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Abstract. The evaluation and assessment of Al-driven models for sup-
ply chain management require complex decision-making frameworks that
can cope with uncertainty, indecision, and conflicting expert opinions.
The expressiveness of traditional fuzzy decision-making models is lim-
ited and is not able to represent both positive and negative sides of the
criteria. In addition, existing generalized aggregation operators (AOs)
rely on arbitrary weights of criteria that introduce subjectivity and re-
duce the accuracy of the findings. This paper addresses these shortcom-
ings by suggesting a new multi-criteria decision-making (MCDM) method
based on generalized bipolar fuzzy prioritized operators (G-BFPR). We
propose four new operators, namely, generalized bipolar fuzzy prioritized
average (G-BFPRA), generalized bipolar fuzzy prioritized weighted av-
erage (G-BFPRWA), generalized bipolar fuzzy prioritized geometric (G-
BFPRG), and generalized bipolar fuzzy prioritized weighted geometric
(G-BFPRWG) operators. This framework, in a systematic manner, com-
putes weights using priority relations, eliminating subjectivity and reflect-
ing on positive and negative preferences in uncertain settings. Our ap-
proach provides a context-specific, balanced assessment mechanism of
Al-based supply chain models, which is demonstrated by a case study
that validates the superiority of our approach to the current theories. The

*Corresponding Author : tahirbakhat @iiu.edu.pk

1006



A MCDM Technique Based on Generalized Bipolar Fuzzy Prioritized Operators 1007

proposed bipolar fuzzy MCDM method offers a holistic solution to the
ranking of optimization techniques in supply chain management, which
enhances operational performance, minimizes costs, and enhances sus-
tainability. Furthermore, the needs and benefits of the proposed work are
disclosed in this article, as it includes a comparative analysis
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MCDM technique.

1. INTRODUCTION

The optimization of the supply chain is now primarily based on data-driven decisions
to enhance operational performance, flexibility, and operational stability by introducing
Al technologies. The existing organizational management practices fail to work as com-
panies experience a number of challenges that involve unstable demands, broken supply
chains, fluctuating costs, and logistical inefficiencies. The use of real-time analytics and
automation, and intelligent decision-support systems helps businesses to be more accurate
in their forecasts and make operations easier and less risky. The Al aspects of supply chain
optimization enable the organization to constantly modify its structure by changing it de-
pending on market shifts and operational uncertainty. The use of data-driven insights can
help organizations to make strategic decisions that can lead to sustainable results and waste
reduction, and resource management optimization. The existing developments in Al-based
supply chain solutions still demand that organizations solve several issues when choosing
the most appropriate optimization strategies. The need to have a formal assessment frame-
work is due to the fact that the available techniques are of a different nature, and their data
points are unpredictable and conflicting. The organization-wide search of ranking data-
centric models assists businesses in choosing solutions that meet operational requirements
and scalability objectives in addition to particular objectives. A structured decision-making
procedure helps find the most powerful optimization method that also balances factors such
as expenses and implementation risks with performance results.

The proposed research uses the multi-criteria decision-making (MCDM) method along
with bipolar fuzzy generalized prioritized operators to develop a decision-support system
for ranking optimization methods. These operators deliver superior performance in as-
sessment when decision-makers experience doubts about exact criterion value assignments
because they create a framework that supports the realistic interpretation of information.
This research delivers an organized method for supply chain managers to identify, eval-
uate, and rank Al-based optimization methods to optimize operational performance and
reduce costs while improving sustainability.

Why is it necessary to evaluate the AIl-driven supply chain models? How do the gen-
eralized bipolar fuzzy prioritized (G-BFPR) operators enhance this process? Supply
chains are getting more data-driven, dynamic, and complex in the era of Al. Several Al-
based models exist to address a particular supply chain issue, but the most suitable model
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needs to be determined with conflicting criteria, professional views, and ambiguity. G-
BFPR operators allow decision-makers to systematically analyze and prioritize these mod-
els, considering the positive and negative sides of performance, as well as the relative
weight associated with each attribute. Such an approach offers more realistic, balanced,
and context-specific decision-making in the real-world supply chain environment. G-BFPR
operators provide a powerful decision-making process to handle both positive and negative
information simultaneously to make more discriminating and realistic judgments about
alternatives. Applied to Al-based supply chain models, G-BFPR supports contradictory
expert views, ambiguous performance measures, and uncertain data using bipolar member-
ship degrees. This improves the process of prioritization through the integration of both
supportive and conflicting judgments within an organized manner, resulting in a balanced
and trustworthy model ranking under challenging decision conditions.

What is the importance of bipolar fuzzy sets (BFSs) to handle MCDM problems?
BFSs [32] are a generalization of the classical fuzzy sets where, in addition to the positive
membership degree, the negative membership degree is also considered, which allows to
expression of the opposite criteria (e.g., satisfaction and dissatisfaction) in the same format.
This bipolarity improves the MCDM models by taking into account the vagueness and
conflicts that are characteristic of most practical problems. BFSs enable decision-makers
to use dual evaluations (positive and negative) to model trade-offs and enhance the level of
criteria discrimination. For instance, they help to generate consensus solutions by summing
up experts’ judgments and criteria weights, at the same time taking into account supportive
and opposing stakeholders’ opinions. Moreover, the methods based on the concept of BFS
use score functions to reconcile these two types of evaluation and to allow for the systematic
ordering of alternatives even in the case of conflict or lack of information. Ali et al. [3]
discussed the bipolar fuzzy relation. Ali et al. [4] analyzed the parameter reduction within
the framework of bipolar fuzzy soft set, and Alcantud [2] discussed the relation among
fuzzy soft and soft topologies. Riaz and Tehrim [21] devised the bipolar fuzzy soft topology
via Q-neighborhood.

1.1. Motivation and justification for the proposed framework. The choice of Al-based
supply chain optimization models has its own peculiarities and requires the application of
generalized bipolar fuzzy prioritized aggregation operators within the framework of BFS.

e Bipolarity is required in supply chain decisions: In practice, supply chain manage-
ment decision-makers need to consider both positive (benefits, strengths, oppor-
tunities) and negative (risks, weaknesses, limitations) sides of Al models. As an
example, in the case of assessing a demand forecasting model based on machine
learning, specialists must be able to capture both the positive and negative sides.
The traditional fuzzy sets and their variants (intuitionistic fuzzy sets (IFS), hesitant
fuzzy sets (HFS), etc.) are only able to model the membership degrees within the
range [0,1], and do not explicitly represent the negative/opposing assessments that
are important in technology assessment decisions. To address this weakness, BFSs
offer two membership levels: K¥¢[0, 1]of satisfaction/agreement and K ¢[—1, 0]
of dissatisfaction/disagreement.
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e Requirement of prioritized AOs: In the evaluation of supply chain models, crite-
ria are naturally priority-related. The evaluation of ”Forecast Accuracy and Per-
formance” should precede that of “Responsiveness to Market Disruptions” since,
without accurate forecasting, the responsiveness is meaningless. Likewise, Ease of
Integration relies on performance measures, and Data Requirements relies on the
complexity of integration. Current generalized AOs use arbitrary weights, and this
makes them subjective. Weights are calculated systematically by our prioritized
operators. This makes sure that the significance of each criterion is based on the
satisfaction of all the previous criteria, which is a true decision-making logic.

e Superiority in the supply chain context These three features combined render our
framework exceptionally appropriate to the evaluation of Al supply chain models
since:

(1) It is explicit in strengths and weaknesses (bipolarity).
(2) It honors natural criteria dependencies (prioritization).
(3) It removes subjective weighting (systematic weighting).

1.2. Research gap. The rapid development of Al and intelligent systems has drastically
reshaped supply chain activities, rendering them more autonomous, data-centric, and strate-
gically sophisticated. Such a transition requires advanced decision-making tools that can
tackle uncertainty, indecisiveness, and conflicting opinions of experts. Although conven-
tional fuzzy decision-making models like fuzzy sets, hesitant fuzzy sets, and intuitionis-
tic fuzzy sets have been extensively used in MCDM in supply chain management, they
have limited expressiveness. These models fail to cope with fixed membership values, do
not possess the capacity to express bipolar (positive and negative) preferences at the same
time, and tend to underperform in effectively expressing decision-makers’ indecision. Gen-
eralized aggregation operators (AOs) are useful tools in information fusion and have been
widely investigated in different types of fuzzy sets. One of the main drawbacks of the
generalized aggregation operators is that the criteria weights are assigned arbitrarily by the
decision-makers. This random assignment of weights brings subjectivity into the decision-
making process and hence reduces the reliability of the results. Such subjective weighting
mechanisms do not reflect the nature of the problem and the interconnections between the
criteria. We summarize some research gaps as follows.

o The current bipolar fuzzy MCDM techniques employ arbitrary weight assignment,
which is against the objective of dealing with subjective uncertainty.

o In IFS, there are priority aggregation operators [30], [17], however, IFS is unable
to express negative evaluations explicitly, and the non-membership degree is a
measure of hesitation, not of opposition.

e There is no current framework that incorporates all three features: bipolarity, gen-
eralization, and prioritization. This is a combination that is necessary in complex
technology evaluation in supply chains.

To fill this research gap, there is a need to incorporate prioritized techniques with bipo-
lar fuzzy generalized aggregation operators. This integration would systematically decide
weights in accordance with the priority relations between the criteria and eliminate subjec-
tivity. However, this methodological advancement has not been advanced in the existing
literature.



1010 U. Rehman et al.

1.3. Contributions and innovation. This study proposes a new decision-making model
that embeds G-BFPR operators in evaluating and ranking Al-based supply chain models.
Its primary contribution is to overcome the shortcomings of conventional MCDM meth-
ods using bipolar fuzzy logic to better capture both positive and negative preferences in
uncertain environments. This research introduces a novel MCDM framework by using G-
BFPR operators in the evaluation and ranking of Al-driven supply chain models. The key
contribution lies in addressing the limitations of traditional MCDM approaches by incor-
porating G-BFPR operators within BFSs to effectively represent both positive and negative
preferences under uncertainty. The key contributions of the proposed study are;

o Development of G-BFPR AOs to overcome the limitations of existing fuzzy frame-
works.

o Th e newly developed operators are: Generalized bipolar fuzzy prioritized aver-
age (G-BFPA) operators, generalized bipolar fuzzy prioritized weighted average
(G-BFPWA) operators, generalized bipolar fuzzy prioritized geometric (G-BFPG)
operators, generalized bipolar fuzzy prioritized weighted geometric (G-BFPWG)
operators.

e Development of the BF-MCDM technique and its algorithm using the proposed
operators.

e Case study evaluation and ranking of Al-driven supply chain models based on
proposed operators.

e Comparative analysis with existing theories to validate the superiority of the pro-
posed framework in supply chain management.

Al-based supply chain model assessment is bound to have both positive and negative fea-
tures. Conventional fuzzy-based decision models are mostly concerned with positive as-
sessments and do not explicitly represent these conflicting facets. The bipolar fuzzy rep-
resentation used in this paper allows modeling supportive and conflicting expert opinions
at the same time, which results in a more realistic and complete evaluation process. Addi-
tionally, the use of prioritized aggregation is a real-world decision situation in supply chain
management where some criteria (e.g., model performance) inherently outweigh others
(e.g., ease of deployment or scalability). The proposed solution provides a more credi-
ble, context-sensitive, and practically significant decision-support system to rank Al-based
supply chain optimization models in the face of uncertainty by integrating bipolarity and
priority-based weighting in a generalized aggregation model. Further, although the cur-
rent research is on Al-based supply chain optimization models, the suggested work can
be applied to a wider range of complex decision-making problems with conflicting criteria
and dual assessments. An example is the choice of renewable energy technology, sustain-
able supply chain design, and green supplier evaluation, where there is a need to balance
between the positive and negative factors.

1.4. Study Framework. This article is designed to present a clear and organized discus-
sion of the suggested method. This article starts with an introduction and sets the entire re-
search. The detailed study framework is explained as follows: Section 2 is on the literature
review or background study. Section 3 discusses the basic concepts of the suggested the-
ory. Section 4 constructs some new aggregation operators. Section 5 discusses an MCDM
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approach based on the BF framework and information. Section 6 elaborates on the com-
parative analysis and results. Section 7 concludes the entire manuscript and provides key
findings.

2. LITERATURE REVIEW

Several academic studies show widespread academic interest in data-driven supply chain
management approaches that emerged in recent years. The review section examines various
studies on data-driven supply chain management strategies and their application. Gumte
et al. [13] deal with uncertainties that influence planning models in supply chains through
their strong optimization strategy. The combination of predictive analytics and real-time
data can be used to make better decisions in volatile settings due to their research, which
offers a sophisticated approach to supply chain stability. The authors Hewitt and Frejinger
[15] show how optimization models can be made more efficient by using customized data-
driven methods that result in improved supply chain operational responsiveness in dynamic
environments. Fattahi [10] builds on the uncertainty-based studies by providing data-driven
approaches to building supply chain networks with social responsibilities. Their study re-
veals the reason why the inclusion of social responsibility measures in supply chain de-
cisions is used to combine both operational effectiveness and ethical standards. A global
research by Tsai et al. [26] shows that data-driven analytics is one of the fundamental
drivers of establishing supply chains that utilize resources effectively and safeguard the en-
vironment. Li and Liu [16] state that big data analytics assessment improves supply chain
operations at all levels. Firms that apply insights based on big data have superior oper-
ational capabilities alongside reduced inefficiencies based on their research results. The
study by Chavez et al. [9] shows the integration of data-driven supply chains to enhance
better manufacturing capacities and high customer satisfaction, and explains the benefits
of analytics application in supply chain operations. Biswas and Sen [7] suggest a big data-
based supply chain analytics architecture since it may enhance real-time decision-making
and forecasting. Tseng et al. [27] examine data-driven sustainable supply chain manage-
ment measures. The authors examine the way industrial disruptions require organizations
to pursue dual-minded approaches to efficiency and sustainability objectives. Zhang [31]
shows a statistical optimization system of supply chain demand forecasting that shows how
predictive computational models can enhance financial recordkeeping and stock control
activities. Sundarakani et al. [24] carry out a study on the integration of blockchain in
supply chains. The application of blockchain and big data through research methodol-
ogy resulted in evidence that was validated to demonstrate improved security alongside
transparency in supply chain management networks. In addition, MCDM has become an
essential instrument in the resolution of complex decision-making issues in different fields,
such as supply chain management, infrastructure development, and education technology.
The growing use of data-driven methods in MCDM has also increased its applicability,
especially in the management of uncertainty and the combination of various evaluation cri-
teria. Beinabadi et al. [6] focus on the importance of sustainable decision-making in the
supply chain of the automotive industry. Their research introduces a data-driven MCDM
model that takes into account economic, environmental, and social sustainability aspects.
Nguyen [20] uses spherical fuzzy sets in an MCDM method to rank global augmented
reality providers in education. The study is able to deal with uncertainty and imprecise
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information by using an advanced fuzzy logic system, which guarantees a more detailed
evaluation of augmented reality applications. Sharma and Anand [23] suggest an MCDM
model that is specifically created to manage the supply chain. Their contribution combines
different decision-making methods to assess the performance of the supply chain according
to the efficiency, resilience, and sustainability criteria. Alkharasani [5] introduces a data-
driven MCDM model of infrastructure development planning in developing nations. The
research is aimed at ranking infrastructure projects in terms of economic viability, social
effects, and sustainability. Buyukozkan et al. [8] introduce an integrated fuzzy MCDM
approach for evaluating supply chain analytics. Their study combines fuzzy logic with
classical MCDM techniques to assess the effectiveness of various analytical tools in supply
chain management. Mehdiabadi et al. [19] developed a fuzzy hybrid SWARA-MABAC
model to assess the sustainability service chain capabilities of the oil and gas industry,
which offers a systematic approach to prioritizing the main aspects of operations and im-
proving the accuracy of decisions in an uncertain environment. Tufan and Ulutas [28]
created an integrated approach to the selection of suppliers, which combines the LODECI
and CORASO techniques to enhance decision-making in the food industry, which also in-
dicates the practical use of MCDM techniques in supply chain management. Garg et al.
[11] proposed a new method based on Aczel-Alsina power AOs under bipolar fuzzy infor-
mation. They revealed practical uses of bipolar fuzzy models in quantum computing, which
could help solve the complex uncertainties in quantum systems. Akram et al. [1] used bipo-
lar fuzzy TOPSIS and ELECTRE-I methods, particularly for diagnostic problems. Rehman
and Mahmood [22] studied the MCDM approach by using bipolar fuzzy Yager operators.
Gul [12]expanded the VIKOR approach by combining bipolar fuzzy preference d-covering
and fuzzy rough set theory to provide a new framework of MCDM in the face of uncer-
tainty. Hakim et al. [14] discussed fuzzy bipolar soft quasi-ideals in ordered semigroups.
The concept of T-bipolar soft modules was discussed by Mahmood and Rehman [18].

3. PRELIMINARIES

This section contains the basic concepts and mathematical tools that will be needed in
the development of the proposed framework. These preliminaries make the paper self-
contained and easy to understand the generalized bipolar fuzzy prioritized aggregation
operators that are presented in the following sections. Bipolar fuzzy sets (BFSs) are the
extension of classical fuzzy sets, which can represent positive and negative information at
the same time. In most real-life decision-making situations, decision-makers usually indi-
cate satisfaction and dissatisfaction about an alternative in relation to a particular criterion.
Fuzzy sets (FSs) and their generalizations, including intuitionistic and hesitant FSs, are pri-
marily concerned with positive membership data and are unable to explicitly represent this
duality. The definition of BFS is as below

Definition 1 [32]. The following form

£={(x L&), KF () [ x € X}
is diagnosed as a bipolar fuzzy set (BFS), in which the positive degree of membership of
an element xy € X is represented by ng (x) and the negative degree of membership of an
element y € X is represented by X (). The bipolar fuzzy number (BFN) is of the form

&= (KE KY)
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in this article.

In order to be able to aggregate and compare bipolar fuzzy information, proper op-
erational laws should be established for BENs. These operations allow combining several
BFNs while maintaining their bipolar structure. Addition, multiplication, scalar operations,
and power operations are common operations that are necessary in building aggregation
operators in decision-making models.

Definition 2 [11]. By taking two BFNs

&= (KE,KY) and &= (KE,KE) .
along with g > 0, the operations for these numbers are devised as follows:

(1)
E @& = (KE +KE —KEKE, —(KEKR))

2
. E1R&E = (K£K§27 K‘js\i +IC§V2 —s—ngng)
3)
g&r = (1- (1-KE)", - |K&[)
“

&f = ((KE)". 1+ (1+KkE)")
To rank the alternatives expressed in the form of BFNs, BFNs need to be converted into
similar scalar values. The functions of score and accuracy are important in this transfor-

mation, as they both take into account positive and negative membership degrees.
Definition 3 [29]. For finding the score and accuracy values of a bipolar fuzzy number

&= (Kg.Kd),

the following equations will be used:

§E) =5 (1 +KE+KY),  S@© e, G.1)

KE — K

HE) = "2 HE) € 0,1) 3.2)

4. GENERALIZED BIPOLAR FUZZY PRIORITIZED AOS

This part presents a new category of AOs, which are the generalized bipolar fuzzy prior-
itized AOs that are generalized bipolar fuzzy prioritized average (G-BFPRA), generalized
bipolar fuzzy prioritized weighted average (G-BFPRWA), generalized bipolar fuzzy priori-
tized geometric (G-BFPRG), and generalized bipolar fuzzy prioritized weighted geometric
(G-BFPRWG) operators. The bipolar fuzzy term implies that the operators are designed
in the bipolar fuzzy environment, which enables the aggregation of positive and negative
membership degrees simultaneously. The fact that the significance of criteria is established
based on predetermined priority relations and not arbitrary weight assignment is reflected
in the term prioritized. The operators are called generalized since they are extensions of
a number of existing aggregation models as special cases. Specifically, the proposed op-
erators can be simplified to standard bipolar fuzzy AOs when priority relations are dis-
regarded; they can be simplified to conventional fuzzy AOs when bipolar information is
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ignored. Therefore, the suggested framework is a generalization of the current averaging
and geometric operators, which include bipolar information and priority-based weighting
mechanisms. Besides the definition of these operators, the basic mathematical character-
istics of these operators, such as idempotency, monotonicity, and boundedness, are also
explored in this section, which guarantees the rationality and reliability of the aggregation
process in the application of decision-making.

Definition 4 Assume there is an assembly of BFNs

E = (KE.KY), o=1,2,...,0,

then the G-BFPR? operator is implied as follows:

G_BFPR?(51,52,...,59)=EB<(f" (5(,)5> . 4. 3)
1 Za:lTO'

Note that 7, = 1, 7, = HZ;ll S(&), where 0 = 1,2,...,6, and S(&,) is the score
value of BEN &,,.

0

o

Theorem 1. If there is an assembly of BFNs
&= (KEKY), o=1,2,....,0,

then after aggregating BFNs by employing the G-BFPR? operator, a BFN will be obtained:

0 To
G—BFPR?(gl,gQ,...,ge) = (1 — H (1 _ (ICEZ)E> So_i 7o ,

Proof. Assume that § = 2, then
€)= ((KE)", 1+ (1 +KE)7).

(E2)° = ((lCQ)ﬂ -1+ (1 +IC§V2)€).

After this, we have

T1

(&) = <1— (1- (K5)) T~ 1+ (1+IC§V1)1231*6>’

T2

(&) = <1 (1~ (’Cﬁ)g)ﬁ -1+ (1+IC§;)12£_170>.
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Hence,

1 e T2 e Phe 267'717_
— (&) B (&) = (1_ (1= (KE)?)=oaie |
Zazl To Zo‘:l To

- [- 1+(1+IC£)] 0711 )

T2

—[F1+@a+K))E T )

To

—1+H “14 1+/C5)]Effaw>~

Consequently, Eq. (1) is true for § = 2. After that, assume that Eq. (1) is true for § = v,
ie.,

@E 06:<1_ﬁ<1_(,c5))zg”1w 1+H —1+( 1+’C£)]Eg:1m>'

o=1

In the last, to prove that Eq. (1) is true for § = v + 1, we have

v+1
To g Tu+1 5
o’ @ —+1 gu
0691 PO (@ o= 170 ) Zgii%( =
v+1 T
i (1 ~TL 0= o)) =
o=1

v+1
—1+H —1+ (14+K5)] “*iw)

Consequently, Eq. (1) is true for all v + 1. Hence, it implies that it is true for 6.

G-BFPRA operator has satisfied the underneath properties.

Idempotency: Assume there is an assembly of BENs &, = (ICfa,ICé\Z), c=12,...,0,
then if £, = £, then
G-BFPR2(£,,&,...,8) = E.
Monotonicity: Assume there are two assemblies of BFNs &, = (Kf K} ) and &, =
(K&K ),0=1,2,....0,andif Kf <Kf,,KY > K}, then
G-BFPR?(&1,&s,...,8)) < G-BFPR(EL,EL,....E)).
Boundedness: If there is an assembly of BFNs &, = (K ,KY ), 0 =1,2,....0,if

£ = (mm{;cg},mm{/cg }) and £ = (max{/cg},max{icg }),
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then
E™ < G-BFPR?(&,Es,...,&) < Et.

Definition 5. Assume there is an assembly of BFNs
&= (KEKE), o=1,2,...,0,
then the G-BFPRWA operator is implied as follows:

0 :
G-BFPRWA(E,,E,...,E) = @ (g, . . 5)
o=1 g' 1 WoTo
Keep in mind that ¢ > 0, and w = (wq, we, ..., wp) is a weight vector along with the

condition that 0 < w, < 1 and Z§=1 wy = 1.
Theorem 2. Assume there is an assembly of BFNs
& =(KE.KY), o=1,2,...,0,

then after aggregating BFNs by employing the G-BFPRWA operator, a BFN will be ob-
tained:

Wo To

4
G-BFPRW A(&1,&s, ..., & ( H (1= (KCE )7) Eomawome |

71+H —1+(1+KLY)] ") (4. 6)

Proof. Same as proof of Theorem 1.

The G-BFPRWA operator holds the monotonicity, idempotency, and boundedness.

Definition 6. Assume there is an assembly of BFNs
&= (KEKY), o=1,2,....,0,

then the G-BFPRG operator is implied as follows:

0 e e
G-BFPRG(&,,&,...,&) = (@(50)221 ) . (4.7)

o=1

Note that 1, = 1, 7, = Hg;ll S(&), where 0 = 1,2,...,0, and S(&,) is the score
value of BFN &,.

Theorem 3. Assume there is an assembly of BFNs

&= (KEKY), o=1,2,....,0,



A MCDM Technique Based on Generalized Bipolar Fuzzy Prioritized Operators 1017

then after aggregating BFNs by employing the G-BFPRG operator, a BFN will be obtained:

9 To 1>
G-BFPRG(£1,&s, ..., & ( lH (1—(KE ) 9] ,

1
e

0 .
(BT
o=1

) . 4.8

Proof. Assume that § = 2, then

glg = (1 - (1 - K:gl)e’ _VC‘J‘X‘E) )
&= (1-(1-KE) —IKE)-
After this, we have

T1

)= (- (K)o (k)
o=1 To

(E2) =7 = (L= KE)) T, —1 (K)o

mﬁ%w®@ﬁ%w=cvxaﬂ 4+Mu)w>
p E’;Z o N ey = —
® | (1-Kg,)" =14 (IKg,[7) =o=17e

_<ﬁ(1_(/cg)) _1+H 1—|/c5|)«>.

o=1 o=1

Consequently, Eq. (2) is true for § = 2. After that, assume that Eq. (2) is true for § = v,
ie.,

®((€U)%:<H(l—(l€5)) 0170 _1+H 1_|]CN|)EgT”1nT>

o=1 o=1
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In the last, to prove that Eq. (2) is true for § = v + 1, we have

v+1 e v . .

Q) Tt = <®(gg)zgm> ® (Eppr) Sokive
vtl —Tg

= (H (1 (KE)7) =,

o=1
v+1 Ty
S T o= ).
o=1

Consequently, Eq. (2) is true for all v + 1. Hence, it implies that it is true for 6.

G-BFPRG operator has satisfied the underneath properties.

Idempotency: Assume there is an assembly of BFNs &, = (IC?U, IC?Q), c=12,...,6.
If &, = &, then

G-BFPRG(E1,&s,...,E) = €£.

Monotonicity: Assume there are two assemblies of BFNs &, = (Kf K} ) and &, =
(KE LK), 0=1,2,...,0. fKE <Kf and KY > K}, then

G-BFPRG(E1,&s,...,E) < G-BFPRG(E],E},...,E)).

Boundedness: Assume there is an assembly of BENs &, = (Kf ,K} ), 0 =1,2,...,0.
If

E = (min{lCé},min{ng }) , &t = (maX{ICga},max{ng }) ,
then
£~ < G-BFPRG(&,&,...,&) < ET.

£~ < G-BFPRG(£,,E,...,E9) < ET.

Definition 7. Assume there is an assembly of BFNs
&= (KEKY), o=1,2,....,0,
then the G-BFPRWG operator is implied as follows:

6 W Te e
G-BFPRWG(E1,&,...,E) = (@(50) S wero ) . (4.9
o=1
Keep in mind that ¢ > 0, and w = (wy,ws,...,wy) is a weight vector along with the

condition that 0 < w, < 1 and 23:1 w, = 1.
Theorem 4. Assume there is an assembly of BFNs

&= (KEKY), o=1,2,....,0,
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then after aggregating BFNs by employing the G-BFPRWG operator, a BFN will be ob-
tained:

6 W To €
G-BFPRWG(E1, &, ..., ( [H (1 (KL )* Ew] ,
o=1
o __ _WoTg %
— -1+ ] (= K& F) Eomrvara
o=1

(4. 10)

Proof. Same as proof of Theorem 3.
The G-BFPRWG operator holds the monotonicity, idempotency, and boundedness.

5. BIPOLAR Fuzzy MCDM TECHNIQUE BASED ON G-BFPR AOs

MCDM problems are those that are concerned with the selection or ranking of alterna-
tives based on a number of criteria, which are usually conflicting. These issues are also
complicated in practice, including uncertainty, imprecision, and conflicting expert views.
In real-world applications like Al-driven supply chain management, in order to overcome
these difficulties, this paper constructs a bipolar fuzzy MCDM model, which incorporates
generalized prioritized AOs. The suggested MCDM framework calculates the importance
of criteria based on priority relations and uses generalized operators to aggregate expert
appraisals in the form of bipolar fuzzy numbers to derive the overall performance scores.
In contrast to the traditional MCDM methods, the given model does not presuppose the
subjective weight allocation and clearly represents both positive and negative appraisals,
which results in more realistic and credible decision results.

Let there be a MCDM problem where the set of alternatives is denoted by

F={F,F,...,F,},
and the set of criteria is
O ={01,04,...,0,}.

The aim is to choose the most appropriate option from the given set, based on judgments
according to the specified criteria. Judgments are supplied by experts or decision makers
as BFNs, specified as

€ = (/cgj,/cgj) . (0<i<n, 0<j<m).
In this method, to avoid subjectivity and bias in the weight assignment, a prioritized-

based weighting scheme is employed. The following are the step-by-step procedures for
solving the MCDM problem using the bipolar fuzzy MCDM approach.
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Step 1: Normalization. Since the criteria may be of varying types, i.e., benefit or cost, the
values of evaluation need to be normalized. Normalization is done to ensure that all values
fall within a similar range, allowing unbiased comparison. Normalization is carried out by
applying the following formula:

(IC?_,IC?_) , for benefit kind,
N ij k%)
D;; = (5.11)

(1-KE, —1-KE,), forcostkind.

Step 2: Get the Prioritization T,. After the normalization of the decision matrix, get the
prioritization by using the following formula:

o—1
=] S(Fe). (5.12)
=1
whereo =1,2,...,n, =1,2,...,n,and 7y = 1forc =1,2,...,n.

Step 3: Aggregate the Decision Matrix. Aggregate the normalized evaluations using one
of the proposed operators from the generalized class G-BFPR?, G-BFPRWA, G-BFPRG,
and G-BFPRWG operators. Further, if the expert or decision maker also wants to give
weights to the criteria, then one must use G-BFPRWA or G-BFPRWG operators.

Step 4: Find the Score and Accuracy Values. For every alternative, calculate the score value
from the aggregated bipolar fuzzy number. If several alternatives have the same score value,
then calculate the accuracy values to differentiate among them more accurately.

Step 5: Rank the Alternatives. Rank all alternatives by their score or, if necessary, accuracy
values. The best choice under the criteria is the alternative with the highest score (and
accuracy in the event of a tie).

Step 6: Final Decision. Select the top-ranked alternative as the most suitable option in the
given decision-making scenario.

The flowchart of this method is devised in Fig. 1.
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FIGURE 1. The flowchart of the devised MCDM approach

5.1. Case study. A mid-sized consumer goods company faces challenges in optimizing
its supply chain due to growing demand variability, supplier unpredictability, and customer
expectations for faster deliveries. To address these complexities, the company is evaluat-
ing advanced Al-driven supply chain models to enhance forecasting accuracy, operational
agility, and resilience. However, multiple conflicting criteria and expert opinions make
the selection process difficult. To solve this, the company employs the developed MCDM
approach to evaluate and rank the most suitable models under uncertain and imprecise en-
vironments. The company shortlisted the following Al-driven supply chain models, which
are listed in Table 1.
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TABLE 1. The Al-driven supply chain models, along with an explana-
tion.

Notation

Models

Explanation

Fi

Machine learning—based de-
mand forecasting model

The model draws its predictions from histor-
ical data, including sales reports and weather
information, along with promotional activities
and external influences. Through preventive
planning, the model helps businesses prevent
both product shortages and product surpluses.
The model might require occasional retraining
when sales patterns experience unexpected di-
rections.

Fo

Al-powered inventory opti-
mization model

The inventory optimization model uses Al al-
gorithms to establish stock levels and reorder
points, and safety stock using current supply
and demand signals for optimal results. Us-
ing this model, organizations cut their inven-
tory expenses yet still maintain their desig-
nated service standards. The model might
encounter difficulties when adapting to fast-
changing market situations.

F3

Real-time Al logistics opti-
mization system

This model uses Al to process routing func-
tions as well as schedule shipments while allo-
cating transportation resources. This system
enhances delivery performance while reduc-
ing costs through different types of constraints.
The system demonstrates considerable capa-
bility but becomes expensive when deployed,
while requiring high-quality data flow.

Fu

Intelligent Supplier Risk As-
sessment Model

Al technology evaluates supplier risks through
analyses of delivery history, alongside finan-
cial health indicators, geopolitical compo-
nents, and compliance records. This system
helps organizations make better selections of
suppliers and implement risk reduction mea-
sures. External unstructured data sources used
by this system may lead to variations in system
consistency.

To evaluate these models, the company has selected the criteria, which are interpreted

in Table 2.
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TABLE 2. The criteria of the considered models, along with an explana-
tion.

Notation

Criteria

Explanation

01

Forecast Accuracy and Perfor-
mance

This criterion determines how well the model
uses actual market data for forecasting sup-
ply chain and demand patterns. The level of
performance directly affects both operational
planning accuracy and unexpected operational
situations. The effectiveness of service qual-
ity and cost-efficiency depends on this perfor-
mance criterion.

02

Responsiveness to Market Dis-
ruptions

The metric determines the model’s speed
at which it responds to immediate alter-
ations affecting supply timings, regulatory re-
quirements, or sudden changes in demand.
Resilient operations that can adapt quickly
emerge from models with high responsiveness
features. Pandemics and uncertain environ-
ments demand the implementation of this sys-
tem.

3

Ease of Integration and Deploy-
ment

Ease of integration with existing supply chain
software, as well as Electronic Resource Plan-
ning systems and workflows, is factored into
this quality assessment. Integration of Al tech-
nology leads to faster time-to-value while fos-
tering improved system acceptance by users.
Deploying complex systems to the system can
cause delays in return on investment needs and
demands technicians with specific abilities.

04

Data Requirements and Scala-
bility

The factor evaluates both the needed data
quantity as well as its diversity and standard
alongside the model’s capacity for expansion
to multiple business units or regional deploy-
ments. The performance of a model should
remain stable through partial input data while
simultaneously expanding with the company’s
expansion. The overreliance on big data could
limit its applications within settings with lim-
ited availability of data.

After the assessment of these models based on the selected criteria, the expert provides
their assessment values in the form of BFNs, given in Table 3.
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TABLE 3. The evaluation values for models.

51 O 03 04
F1 | (0.823,—-0.247) | (0.761,—0.336) | (0.634,—0.428) | (0.706, —0.219)
Fs | (0.778,—0.198) | (0.945, —0.317) | (0.819, —0.244) | (0.836, —0.003)
F3 | (0.688,—0.292) | (0.842,—0.175) | (0.973,—0.263) | (0.986, —0.115)
Fy | (0.981,—-0.138) | (0.913,—0.166) | (0.725,—0.319) | (0.667,—0.217)

These assessments represent both the positive and negative aspects associated with each
model under uncertainty.

Step 1: As all the criteria are of benefit type, after normalization, the same decision
matrix will be obtained as given in Table 3.

Step 2: The interpreted matrix

0.788 0.561 0.339
0.979 0.643 0.506
0.698 0.582 0.505
0.922 0.805 0.566

TF= (5. 13)

—_ = = =

Step 3: The aggregated values of the models after using the proposed G-BFPR?, G—
BFPRWA, G-BFPRG, and G-BFPRWG operators are derived in Table 4.

TABLE 4. The aggregated values of the assessment values, where the
weight for prioritized weighted operators is (0.2,0.3,0.1,0.4) and ¢ = 4.

Operators Fi 2 F3 Fu

G-BFPR? (0.92,—0.292) | (0.957,—0.199) | (0.972,—0.202) | (0.965, —0.221)
G-BFPRWA | (0.807,—0.279) | (0.939,—0.182) | (0.965,—0.179) | (0.948, —0.238)

G-BFPRG | (0.721,—0.334) | (0.814,—0.252) | (0.756,—0.244) | (0.756, —0.239)
G-BFPRWG | (0.737,—0.312) | (0.822,—0.254) | (0.765,—0.230) | (0.746,—0.213)

These outcomes are obtained by employing the devised operators one by one. For in-
stance,
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1 {(1 —0.8234)0372(1 — (.7614)0-293

(1 - 0.6344)0209(1 — 0.7064)0126},
G-BFPRA(Fy, Fa, F3, F) =
14 {(1 —0.2474)0372(1 — (.3364)0-293

(1 - 0.4281)0209(1 _ 0.2194)0,126}

(0.92,-0.292).

Step 4: Score Values. The score values of the models are interpreted in Table 5.

TABLE 5. The score values of the Al-driven supply chain models.

Operators | S(F1) | S(F2) | S(Fs3) | S(Fa)
G-BFPR? 0.814 | 0.879 | 0.885 | 0.872
G-BFPRWA | 0.807 | 0.879 | 0.893 | 0.855
G-BFPRG | 0.693 | 0.781 | 0.756 | 0.759
G-BFPRWG | 0.713 | 0.784 | 0.768 | 0.766

These score values are obtained by employing the score function. For instance,

S(Fy) = % (1+0.92 —0.292) = 0.814. (5.14)

Step 5: Ranking of the Models. The ranking of the models is presented in Table 6.

TABLE 6. The ranking of the models.

Operators | Ranking
G-BFPR? | S(F3) > S(F
G-BFPRWA | §(F3) > S
G-BFPRG | §(F2) > S
G-BFPRWG | §(F3) > S

Step 6: Final Decision. Based on the score values and rankings interpreted in Steps 4
and 5, we can see that by employing G-BFPR? and G-BFPRWA operators, F3 is the finest
model. While employing G-BFPRG and G-BFPRWG operators, we have that F5 is a good
model.

The graphical interpretation of the result can be seen in Fig. 2.



1026

U. Rehman et al.

6. COMPARATIVE ANALYSIS

To illustrate the effectiveness and benefits of our proposed methodology, we have per-
formed a comparative analysis with several existing theoretical frameworks in the field.
Zhao et al. [33] proposed a generalized averaging AOs in intuitionistic fuzzy sets (IFSs),
and Tan et al. [25] proposed a MCDM method based on generalized geometric AOs in
the IFS context. In addition, Yu [30] developed a MCDM approach based on generalized
prioritized AOs in IFSs, and Liang et al. [17] developed a MCDM methodology based
on generalized prioritized AOs in intuitionistic trapezoidal fuzzy sets (ITFSs). We have
used these existing operators and MCDM approaches together with our proposed method
to solve a particular problem that we have in our case study. The comparative results are
vividly presented in Table 7 and Fig. 3, which give a clear picture of the performance

differences.

TABLE 7. The result of employing existing and proposed theories.

Approaches and Operators | S(F1) | S(F2) | S(F3) | S(F4) | Ranking

Zhao et al. [33] sk Rk ek sk | kokok

Tan et al. [25] kskok ki Hskok ki ksl

Liang et al. [17] ko ks Hskok ki skskek

G-BFPR? 0.814 | 0.879 | 0.885 | 0.872 | S(F3) > S(F)
S(]:4) > S(]:l)

G-BFPRWA 0.807 | 0.879 | 0.893 | 0.855 | S(F3) > S(F)
S(Fq) > S(F1)

G-BFPRG 0.693 | 0.781 | 0.756 | 0.759 | S(F2) > S(F)
S(F3) > S(F)

G-BFPRWG 0.713 | 0.784 | 0768 | 0.766 | S(F2) > S(Fs)
S(]:4) > S(.Fl)




A MCDM Technique Based on Generalized Bipolar Fuzzy Prioritized Operators 1027

Comparison of 5(F) Values: Bar Chart and Line Plot
Bar Chart: 5(F) Values Across Operators LLine Piot: 5(F) Values Trend

| i 1 PR

| =—B—G-BFFRNA
| GBFPRG |
|t G PO

ossk

og oar

oas oask

(=13

S(F) Values
S(F) Valies

ors

or

085 085k

o (1]
GEFPRA GeBFFRWA G-BFPRG CBFPAWG P, Fa Fy Fy

Oparators F Indax

FIGURE 2. The geometrical interpretation of result.

Comparative Analysis of Different Approaches and Operators

: Grouped Bar Chart Comparison - Sacked Bar Chart Comparison i Line Plot Trend Across F indices.
og 03
3 =

(113 08<

of 25 0{?

L1 é - o8
- -
i £ :
> 05 vé ;‘DS - - 1
& . § |

0.4 £ 04 |

o
03 1 032
0.2 [-F
os
o1
23 - éj < ' & L e I:'I": ;:' I; i‘:J
LA A ! LA A N i 2 3 4
e ¢ & & & LA
P U{:ﬁ u‘f F P o’iﬁ‘q & gé,e Findex
Approaches and Operatons Approschai and Operatan

FIGURE 3. The graph of the comparison.

All the existing methods and the suggested G-BFPR-based MCDM framework are used
on the same case study with the same criteria, alternatives, and evaluation data to provide
a fair and meaningful comparison. As it is presented in Table 7 and Fig. 3, it is possi-
ble to notice the significant differences in ranking outcomes between the methods under
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consideration. The current intuitionistic fuzzy and intuitionistic trapezoidal fuzzy-based
methods mainly combine the positive membership data and use the predetermined or sub-
jective criteria weights. As a result, such techniques have poor discrimination ability in
the processing of conflicting expert views and uncertain data. Conversely, the suggested
framework also integrates bipolar fuzzy information and priority-based weight calculation,
which enables it to integrate supportive and opposing evaluations in a single framework.
Consequently, the suggested G-BFPR operators produce more sensitive and stable rank-
ings across the aggregation models (average and geometric, weighted and unweighted).
This increased discrimination ability gives analytical support to the excellence of the sug-
gested method, especially in complicated decision situations where uncertainty, bipolarity,
and criteria dependency are present.

6.1. Robustness and stability analysis of the proposed method. MCDM Robustness
is the stability and reliability of the ranking results when there is a change in modeling
assumptions and aggregation behavior. To test the strength of the proposed framework,
several generalized bipolar fuzzy prioritized operators, i.e., G-BFPRA, G-BFPRWA, G-
BFPRG, and G-BFPRWG, are used on the same decision matrix. Table 6 demonstrates that
the ranking results are highly consistent, despite the fact that various aggregation mecha-
nisms (average versus geometric, weighted versus unweighted) are used. Specifically, the
highest-ranking alternatives are the same or in the neighboring positions in all the suggested
operators. It means that the final decision does not depend on the selection of a particular
aggregation structure, which proves the stability of the suggested approach.

7. CONCLUSION

This research presented a new MCDM framework based on G-BFPR operators to solve
the complex issues of assessing Al-driven supply chain models. The study successfully
filled a critical gap in the literature by creating four new operators: G-BFPRA, G-BFPRWA,
G-BFPRG, and G-BFPRWG operators. These operators have systematically determined
criteria weights based on priority relationships, eliminating subjectivity, and have been able
to capture positive and negative preferences in uncertain decision situations. We found that
the proposed BF-MCDM technique offered significant advantages over the conventional
fuzzy decision-making techniques since it offered a more balanced and context-specific
evaluation mechanism. The implementation of the case study proved that this frame-
work enabled supply chain managers to make superior decisions in selecting optimiza-
tion methodologies, which led to superior operational performance, reduced costs, and im-
proved sustainability. The comparative analysis also helped to prove the superiority of our
approach to the complex decision situations characterized by uncertainty, indecision, and
contradictory expert opinions. The practical implications of this study were important to
organizations that work in the dynamic world of Al-based supply chain optimization. The
fact that our framework allowed businesses to select solutions that best fit their particular
operational requirements, scalability objectives, and strategic goals was made possible by
providing a robust decision support system that was capable of managing the dual nature of
evaluation criteria and systematically ranking them. This moderated decision-making was
particularly helpful in the dynamic supply chain settings where numerous stakeholders with
different preferences had to reach an agreement on significant technological investments.
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Moreover, the comparative analysis in Table 7 shows that in the case the same dataset
is considered with the help of the current intuitionistic fuzzy and intuitionistic trapezoidal
fuzzy-based methods, significant differences and less discriminative rankings are observed.
Conversely, the suggested G-BFPR-based framework is always able to generate clear and
stable ranking patterns because it is capable of integrating both bipolar information and
priority-based weights at the same time. These findings affirm that the suggested approach
provides strong and dependable outcomes in the presence of uncertainty and different ag-
gregation levels, which is why it applies to complex real-world decision-making issues like
the evaluation of Al-based supply chain models.
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