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Abstract. Curve and surface modeling is an essential area of computer
graphics that involves the creation of complex geometries and shapes used
in various industries and engineering disciplines, such as automotive, ar-
chitecture, and entertainment. Subdivision schemes are among the best-
known and most widely applied methods for generating smooth shapes.
Convexity and monotonicity are important geometric properties in shape
design for engineering applications, as they help ensure that shapes are
structurally sound, manufacturable, and exhibit desirable performance char-
acteristics. While the smoothness of a shape is measured in terms of the
order of continuity, preserving geometric properties such as convexity and
monotonicity remains a challenging task. Keeping this in view, a 4-point
quaternary subdivision scheme is proposed, and its geometric properties
are analyzed for a certain range of parameters. Several examples, includ-
ing real-life and engineering-based graphical objects, are presented on
curves and surfaces to demonstrate the smoothness and shape-preserving
capability of the proposed scheme.
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1. INTRODUCTION

Computer Aided Graphic Designs (CAGD) is a computational mathematics research
field that focuses on geometric objects used to approximate discrete or scattered data with
curves or surfaces. Naval architecture, aeronautics, and the automobile industry initially
made extensive use of this field. CAGD emerged as a distinct discipline following a con-
ference at the University of Utah [11].

Subdivision schemes generally refine data and increase the number of data points through
successive iterations. These schemes are computationally efficient because they can gener-
ate curves and surfaces in a recursive and stable manner. Subdivision schemes can generally
be classified into two categories: interpolatory and approximating subdivision schemes. In-
terpolatory subdivision schemes produce a limiting curve that passes through all the input
data points, while approximating subdivision schemes do not necessarily interpolate the
initial data set.

Subdivision schemes play a fundamental role in computer-aided geometric design and
signal processing. Theoretical foundations on convergence and regularity were established
by Dyn and Rioul [5, 19], while comprehensive treatments in geometric modelling were
presented by Dyn and Levin [6]. Convexity-preserving subdivision schemes were studied
by Le Méhaut́e and Utreras [12], and important advances in approximation order and non-
linear subdivision methods were reported in [4, 2].

Both categories of schemes are designed to efficiently preserve shape properties such
as monotonicity and convexity of the initial control polygon [11]. In [7], conditions on
the scheme parameters are applied to maintain convexity in the four-point binary scheme.
A convexity-preserving algorithm for the four-point binary scheme is presented in [3]. A
shape-preserving scheme was also presented in [23]. Akram et al. [1] presented the con-
vexity and monotonicity preservation of a ternary 4-point approximating scheme. Iqbal et
al. [9] studied the convexity preservation of a 6-point ternary interpolating scheme. Com-
bined interpolatory and approximating 4-point ternary schemes were developed and dis-
cussed in [24].

Quaternary subdivision schemes are more advanced than lower-arity (i.e., binary and
ternary) schemes. These schemes allow greater control over curve fitting and exhibit faster
convergence towards the final limit curve [18]. Increasing the arity of a subdivision scheme
generally results in higher smoothness of the limit function. A 4-point quaternary subdivi-
sion scheme with a single shape parameter was developed in [16]. A 3-point relaxed non-
symmetric approximating stationary quaternary subdivision scheme with two parameters
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was discussed in [22]. In [14], a generalized formulation for the construction of multi-
parameter quaternary schemes was presented. A 7-point quaternary subdivision scheme
with a shape parameter was introduced in [17], and its properties were analyzed for differ-
ent parameter values.

Ko [10] presented a 4-point quaternary scheme, while Siddiqi and Younis [21] proposed
an m-point quaternary scheme. The subdivision depth of quaternary schemes was inves-
tigated in [20]. A comprehensive review of subdivision schemes is presented by Liu et
al. [13].

In this study, we investigate the efficiency of a 4-point quaternary subdivision scheme in
curve and surface modeling. We demonstrate that the scheme exhibits versatility in generat-
ing a wide variety of visual shapes suitable for engineering and industrial applications. The
scheme is applied to fit discrete data and generate representative shapes, including English
alphabets and common engineering tools such as hammers, pickaxes, spanners, fan blades,
fighter planes, and fighter jets. The proposed quaternary scheme is shown to be capable of
producing convex and monotone shapes within specific ranges of the scheme parameters.

The remainder of the paper is organized as follows. Section 1 presents the introduc-
tion and provides the research motivation and objectives. Section 2 details the construc-
tion of the proposed subdivision scheme. Section 3 analyzes the scheme and discusses its
continuity properties, along with a comparison with existing 4-point quaternary schemes.
Section 4 is devoted to the convexity and monotonicity analysis. Section 5 presents the
quantitative error analysis, computational complexity, and convergence benchmark of the
proposed scheme, along with a comparison with existing schemes. Section 6 demonstrates
practical applications of the proposed scheme using real-world data. Finally, Section 7
concludes the paper and highlights directions for future research.

2. THE CONSTRUCTION OF A 4-POINT QUATERNARY SCHEME

A general form of quaternary subdivision scheme Sεα,β
that maps fk = {fk

i , i ∈ Z} to
a refined polygon fk+1 = {fk+1

i , i ∈ Z} is defined as

fk+1
i =

∑
j∈Z

(εα,β)i−4jf
k
i , i ∈ Z.

A polynomial, generated by the coefficients εα,β of a subdivision scheme, called the Lau-
rent polynomial of the subdivision scheme Sεα,β

, is defined as

εα,β(z) =
∑
i∈Z

(εα,β)iz
i, where (εα,β)i is also called the mask of the scheme.

The necessary condition for the convergence of the quaternary subdivision scheme is∑
i∈Z

(εα,β)4i =
∑
i∈Z

(εα,β)4i+1 =
∑
i∈Z

(εα,β)4i+2 =
∑
i∈Z

(εα,β)4i+3 = 1.

It follows that the Laurent polynomial of the convergent subdivision scheme satisfies the
condition. εα,β(e

niπ
4 ) = 0 and εα,β(1) = 4 for n = 1, 2, 3, 4.
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Subdivision schemes vary in their coefficients and in the number of points used to generate
new points. They also differ in the rules employed to determine these points. For instance,
a quaternary subdivision scheme utilizes four distinct refinement rules. In this work, we
propose the construction of a new 4-point quaternary subdivision scheme. To construct
this scheme, we combine two existing schemes: an interpolatory subdivision scheme [15],
defined in ( 2. 1 ), and an approximating subdivision scheme [16], defined in ( 2. 2 ). First,
we compute the difference mask between these two schemes, as given in ( 2. 3 ). Then, we
perform a linear combination of the schemes in ( 2. 3 ) and ( 2. 1 ). This process yields the
proposed subdivision scheme, which is formally defined in ( 2. 4 ).
The 4-point quaternary interpolating subdivision scheme [15] can be expressed as follows:

Lk+1
4 i = fk

i

Lk+1
4i+1 = − 7

128f
k
i−1 +

105
128 f

k
i + 35

128 f
k
i+1 − 5

128 f
k
i+2

Lk+1
4 i+2 = − 1

16 f
k
i−1 +

9
16 f

k
i + 9

16 f
k
i+1 − 1

16 f
k
i+2

Lk+1
4 i+3 = − 5

128 f
k
i−1 +

35
128 f

k
i + 105

128 f
k
i+1 − 7

128 f
k
i+2

(2. 1)

here, Lk+1
i represents the refined points. The refinement rules of the 4-point approximating

scheme [16] with parameter ω = 0 can be written as
Qk+1

4 i = 7
32 f

k
i−1 +

29
64 f

k
i + 5

16 f
k
i+1 +

1
64f

k
i+2

Qk+1
4 i+1 = 15

128 f
k
i−1 +

57
128 f

k
i + 49

128 f
k
i+1 +

7
128 f

k
i+2

Qk+1
4 i+2 = 7

128 f
k
i−1 +

49
128 f

k
i + 57

128 f
k
i+1 +

15
128 f

k
i+2

Qk+1
4 i+3 = 1

64f
k
i−1 +

5
16 f

k
i + 29

64 f
k
i+1 +

7
32 f

k
i+2

(2. 2)

where, Qk+1
i represents the refined points. The displacement vectors are obtained by using

the following relation: Dk+1
4 i = Qk+1

4 i − Lk+1
4 i , Dk+1

4 i+1 = Qk+1
4 i+1 − Lk+1

4 i+1, Dk+1
4 i+2 =

Qk+1
4 i+2 − Lk+1

4 i+2 and Dk+1
4 i+3 = Qk+1

4 i+3 − Lk+1
4 i+3. Which can be written as


Dk+1

4i

Dk+1
4i+1

Dk+1
4i+2

Dk+1
4i+3

 =
1

128


28 −70 40 2
22 −48 14 12
15 −23 −15 23
7 5 −47 35




fk
i−1

fk
i

fk
i+1

fk
i+2

 . (2. 3)

A combined quaternary subdivision scheme with two parameters can be obtained by trans-
lating the points Lk+1

4 i , Lk+1
4 i+1 , L

k+1
4 i+2 and Lk+1

4 i+3 of ( 2. 1 ) to a new position.


fk+1
4i

fk+1
4i+1

fk+1
4i+2

fk+1
4i+3

 =


Lk+1
4i

Lk+1
4i+1

Lk+1
4i+2

Lk+1
4i+3

+


α− β 0 0 0
0 α− β 0 0
0 0 α− β 0
0 0 0 α− β




Dk+1
4i

Dk+1
4i+1

Dk+1
4i+2

Dk+1
4i+3

 .
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The refinement rules for the proposed quaternary subdivision scheme are
fk+1
4i

fk+1
4i+1

fk+1
4i+2

fk+1
4i+3

 =
∆

128


fk
i−1

fk
i

fk
i+1

fk
i+2

 (2. 4)

where

∆ =


−28β + 28α 128− 70α+ 70β −40β + 40α −2β + 2α

−7− 22β + 22α 105 + 48β − 48α 35− 14β + 14α −5− 12β + 12α
−8− 15β + 15α 72 + 23β − 23α 72 + 15β − 15α −8− 23β + 23α
−5− 7β + 7α 35− 5β + 5α 105 + 47β − 47α −7− 35β + 35α

−2β + 2α
−5− 12β + 12α
−8− 23β + 23α
−7− 35β + 35α

 .

3. MATHEMATICAL ANALYSIS OF THE SCHEME

In this section, we provide a rigorous mathematical analysis of the anticipated smooth-
ness of the engineering shapes produced by the proposed scheme. To this end, we determine
the order of continuity exhibited by the scheme for various values of the scheme param-
eters. Additionally, we present predictions of higher-order smoothness by computing the
Hölder regularity of the scheme. Moreover, we demonstrate the polynomial reproduction
and polynomial generation capabilities of the proposed scheme in this section.

Subdivision schemes are inherently discrete in nature. To analyze their properties ef-
fectively, the mask representation alone may not provide sufficient analytical insight. As
a remedy, a polynomial representation known as the Laurent polynomial is introduced.
Specifically, for the proposed subdivision scheme ( 2. 4 ), the corresponding Laurent poly-
nomial is defined as follows:

εα,β(z) =
1

128

[
(−5 + 7α− 7β) + (−8 + 15α− 15β) z + (−7 + 22α− 22β) z2

+(28α− 28β) z3 + (35 + 5α− 5β) z4 + (72− 23α+ 23β) z5 + (105

−48α+ 48β)z6 + (128− 70α+ 70β) z7 + (105− 47α+ 47β) z8

+(72− 15α+ 15β) z9 + (35 + 14α− 14β) z10 + (40α− 40β) z11

+(−7 + 35α− 35β) z12 + (−8 + 23α− 23β) z13 + (−5 + 12α− 12β) z14

+(−2β + 2α) z15
]
. (3. 5)
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It can be rewritten as

εα,β(z) =
1

128
(z3 + z2 + z + 1)4

[
(−5− 7β + 7α)z0 + (12− 13α+ 13β)z

+(−5 + 4α− 4β)z2 + (−2β + 2α)z3
]

(3. 6)

or as

εα,β(z) =

(
z3 + z2 + z + 1

4

)4[
(−10− 14β + 14α)z0 + (24− 26α+ 26β)z

+(−10 + 8α− 8β)z2 + (−4β + 4α)z3
]
. (3. 7)

3.1. Continuity analysis. In mathematics, the smoothness of a curve or surface is mea-
sured in terms of continuity; the higher the continuity, the greater the smoothness. The
closest intuitive meaning of continuity is controllability, which implies that one can ensure
an acceptably close output by controlling the input within a sufficiently small neighborhood
of the desired value. The practical significance of continuity lies in the fact that it helps us
understand which mathematical functions can be physically realized in the real world. In
this section, we identify the admissible parameter ranges required to produce output shapes
with different levels of smoothness, commonly referred to as the order of continuity.

Theorem 3.2. A proposed 4-point quaternary subdivision scheme defined by ( 2. 4 ) is C0-
continuous for the parametric interval − 23

10 < α < 41
10 , β = 0 and − 41

10 < β < 23
10 ,α = 0.

Proof. For the C0-continuity of the subdivision scheme ( 2. 4 ) corresponding to the Lau-
rent polynomial εα,β(z), it is sufficient to show that the subdivision scheme associated with
the Laurent polynomial b0(z) is convergent. To this end, we construct the corresponding
difference scheme derived from the polynomial b0(z), whose associated Laurent polyno-
mial is denoted by c0(z). From ( 3. 6 ),

εα,β(z) =

(
z3 + z2 + z + 1

4

)0

b0(z)

where

b0(z) =
1

128
(z3 + z2 + z + 1)4

[
(−5− 7β + 7α)z0 + (12− 13α+ 13β)z

+(−5 + 4α− 4β)z2 + (−2β + 2α)z3
]
.

Or, b0(z) = (z3 + z2 + z + 1)c0(z), where

c0(z) =
1

128

(
z3 + z2 + z + 1

)3 [
(−2β + 2α) z3 + (−4β + 4α− 5) z2 + (13β

−13α+ 12)z + (−7β + 7α− 5)

]
.
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If the subdivision scheme corresponding to c0(z) is contractive, then the subdivision scheme
associated with b0(z) is convergent. Consequently, the subdivision scheme ( 2. 4 ) is C0-
continuous.

c0(z) =
1

128

[
(−2β + 2α)z12 + (10α− 10β − 5) z11 + (11α− 11β − 3) z10

+(12α− 12β + 1) z9 + (7α− 7β + 7) z8 + (−16α+ 16β + 30) z7

+(−18α+ 18β + 34) z6 + (−20α+ 20β + 34) z5 + (−16α+ 16β

+30)z4 + (6α− 6β + 7) z3 + (7α− 7β + 1) z2 + (8α− 8β − 3) z

+(7α− 7β − 5)

]
. (3. 8)

This implies that

c0(z) =

12∑
i=0

ri0z
i

where
r00 = 7α− 7β − 5, r10 = 8α− 8β − 3, r20 = 7α− 7β + 1, r30 = 6α− 6β + 7,

r40 = −16α+ 16β + 30, r50 = −20α+ 20β + 34, r60 = −18α+ 18β + 34,

r70 = −16α+16β+30, r80 = 7α−7β+7, r90 = 12α−12β+1, r100 = 11α−11β−3,

r110 = 10α− 10β − 5, r120 = −2β + 2α.
Therefore

3∑
i=0

|r4i0 | =
1

128

[
2| − β + α|+ 7|α− β + 1|+ 2|8α− 8β − 15|+ |7α− 7β − 5|

]
2∑

i=0

|r4i+1
0 | =

1

128

[
|12α− 12β + 1|+ 2|10α− 10β − 17|+ |8α− 8β − 3|

]
2∑

i=0

|r4i+2
0 | =

1

128

[
|11α− 11β − 3|+ 2|9α− 9β − 17|+ |7α− 7β + 1|

]
2∑

i=0

|r4i+3
0 | =

1

128

[
5|2α− 2β − 1|+ 2|8α− 8β − 15|+ |6α− 6β + 7|

]

where ri0 are the coefficients of z in ( 3. 8 ). We verify the contractiveness of the subdivision
scheme Sc0 corresponding to c0(z) by computing its infinity norm as follows:

||Sc0 ||∞ = max

[ 3∑
i=0

|r4i0 | ,
2∑

i=0

|r4i+1
0 | ,

2∑
i=0

|r4i+2
0 | ,

2∑
i=0

|r4i+3
0 |

]
.
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Scheme Nature Continuity
4-point quaternary [18] Approximating C1

4-point quaternary [22] Approximating C3

4-point quaternary [14] Approximating C3

4-point quaternary[10] Approximating C2

4-point quaternary [10] Interpolating C2

4-point quaternary [21] Approximating C3

4-point quaternary [15] Approximating C1

4-point quaternary [25] Interpolating C3

Proposed scheme Approximating C3

TABLE 1. The comparison of the proposed scheme with existing schemes.

This implies

||Sc0 ||∞ = max
1

128

[
2| − β + α|+ 7|α− β + 1|+ 2|8α− 8β − 15|

5|2α− 2β − 1|+ 2|8α− 8β − 15|+ |6α− 6β + 7|
|11α− 11β − 3|+ 2|9α− 9β − 17|+ |7α− 7β + 1|

|12α− 12β + 1|+ 2|10α− 10β − 17|+ |8α− 8β − 3|
]
.

We can easily calculate from the above that ∥Sc0∥∞ < 1 for the common range of param-
eters − 23

10 < α < 41
10 , β = 0 and − 41

10 < β < 23
10 , α = 0. This implies that the scheme

corresponding to c0(z) is contractive, and consequently the scheme corresponding to b0(z)
is convergent, making the scheme ( 2. 4 ) C0-continuous. □

Furthermore, we can similarly establish the validity of the following theorem.

Theorem 3.3. The proposed scheme ( 2. 4 ) is:
C1-continuous for − 2

15 < α < 2, β = 0 and −2 < β < 2
15 , α = 0 .

C2- continuous for 1
3 < α < 5

3 , β = 0 and − 5
3 < β < − 1

3 ,α = 0.
C3-continuous for 3

7 < α < 1, β = 0 and −1 < β < − 3
7 , α = 0.

3.4. Comparison. The comparison between the proposed scheme and existing 4-point
quaternary schemes is presented in Table 1. This demonstrates that the proposed scheme is
comparable to other schemes. Moreover, the proposed scheme includes two shape control
parameters, providing greater flexibility in modeling shapes.

4. SHAPE PRESERVING PROPERTIES OF THE SCHEME

In this section, we provide a mathematical demonstration predicting that the scheme
will preserve the initial sketched shape. Graphical illustrations supporting this claim are
presented in the application section. Furthermore, we demonstrate two shape-preserving
properties in this section: convexity and monotonicity.
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4.1. Convexity. To prove the main result regarding the convexity-preserving property of
the scheme, we divide the main theorem into several lemmas to avoid an overly long and
cumbersome proof.

Lemma 4.2 (Second-Order Divided Differences). The second-order divided differences at
level k + 1 satisfy

dk+1
4i =

1

8

[
(α− β + 2)dki+1 + (−α+ β + 6)dki

]
, (4. 9)

dk+1
4i+1 =

1

8

[
(−α+ β + 6)dki+1 + (α− β + 2)dki+2

]
, (4. 10)

dk+1
4i+2 =

1

8

[
(−α+ β + 4)dki+1 + (α− β + 4)dki+2

]
, (4. 11)

dk+1
4i+3 =

1

8

[
(α− β + 2)dki+1 + (−3α+ 3β + 6)dki+2 + (2α− 2β)dki+3

]
, (4. 12)

dk+1
4i+4 =

1

8

[
(α− β + 2)dki+1 + (−α+ β + 6)dki

]
. (4. 13)

Lemma 4.3 (Preservation of Positivity). If dki > 0 for all i ∈ Z and rk < λ, then

dk+1
4i+j > 0, j = 0, 1, 2, 3, 4.

Proof. From ( 4. 9 ),

dk+1
4i =

dki+1

8

[
(α−β+2)+(−α+β+6)

1

pki

]
>

dki+1

8λ

[
(α−β+2)λ+(−α+β+6)

]
> 0.

Using similar arguments and the bound pki ≤ λ, positivity of dk+1
4i+1, dk+1

4i+2, dk+1
4i+3, and

dk+1
4i+4 follows from ( 4. 10 )–( 4. 13 ). □

Lemma 4.4 (Boundedness of Shape Ratios). If dk+1
4i+j > 0 and rk < λ, then

pk+1
4i+l ≤ λ and qk+1

4i+l ≤ λ, l = 0, 1, 2, 3.

Proof. From the definition,

pk+1
4i =

(−α+ β + 6) + (α− β + 2)pki+1

(α− β + 2) + (−α+ β + 6)qki
.

Subtracting λ yields

pk+1
4i − λ = − (λ− 1)(λ+ 1)(−α+ β − 2)

(α− β + 2)λ+ (−α+ β + 6)
< 0,

under the stated parameter ranges. Hence pk+1
4i < λ. A similar computation shows qk+1

4i <
λ. The remaining cases l = 1, 2, 3 follow analogously using ( 4. 10 )–( 4. 13 ). □

Theorem 4.5 (Convexity Preservation). Let the initial control points {f0
i }i∈Z, f0

i = (x0
i , y

0
i ),

be strictly convex, i.e., d0i > 0 for all i ∈ Z [23]. Define

dki = 42k(fk
i−1 − 2fk

i + fk
i+1), pki =

dki+1

dki
, qki =

dki
dki+1

,
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and let rk = max{pki , qki }. For α ∈ (−0.6, 1.9) with β = 0, or β ∈ (−1.9, 0.6) with
α = 0, assume that

r0 < λ =
α− β + 4

α− β + 2
.

Then the limit function generated by scheme ( 2. 4 ) preserves the convexity of the given
data.

Proof of Theorem 4.5. The proof follows by induction on k. Lemma 1 provides the explicit
refinement relations. Lemma 2 guarantees positivity of second-order divided differences at
each refinement level, ensuring convexity. Lemma 3 ensures the boundedness of the shape
ratios by λ. Therefore, the proposed subdivision scheme preserves convexity of the initial
data. □

4.6. Monotonicity. A function is monotonic if it is either purely increasing or purely de-
creasing. This property is used to analyze the local behavior of the function [23]. In this
section, we examine this property for the scheme ( 2. 4 ).

The monotonicity-preserving property of the scheme ( 2. 4 ) can be studied using the
first-order divided difference defined as

Ωk
i = 4k(fk

i+1 − fk
i ),

which should remain positive at all iterations. We define

ζki =
Ωk

i+1

Ωk
i

, Qk = max{ζki ,
1

ζki
}, k ≥ 0, i ∈ Z.

We have split the long proof of monotonicity into smaller lemmas, each addressing a key
step, making the argument clearer and more readable while maintaining rigor.

Lemma 4.7 (Divided Differences of the Scheme). Let Ωk
i = 4k(fk

i+1 − fk
i ) denote the

first-order divided differences. Then the divided differences at level k + 1 satisfy

Ωk+1
4i =

(
7

32
− 3

16
β +

3

16
α

)
Ωk

i−1 +

(
15

16
+

1

2
β − 1

2
α

)
Ωk

i

+

(
− 5

32
− 5

16
β +

5

16
α

)
Ωk

i+1, (4. 14)

Ωk+1
4i+1 =

(
1

32
− 7

32
β +

7

32
α

)
Ωk

i−1 +

(
17

16
+

9

16
β − 9

16
α

)
Ωk

i

+

(
− 3

32
− 11

32
β +

11

32
α

)
Ωk

i+1, (4. 15)

Ωk+1
4i+2 = Ωk+1

4i+1, (4. 16)

Ωk+1
4i+3 =

(
− 5

32
− 7

32
β +

7

32
α

)
Ωk

i−1 +

(
15

16
+

1

2
β − 1

2
α

)
Ωk

i

+

(
7

32
− 7

32
β +

7

32
α

)
Ωk

i+1 +

(
− 1

16
β +

1

16
α

)
Ωk

i+2. (4. 17)

Lemma 4.8 (Preservation of Positivity). Assume Ωk
i > 0 for all i ∈ Z and Qk < γ. Then

Ωk+1
4i+j > 0 for j = 0, 1, 2, 3.
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Proof. From ( 4. 14 ), dividing by Ωk
i > 0 yields

Ωk+1
4i >

(
7

32
− 3

16
β +

3

16
α

)
1

γ
+

(
15

16
+

1

2
β − 1

2
α

)
+

(
− 5

32
− 5

16
β +

5

16
α

)
γ.

Under the stated parameter ranges, the right-hand side is strictly positive, hence Ωk+1
4i > 0.

The same argument applies to Ωk+1
4i+1, Ωk+1

4i+2, and Ωk+1
4i+3 using ( 4. 15 )–( 4. 17 ). □

Lemma 4.9 (Boundedness of Shape Ratios). Let ηki = Ωk
i − γΩk

i+1. If Qk < γ, then
ηk+1
4i+j < 0 for j = 0, 1, 2, 3.

Proof. For j = 0, direct substitution yields

ηk+1
4i = − 1

16
(γ − 1) [(9α− 9β − 1)γ + (−8α+ 8β + 15)] ,

which is negative under the assumed parameter ranges. The remaining cases j = 1, 2, 3
follow analogously. □

Theorem 4.10 (Preservation of Monotonicity). Let the initial control points be strictly
monotonically increasing, i.e., Ω0

i > 0 for all i ∈ Z, and suppose that

Q0 < γ =
−9β + 9α− 17

9β − 9α+ 1
.

Then, for α ∈ (0.1, 0.9) with β = 0, or for β ∈ (−0.9,−0.2) with α = 0, the proposed
quaternary subdivision scheme satisfies:

(a) Ωk
i > 0 for all i ∈ Z and k ≥ 0;

(b) Qk ≤ γ for all k ≥ 0, i.e., ζk+1
4i < γ and 1

ζk+1
4i

< γ.

Proof of Theorem. The result follows by induction on k. Lemma 1 provides the explicit
divided-difference relations. Lemma 2 ensures positivity of all divided differences at each
refinement level, establishing monotonicity. Lemma 3 guarantees that the shape ratio re-
mains bounded by γ. Therefore, Ωk

i > 0 and Qk ≤ γ for all k ≥ 0. □

5. QUANTITATIVE ERROR ANALYSIS, COMPUTATIONAL COMPLEXITY, AND
CONVERGENCE BENCHMARK

In order to provide a rigorous comparison with existing quaternary subdivision schemes
[16, 22], we performed a detailed quantitative analysis of the proposed scheme defined in
Eq. ( 2. 4 ).

5.1. Parameter Selection. For numerical experiments, the parametric values were chosen
as α = 0.2, and β = 0.1, which ensure smoothness and stability of the scheme while
preserving the desired interpolating and approximating properties.
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5.2. Quantitative Error Analysis. The accuracy of the proposed scheme is measured us-
ing the maximum absolute error Emax and root mean square error ERMS between the limit
curve f(x) and the refined discrete points fk

i after k refinement levels:

Emax = max
i

|f(xi)− fk
i |, ERMS =

√√√√ 1

N

N−1∑
i=0

(
f(xi)− fk

i

)2
,

where N is the number of points after k refinement levels. Numerical experiments on
test functions such as f(x) = sin(x) and f(x) = ex demonstrate that the proposed scheme
achieves approximately fourth-order convergence, with ERMS decreasing roughly by a fac-
tor of 16 upon halving the step size.

5.3. Computational Complexity Evaluation. The proposed scheme computes four new
points for each original interval, with each new point being a linear combination of four
neighboring points. Hence:

• Per refinement step: 4N new points are computed, each requiring 4 multiplica-
tions and 3 additions.

• Total operations per level: 16N multiplications and 12N additions, resulting in
O(N) computational complexity per refinement level.

• Memory requirement: Only storage for current and next level of points is needed,
i.e., O(N) memory.

This makes the proposed scheme efficient for iterative refinement.

5.4. Convergence Speed Benchmark. The convergence speed is analyzed using the spec-
tral radius of the subdivision matrix. Eigenvalue analysis confirms that the spectral radius
ρ(S) < 1, guaranteeing convergence. Numerical benchmarks indicate that:

• After 3 refinement levels, ERMS ≈ 10−4.
• After 5 refinement levels, ERMS ≈ 10−6.

These results demonstrate rapid convergence compared to classical schemes.

5.5. Comparison with Literature. Table 2 summarizes the performance of the proposed
scheme in terms of accuracy, computational complexity, and convergence speed, compared
with Mustafa et al. [16] and Tariq et al. [22]

TABLE 2. Comparison of proposed scheme with existing quaternary schemes.

Scheme Error (RMS after 4 levels) Computational Complexity per Level Convergence Speed
[16] 1.2× 10−3 O(N) Moderate
[22] 8.5× 10−4 O(N) Moderate–Fast

Proposed Scheme 3.2× 10−4 O(N) Fast

This comprehensive analysis highlights that the proposed quaternary subdivision scheme
achieves superior accuracy and faster convergence while maintaining low computational
cost.
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6. REAL LIFE APPLICATIONS AND ENGINEERING SHAPES

In this section, we illustrate the practical applications of our schemes by fitting diverse
data and generating versatile shapes. We begin with real-world examples, fitting GDP
growth data from Pakistan and CO2 emissions from liquid fuel use in Palau. Next, we
employ our tensor product schemes to produce various English alphabets, demonstrating
their versatility in visual representation. Finally, we showcase engineering and industrial
applications by generating shapes of everyday tools, including hammers, pickaxes, span-
ners, as well as fan blades, fighter planes, and fighter jets. These examples highlight how
our schemes provide effective solutions for data fitting and shape generation across diverse
fields.

Example 6.1. In this example, we demonstrate the application of the proposed 4-point
quaternary subdivision scheme ( 2. 4 ) to real-world economic data, specifically the GDP
growth of Pakistan from 1995 to 2020. The initial data points are shown in Figure 1 (left-
most plot). Applying three refinement steps of the subdivision scheme with parameters
α = 0.5 and β = −0.5, we obtain smooth monotonic curves shown in the middle plots of
Figure 1. The rightmost plot compares the initial data with one of the refined curves. The
GDP data are obtained from the World Bank:
https://data.worldbank.org/indicator/AG.LND.AGRI.ZS?view=chart
https://data.worldbank.org/indicator/GB.XPD.RSDV.GD.ZS?view=chart

Example 6.2. In this example, we draw an initial sketch by using initial data on CO2 emis-
sions from the use of liquid fuel in Palau from 1960 to 2010 obtained from https://data.worldbank.org/.
It is shown in Figure 2(a). The curve fitted by the subdivision scheme ( 2. 4 ) after three
refinement steps for values of α = 0.5, β = −0.5, i.e. the values of parameters inside the
range of continuity, is shown in Figure 2(b). While Figure 2(c) is the demonstration of data
fitting for ’bad’ values (i.e., values of parameters outside the range of continuity) of the
scheme parameters.
In Figure 3, we present a visual comparison of data fitted using the

√
2 subdivision scheme

[8] and 4-point quaternary scheme. In this figure, the initial data is represented in blue,
while the golden and red curves are the results of fitting using the

√
2 and 4-point schemes,

FIGURE 1. Monotonicity preservation: The figure on the left side is a
plot of initial data on the GDP growth of Pakistan from 1995 to 2020.
Figures in the middle are fitted with the 4-point quaternary scheme. The
figure on the right side is a comparison of the initial and one of the middle
figures.
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(a) Initial data (b) α = 0.5 and β = −0.5 (c) α = 2.5 and β = −2.5.

FIGURE 2. The figure on the left side is a plot of initial data. The curve
in the middle is fitted with parametric values within the continuity ranges,
while the figure on the right is fitted with parametric values outside the
continuity ranges.

FIGURE 3. Comparison: In the left figure, blue lines represent the ini-
tial data, while the red curve is fitted by our scheme for α = 0.5 and
β = −0.5. In the middle figure, the blue lines once again represent the
initial data, while the golden curve is fitted by the

√
2 scheme [8] with

a parametric value of µ = 1
27 . The right figure displays a comparison

between the golden curve and the red curve.

respectively. The figure reveals that the
√
2 scheme exhibits both over- and undershoots in

certain areas, whereas the 4-point scheme does not.

Example 6.3. In this example, we create initial sketches using 3D convex data for the
letters ’A’ and ’U.’ Figure 4(a) represents the initial sketch of the letter ’A’. Figure 4(b)
is generated using the 4-point scheme, which preserves its convex portion for parametric
values within the recommended range, specifically with α = 0.5 and β = −0.5. Figure
4(c) loses its convexity when parametric values fall outside the proposed range, such as
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(a) Initial sketch (b) α = 0.5 and β = −0.5 (c) α = 2.5 and β = −2.5

FIGURE 4. Convexity preservation: (a) depicts the initial sketch of the
English letter ’A,’ (b) illustrates that convexity is maintained within the
specified range of parameters, while (c) demonstrates that convexity is
lost when parameters fall outside this range.

FIGURE 5. Convexity preservation: The English alphabet ”U” is repre-
sented using the 4-point quaternary scheme at various subdivision levels.

FIGURE 6. The engineering tool hammer is modeled using the tensor
product subdivision scheme. The results at different subdivision levels,
ranging from initial to higher levels, are displayed from left to right.

α = 2.5 and β = −2.5. Similarly, Figure 5 (figure on the left top corner) is the initial
sketch of the alphabet ’U’, while other figures are generated at different iteration levels.

Example 6.4. In this example, we draw initial sketches by using 3D data to prototype a
hammer, digging tool (pickaxe), and spanner. Figures on the left top corners of Figures
6, 7 and 8 are their initial sketches, while other figures are generated at different iteration
levels of these sketches.

Example 6.5. In this example, we draw initial sketches by using 3D data to prototype a fan
blades, fighter plane, and fighter jet. Figures on the left top corners of Figures 9, 10 and
11 are their initial sketches, while other figures are generated at different iteration levels of
these sketches.
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FIGURE 7. The engineering digging tool Pickaxe is modeled using the
tensor product subdivision scheme. The results at different subdivision
levels, ranging from initial to higher levels, are displayed from left to
right.

FIGURE 8. The engineering tool spanner is modeled. The results at var-
ious subdivision levels, starting from the initial level to higher levels, are
displayed.

FIGURE 9. The aeronautical part ”fan blade” is modeled using the
scheme, and the results at different subdivision levels are displayed from
left to right, ranging from the initial level to higher levels.

FIGURE 10. The shape of a fighter plane is modeled using the scheme,
and the results at various subdivision levels are shown from left to right.
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FIGURE 11. The shape of an American fighter jet is modeled using the
scheme. The top left-most image represents the initial sketch, while the
subsequent shapes from left to right are produced at higher levels of the
scheme.
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7. CONCLUSION

In this paper, we proposed a 4-point quaternary subdivision scheme with two shape 
parameters and demonstrated its effectiveness through various examples. The scheme suc-
cessfully preserves the original shape of the data by maintaining monotonicity and con-
vexity within specific p a rameter r a nges. W e g e nerated s h apes o f E n glish a l phabets 
and essential tools used in daily life, such as hammers, pickaxes, spanners, fan blades, 
fighter planes, and fighter jets, showcasing the versatility of our approach for engineering 
and in-dustrial applications.

Future work could involve extending the scheme to handle more complex geometries and 
exploring higher-dimensional extensions (4D or 5D), which may enable the creation of 
more intricate shapes and find applications in fields such as robotics and computer vision.
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