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Abstract. In this paper, we study the concepts of left (right) parfisdemimodules over a
partialI"-semirings by the illustrations of several examples. Alge,obtain the characteri-
sation of partial'-subsemimodule generated by a nonempty subset in ternmsaléinhents.
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1. INTRODUCTION

In 1995, Rao[6] developed the theory Bfsemirings and showed that this class is a common extension
of semirings and'-rings. In 2014, Mala[8] defined the concept of parfiademiring by replacing the binary
addition inT"-semirings to infinitary partial addition and showed thas ttlass is a common extension of
partial semirings introduced by Arbib, Manes[2] and BerjSpand Rao[6]['-semirings. Further, Mala[9]and
[10] studied theory of ideals for tHe-so-rings.

In this paper, we study the concepts of left (right) paffimdemimodules over a partiBtsemirings by the
illustrations of several examples. Also, we obtain the abtarisation of partidl-subsemimodule generated
by a nonempty subset in terms of its elements.

2. NOTATIONS AND PRELIMINARIES

In the preliminaries, we recollect the necessary concegis the literature.
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Notations: Throughout this paper, we use the following notations.
(1) PM stands for partial monoid.

(2) PI'SR stands for partial’-semiring.

(3) PT'l stands for partial’-ideal.

(4) PI'SM stands for partial’-semimodule.

(5) PI'SSM stands for partial’-subsemimodule.

Definition 2.1. A mapping: : A — G from a setA to a nonempty se&t is called aA — family in G. Itis
denoted by(a; : | € A), wherea; = a(l) V1 € A.

Definition 2.2. A sub family of (a; : | € A) is afamily(ay : k € K) whereK C A. The family(a; : | € ()
is called anempty family.

Now let us consider an infinitary operatiahwhich takes families irz to elements ot~, but which may
not be defined for all families it+. By "infinitary”, we mean that: may be applied to a familya; : [ € A)
in G, for which the cardinality of the index sét is infinite. SinceX(q; : I € A) need not be defined for an
arbitrary family(a; : { € A) in G, X is said to bepartially-defined A family (a; : | € A) in G is said to be
summablef X(q; : [ € A) is defined and is int.

Definition 2.3. [5] A G be nonempty set arid be an infinitary partial addition orG. Then the structure
(G, %) is called aPM if it satisfies the following conditions:

(M1) Unary Sum Axiom: Ifg; : I € A) isin G andA = {k}, thenX;cag; = gx € G.

(M2) Partition-Associativity Axiom: Ifg, : I € A)isin G and (A : k € K) is a partition of A, then
EleAgl € G EleAkgl ceGVke K andeeK(ZleAkgl) € G, andEleAg, = EkeK(EleAkgl)-

InaPM (G, ), the empty family is summable. Its sum, denotedy is such that the sum of an arbi-
trary number of)’s is itself equal td)¢. furthermore( acts as an additive zeroRM (G, X0).

Example 2.4.[5] Let Pfn(A, B) be the set of all partial functions from a sdtto a setB. DefineX on
Pfn(A, B) as follows: Let(f; : | € A) be a family inPfn(A, B). ThenXca fi € Pfn(A, B) < for
I, kin A such that # k, dom(f;) () dom(f) = 0 and for anya € A,

afy, if a € dom(f;) for somel € A;
a(Xifir) = : )
unde fined, otherwise.
Then(Pfn(A, B),X) is aPM.

Definition 2.5. [8] Let (S, %) and (T, ¥*) be twoPMs. ThenS is called aPT'SR if there is an operation
SxI'xS— S:(a,u,b)— aubVa, b Sandu € I subject to the following conditions
Va,b c (a;:1€A)e Sandu,, (u:1 € A) el
(SDap(bye) = (apb)ye,
(S2)Xiena; € S implies thaty;ca (apa;) € S andau[EleAal] = Yiea(apay),
[Eieaa]pa = Xiea(apa),
(S3)Xj . au € T implies thaty;ea (apb) € S anda(X;- 5 )b = Eiea(apb).

N

Example 2.6. [8] Consider thePMs (P fn(
Now define an operatioR? fn(A, B) x P fn(

,B),X) and (P fn(B, A),¥*) as defined in the Example 2.4.
,A)x Pfn(A,B) — Pfn(A,B) : (g, u, h) — gph where

sy
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a(guh) = (((ag)p)h), foranya € A. ThenP fn(A, B) isaPI'SRwherel’ = Pfn(B, A).

In generalP fn(A, B) need not be &-semiring, because an arbitrary family in tRESR P fn(A, B)
need not be summable. Hefe= P fn(B, A).

Definition 2.7. [8] A PT'SR S is said to have deft (right) unity if there exists a familyfe; : I € A) of
elements of and a family(y; : I € A) of elements of such that;e; ;s = s (XZ;sue; = s) foranysin S.

Definition 2.8. [9] Let S be aPT'SR, K be a nonempty subset §fand() be a nonempty subset Bf Then
the pair (K, Q) of (S,T') is said to be deft (right) PT'l of S if it satisfies the following:

(i) (a; : I € A) is a summable family i8 anda; € K Vi € A impliesX;q; € K,

(i) (i : 1 € A)isasummable family it andy; € Q VI € A impliesX;u; € 2, and

(i forall s€ S, a e Kandu € Q, spa € K (aps € K).

3. PARTIAL I'-SEMIMODULES OVER S

In this section we define left (righBI'SM N overS andPI'SSMof N and several examples are studied.

Definition 3.1. Let.S be aPI'SR and (N, ¥’) be aPM. ThenN is called a left (right)PI'SM over S if 3
anoperationS x I' x N — N : (s,u,n) = sun (N xI' x S — N : (n, u, s) — nus) which satisfies the
following axioms:
(SM1) if¥in; € N thenX;(sun;) € N andsp(Xin;) = 3j(sun;),
(SM2) if X 1y € T thenX)(spn) € N ands(X] )n = X)(spn)
(whereX* is the partial addition inl),
(SM3) if3;s; € S thenX(s;un) € N and (X;s;)un = Xj(sjun)
(whereX is the partial addition inS),
(SM4) (sut)an = su(tan),
(SM5)0sun = sOrn = suOy = On foreveryn, n; € N, u, p;, a« €T, s, 84, t € S.

Definition 3.2. Let.S be aPT'SR with left (right) unity and(V, >') be aPM. ThenN is called a left (right)
PI'SM with left (right) unity overS if 3 an operationS xT'x N — N : (s, u,n) — sun (N xT'x S — N :
(n, u, s) — nus) which satisfies the following axioms:
(SM1) if¥jn; € N thenX)(sun;) € N andsu(Xin;) = Xj(spny),
(SM2) if X} 1y € T thenX)(spn) € N ands(X] )n = X)(spn)
(whereX* is the partial addition inl),
(SMR) ifY;s; € S thenX(s;un) € N and (X;s;)un = Xj(sjun)
(whereX is the partial addition inS),
(SM4) (sut)an = su(tan),
(SM5)0spun = sOrn = suOy = On foreveryn, n; € N, u, p;, « €, s, 84, t €5,
(SME)Xjejpn = n (Xjnue, =n) foralln € N .

For the convenience of study the symbbis used hereafter instead of the partial additidria S, >* in
I'andY’ in IV irrespective of the context.

Following are some examples oPa'SM over aPI'SR S.
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Example 3.3. EveryPI'SR S is a left (right)PT'SM over S by the operatiort xI'x .S — S : (s, u, t) — sut
foranys, t € Sandpu € I'. Also every left (rightPT’l of S is a left (right) PT'SM overS.

Example 3.4. Let S be PI'SR. Take N := S™ for any positive integer.. DefineX on N as follows:
Let (a; : | € A) be elements of-tuples inN. Then eachy = [a;1, a2, ..., ain]. NowX,a; € N <—

Sia; € SY1 < j < nandXja = [San, X, ..., 2iam]. Then(N,X) is a PM. Now define an
operationS x I' x N — N by (s, p, [a1,az2,...,an]) — [spai,spag, ..., spap] (N x T'x S — N

([a1, az, ..., an], i, 8) — [a1p8, agps, ..., anps]) foranys € S, p € I'and|aq, as, ...,a,] € N. Then it can
be verified thatV is a left (right) PI'SM overS.

Example 3.5. Let Z— := {z | = a nonpositive integet. LetS =T := {( Ccl Z ) | a,b,¢c,d €

Z~|J{0}}. ThenS andI" are PMs with finite support of usual matrix addition. Moreovgiis a PT' SR with
usual matrix multiplication. LeiV; = {( Z 8 > | a,c € Z7 |J{0}}. ThenN; is a leftPI'SM over S with

the usual matrix multiplication. LeV, = {( 8 8 ) | a,b € Z~|J{0}}. ThenNs is a right PT'SM over

S with the usual matrix multiplication.

Example 3.6. Consider thePMs S := Pfn(A, B),T' :== Pfn(B,A) andN := Pfn(A, A) as defined in
the Example.2. MoreoverS is a PI'SR by the operation as defined in the Exampl& Now the operation
SXITxN —= N : (f,u,n)— funwherea(fun) = (((af)u)n), foranya € A, f € S, u € T') and

n € N. ThenN = Pfn(A, A) is aleftPT'SM overS.

Definition 3.7. Let.S be aPT'SR, N be a left (right)PT'SM overS and K C N (K # (). ThenK is called
aPI'SSMof N if the following holds in K:

(SSM1) ifX;a; € N anda; € KV I € AthenX;q; € K, and

(SSM2)ifs € S, p €T, a € K thensua € K (aus € K).

Example 3.8. LetS be aPI'SR. Then from the definitioR.6, trivially every left (right)PT'l of S is aPI'SSM
of the left (right)PI’'SM N overS.

Example 3.9. Consider thePI'SM N over S as in the Exampl8.4. TakeK = {[a,0,...,0] | a € S}. Then
K isaPI'SSMof N.

3.10. Remark. LelV be a left (right)PI'SM over aPI'SR S. Then
(i) {0} and N arePI'SSMof N, called trivialPI'SSMs, and

(i) if {K; |l € A} be afamily ofPT'SSMs of N then ﬂ K, isaPI'SSMof N.
leA

Definition 3.10. Let N be a left (right)PT'SM N overS and B C N (B # (). Then thePT'SSM of N
generated byB is denoted bysT'B (BT'S) and is defined asT' B = (\{K | K is a left (right) PTSSMof N
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andB C K}.

Theorem 3.11. Let S be aPI'SR with unity andN be a left (right)PT'SM over S. Then for anyB C N
(B 75 @), ST'B = {Elsl/llbl | S| € S, JURS F, by € B andElslmbl c N} (BFS = {Elblﬂlsl | b €
B7 RS F, S| € SandElblulsl S N})

Proof. Take T* = {Sisjub; | si € S, w € T, by € B andX;s;ub; € N}. First we claim thatr™
is aP['SSM of N containingB: Let ¥;a; € N anda; € T*, V1 € A. Then eachy = X;s;;p5bi5,
si; €8, w; €T, by € B. = Xa; = 1(X;8150u5b15), and soX,a; € T*. Lett € S, g € T'anda € T*.
Thent € S, g € T'anda = Xisjuby, s € S, iy € T, by € B. = tfa = tﬁ(Elslmbl) = Zl(tﬁsl),ulbl,
tBs; € S, w €T, by € Bandsatfa € T*. Hencel™ is aPI'SSMof N. SinceS has left unity, there exists
(e : 1€ A)inS, (1 € A)inT such thate;us = s. Now letb € B C N. ThenXejub = b. =
b€ T* and henceB C T*.

Now it is enough to provd™ is the smallesPI'SSM of N containingB: Let M be aPI'SSM of N
containingB anda € T*. Thena = X;siubi, s1 € S, w €T, by € B. SinceBC M, b€ M,l € A. =
symby € M, 1l e A, = Yysyuby € M. = a € M and sol™ C M. Thereforel™ is the smallesPI"SSM of
N containingB. Hence the theorem. O

Definition 3.12. Let N be a leftP'SM over aPI'SR S, K be aPI'SSM of N andn* € N. Then
(K:n*)={a€S|aun* € KVueT}.

Theorem 3.13.Let N be aleftPT'SM over aPI'SR S, K be aPI'SSMof N andn* € N. Then(K : n*) is
aleftPI'l of S.

Proof. Note that(K : n*) = {a € S | aun* € K Vu € T}. Let¥,q; € Sanda; € (K : n*) Vi € A.
Thengun* € KVu € T, 1 € A. = Yi(qun*) € K Vu € T and soX,a; € (K : n*). Lets € S,
B eTanda € (K : n*). Thens € S, 8 € ' andaun* € K Vu € I'. SinceK is aPI'SSMof N,
(sBa)un* = sp(aun*) € K Vu € I'and sosfa € (K : n*). Hence(K : n*) is aleftPT'l of S. O

Definition 3.14. If K isaPI'SSMof N andC C N (C # @) then(K : C) =({(K : ¢) | c€ C}.

Theorem 3.15.If K and K* are P'SSMs of a [eftP'SM N overS andC, D are nhonempty subsets .
Then

()if C C Dthen(K : D) C (K : C),

(i) (KONK*:C)=(K:C)NK*:C),and

(iii) if ¥(c,d) e NVceCandde Dthen(K :C)((K :D)C (K:C+ D)and(K : C)(\(K : D) =
(K:C+D)if 0y € C D whereX(c,d) = Xy(c;,dy),l € AandC + D = {X(¢,d) | c€ C,d € D}.

Proof. (i) Assume thatC’ C Dandletp € (K : D). == pe (K :d)V¥d € D. SinceC C D,p e (K :¢)
VeeC.=pe(K:C)andsoK : D) C (K : C).

Mpe KNK*:C)epe(KNK*:¢c)Vee Cepuce KNK*VueT, ce C < puce K and
puc € K*VueTl, ceCepe(K:c)andpe (K*:c)Vee C=pe (K : C)N(K*:C). Therefore
(KNK*:C)=(K:C)N(K*:O).

(iii) Assume that¥(c,d) € NVece Candd € D. = C+ D C NandC + D # (. Letp € (K :
C)N(K : D). Thenp € (K : ¢)andp € (K : d)Ve € C, d € D. = puc € K andpud € K
VYuel,ceC,deD.=pudX(c,d) = X(puc,pud) € KVpueTl,ceC,de D.=pe (K:C+D).
Thereforeg K : C)(\(K : D) C (K : C + D).
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Now assume thdiy € C(\D andletp € (K : C + D). ThenpuX(c,d) e KVp €T, ce C, d e D.
= pud(c,0) € K andpuX(0,d) €e KVu e, ce C,d e D. = puc e Kandpud € KVu €T, c €
C,deD. =pe(K:candpe (K :d)Vee C,de D. =pe (K:C)(K : D). Therefore
(K:CO)(K:D)=(K:C+ D).

U
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