1 (v

k
i ) +

2

9
(g

k
1 (v

k
i ))

2
]
P

k
i+2.

(4.1)

The specific process is shown in Fig 5.

Remark 4.5. The non-uniform non-stationary scheme (4.1) reduces to the uniform
non-stationary scheme {Sak

2
}k∈N, when each initial tension is equal to the same

value, i.e., v0i = v0. In particular, the scheme (4.1) becomes the ternary quartic
B-spline scheme, when v0i ≡ 3.

Fig 6 and Fig 7 show limit curves generated by the non-uniform scheme (4.1)
with different local tension parameters. From Fig 6 and Fig 7, we can see that the
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Figure 6. Limit curves generated by the scheme (4.1) with v0i = 3(i ̸= 6) and

v06 = 1.5, 1.75, 2, 2.25, 2.5(from left to right).
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Figure 7. Limit curves generated by the scheme (4.1) with the following lo-

cal tensions v0i : (a)[3,1.5,3,1.5,3,1.5], (b)[3,1.5,3,1.5,3,3], (c)[3,1.75,3,1.75,3,3],
(d)[3,1.75,3,1.75,3,2], (e)[3,1.75,3,1.75,3,1.75].

resulting curves tend to expand towards the initial polygon with the increasing of
the local parameter.

5. Conclusion

This paper presented a family of non-stationary ternary 4-point subdivision
schemes utilizing iterative methods. These schemes are capable of generating C3

limiting curves, offering a diverse range of curve shapes. To achieve localized control
over the shape of limit curves, we have devised a non-uniform 4-point scheme that
builds upon the non-stationary ternary 4-poit scheme. The non-uniform scheme
incorporates an initial local tension parameter for each edge of the initial polygon,
enabling precise manipulation of the limit curve’s local geometry.
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