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Abstract. The present paper defines a new subclass of analytic functions by means of the
generalized polylogarithm equipped with subordination. The defined new class engages
Poisson distribution series and generalized Pascal snail. The early first few coefficients are
obtained and their relevance to classical inequality by Fekete-Szego are discussed. The
consequences of our parametric equation are pointed out.

AMS (MOS) Subject Classification Codes: 30C45; 30C50; 30C80
Key Words: Analytic Coefficient bound, univalent, Poisson, polylogarithm, Pascal snail, Fekete-Szego in-

equality.

1. INTRODUCTION

Let A be the collection of all functions f that are complex-differentiable on the open set (U = {z :
z ∈ C, |z| < 1}) around every point in its domain with form (1.1) below and with normalization condition
f(0) = f ′(0)− 1 = 0.

f(z) = z +

∞∑
n=2

anz
n. (1. 1)

In addition, let S be the collection of all univalent functions f ∈ A such that S ∈ A is univalent in U.

Let f(z) and g(z) be analytic functions in U, then f(z) is said to be subordinate to g(z), symbolically
expressed as f(z) ≺ g(z), z ∈ U, provided there exists an analytic function w(z) such that f(z) = g(w(z)).
Suppose g(z) is univalent in U, then the earlier condition is equivalent to f(z) ≺ g(z) if and only if
f(0) = g(0) and f(U) ⊂ g(U).

Let p ∈ P be the class of functions with positive real part (Caratheodory functions), such that p(0) = 1
and Rep(z) > 0 with |pn| ≤ 2, [11].
In recent times, there have been many functions unified by subordination using various forms of functions
with positive real parts, see [6,8] as an example.
Fekete-Szego in [4] showed that
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|a22 − µa3| ≤


4µ− 3 , µ ≥ 1

1 + exp−
2µ

1−µ , 0 ≤ µ ≤ 1

3− 4µ , µ ≤ 0

holds for function f ∈ S and the result is sharp, see [4,10-12] for further detail.
The Hadamard product (or convolution) of f(z) given by (1.1) and

φ(z) = z +

∞∑
n=2

φnz
n

is defined by

(f ∗ φ)(z) = z +

∞∑
n=2

anφnz
n = (φ ∗ f)(z). (1. 2)

Kanas and Masih [6] presented a unified method for the analytic representation of the domain bounded by a
generalized Pascal snail as follows.
For α, β ∈ [−1, 1], αβ ̸= 1, γ ∈ [0, 1), Let Lα,β,γ : U −→ C denote the function defined by

Lα,β,γ(z) =
(2− 2γ)z

(1− αz)(1− βz)
=

∞∑
n=1

Bnz
n = 2(1− γ)

∞∑
n=1

αn − βn

α− β
zn, (1. 3)

for α ̸= β and Lα,β,γ(z) =
∑∞

n=1 Bnz
n = 2(1− γ)

∑∞
n=1 nα

n−1zn. For detail information see [2,5,6,10]
and the relevant literature therein.

Poisson distribution has recently attracted the attention of a few researchers in geometric function theory,
but we have little literature available on the subject matter. Therefore, researchers in the area of geometric
function theory must do a more in-depth study of the Poisson distribution series. The few available informa-
tion can be obtained in [2,9,14,16] and relevant literature cited therein.
Poisson distribution is defined by

L(m, z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−mzn, (1. 4)

with the radius of convergence at infinity.
Let |z| < 1 and let there exist |pn| ≥ 2, the classical polylogarithm Lλ,k(z) of Leibniz with Bernoulli in
1969 is absolutely convergent and it is of the form

Lλ,γ(z) =

∞∑
n=1

zn

np
.

See [7,13] for details.
Let f ∈ A, then the generalized polylogarithms Dk

λf(z) : A −→ A is defined as

Dk
λf(z) = z +

∞∑
n=2

nk(n+ λ− 1)!

λ!(n− 1)!
zn (1. 5)

where k ∈ N0 = {0, 1, 2, . . .}, z ∈ U . Dk
λ comprises of both the Salagean and Ruscheweyh derivative

operators, see [1,11] for details.
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Moreover, by employing the concept of convolution defined earlier in (1.2) and using (1.4) and (1.5) we
obtain

Dk
λ(f ∗ φ) ∗ k(m, z) = z +

∞∑
n=2

nk(n+ λ− 1)!mn−1

λ!((n− 1)!)2
e−manφnz

n, (1. 6)

where m ≥ 0, k, λ,∈ N0.
The present investigation wishes to present a unified subclass of starlike and convex function T ρ,g

k,h(b, λ, k(m, z), Lα,β,γ(z))
to determine the early few coefficient bounds and its associated Fekete-Szego classical inequality, and the re-
lationship with Poisson distribution series bounded by generalized pascal snail, equipped with generalized
polylogarithm.

2. NOTATIONS AND PRELIMINARIES

Lemma 2.1. [1, 10] Let p(z) = p1z + p2z
2 + . . . ∈ Ω be that |w(z)| < 1 in U. If µ ∈ C, then |p2 − µc21| ≤

2max{1, |t|}, where t is a complex number.

Definition 2.2. If α, β ∈ [−1, 1], αβ ̸= 0, let m > 0, k, λ ∈ N0 = {0, 1, 2, . . .}, α ̸= β, b ∈ C, γ ∈ [0), and
the class T k,g

λ,h(b, λ, L(m, z), Gα,β,γ(z)) ∈ A consisting of the function f of the form (1.1) and

g(z) = z +

∞∑
n=2

gnz
n, h(z) = z +

∞∑
n=2

hnz
n,

where gn > 0, hn > 0, gn − hn > 0 and L(m,z) is as earlier defined,then the following subordination
condition is satisfied

1 +
1

b

[
(1− ρ)

Dk
λ(f ∗ g)(z) ∗ (L(m, z))

Dk
λ(f ∗ h)(z)

+ ρ
Dk

λ(f ∗ g)(z)′ ∗ (L(m, z))

Dk
λ(f ∗ h)(z)

− 1

]
≺ Gα,β,γ(z), (2. 7)

where Gα,β,γ(z) = 1 + Lα,β,γ(z) and Lα,β,γ(z) is as earlier defined.

3. RESULTS

Theorem 3.1. Let Gα,β,γ(z), g(z), h(z), L(m, z) be as earlier defined and Gα,β,γ(z) is a modified general-
ized pascal snail, If f(z) ∈ T k,g

λ,h(b, ρ,Gα,β,γ(z), L(m, z)), n ≥ 2, gn > 0, hn > 0, gn − hn > 0, then

|a2| ≤
4|b|(1− γ)

2k(λ+ 1)

[
(1 + ρ)me−m(g2 − h2)

] , (3. 8)

|a3| ≤
2|b|

3k(λ+ 2)(λ+ 1)(m2e−mg3 − 2h3)
max{1, |t|}, (3. 9)

where

t =
2(1− γ)(λ2!(α+ β)((1 + ρ)me−m(g2 − h2))

2 − (1− γ)(h2
2 −me−mg2h2))

λ2!((1 + ρ)me−m(g2 − h2))2
.

Proof. Suppose f(z) ∈ T k,g
λ,h(b, e,Gα,β,γ(z), L(m, z)), then there is a function w(z) in U with w(0) = 0

and |w(z) < 1| such that from (2.1) we have

1 +
1

b

[
(1− ρ)

Dk
λ(f ∗ g)(z) ∗ (L(m, z))

Dk
λ(f ∗ h)(z)

+ ρ
Dk

λ(f ∗ g)(z)′ ∗ (L(m, z))

Dk
λ(f ∗ h)(z)

− 1

]
= Gα,β,γ(w(z))
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since w(z) = w1z + w2z
2 + · · · is a Schwarz function then

Gα,β,γ(w(z)) = 1 + (2− 2γ)w1z + (2− 2γ)((α+ β)w2
1 + w2)z

2 + · · · .

Simplifying further, we have,

1 +
2k(λ+ 1)!

bλ!

[
(1 + ρ)me−m(g2 − h2)

]
a2z

+

[
22k(λ+ 1)2

bλ2!
a22(h

2
2 −me−mg2h2) +

3k(λ+ 2)!

bλ!2!

(
m2e−m

2
g3 − h3

)]
z2 + · · ·

= 1 + (2− 2γ)w1z + (2− 2γ)((α+ β)w2
1 + w2)z

2 + · · · .
Comparing the coefficient of z and z2, we have

a2 ≤ 4|b|(1− γ)

2k(λ+ 1)

[
(1 + ρ)me−m(g2 − h2)

]

a3 ≤
2|b|λ!

[
(2− 2γ)((α+ β)w2

1 + w2)− q1w
2
1

]
3K(λ+ 2)!(m2e−mg3 − 2h3)

.

The proof is complete. □

Corollary 3.2. Let Gα,β,γ(z), g(z), h(z), L(m, z) be as earlier defined and Gα,β,γ(z) is a modified gener-
alized pascal snail, If f(z) ∈ T 1,g

1,h (b, 0, Gα,β,0(z), L(m, z)), n ≥ 2, gn > 0, hn > 0, gn − hn > 0, then

|a2| ≤
|b|

me−m(g2 − h2)

|a3| ≤
|b|

9(m2e−mg3 − 2h3)
max{1, |t|}

where

t =
2(α+ β)(me−m(g2 − h2))

2 − (h2
2 −me−mg2h2)

(me−m(g2 − h2))2
.

Corollary 3.3. Let Gα,β,γ(z), g(z), h(z), L(m, z) be as earlier defined and Gα,β,γ(z) is a modified gener-
alized pascal snail, If f(z) ∈ T 1,g

1,h (b, 0, Gα,β,0(z), L(1, z)), n ≥ 2, gn > 0, hn > 0, gn − hn > 0, then

|a2| ≤
|b|

0.37(g2 − h2)

|a3| ≤
|b|

9(0.37g3 − 2h3)
max{1, |t|}

where

t =
0.28(α+ β)(g2 − h2)

2 − (h2
2 − 0.37g2h2)

(0.14(g2 − h2))2
.
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Theorem 3.4. If f(z) given by (1.1) is in the class T k,g
λ,h(b, ρ,Gα,β,γ(z), L(m, z)) and µ ∈ C then

|a3 − µa22| ≤
4|b|(1− γ)

3k(λ+ 2)(λ+ 1)(m2e−mg3 − 2h3)
max{1, |t|}

where

t = α+ β +
2kb(λ+ 1)2(h2

2 −me−mg2h2)− 3k × 22µb(λ+ 2)!(1− γ)(m2e−mg3 − 2h3)

2k(λ+ 1)2((1 + ρ)me−m(g2 − h2))2
.

Proof 3.5. Substitute the value of a2 and a3 in Theorem 3.1,we have

a3 − µa22 =
2!bλ!

3k(λ+ 2)!(m
2

2 e−mg3 − h3)

[
(2− 2γ)w2 + ((2− 2γ)(α+ β)− q1)w

2
1

]

−µ
b2(2− 2γ)2w2

1

22k(λ+ 1)2![(1 + ρ)me−mg2 − h2]2

simplifying further, we obtain

|a3 − µa22| ≤
2!bλ!

3k(λ+ 2)!(m
2

2 e−mg3 − h3)
[w2 − tw2

1] (3. 10)

where

t =
µb(2− 2α)3k(λ+ 2)!(m

2

2 e−mg3 − h3)

22k+1λ!(λ+ 1)2![(1 + ρ)me−mg2 − h2]2
− q1

(2− 2γ)

. Using Lemma 2 in (3.1 ) we obtain

|a3−µa22| ≤
4|b|λ!(2− 2γ)

3k(λ+ 2)!(m
2

2 emg3 − h3)
max

(
1,

∣∣∣∣ µb(2− 2γ)3k(λ+ 2)!(m
2

2 e−mg3 − h3)

22k+1λ!(λ+ 1)2![(1 + ρ)memg2 − h2]2
− q1

(2− 2γ)

∣∣∣∣
)
.

The proof is complete.

Corollary 3.6. If f(z) given by (1.1) is in the class T 1,g
1,h (b, 0, Gα,β,0(z), L(m, z)) and µ ∈ C then

|a3 − µa22| ≤
2|b|

9(m2e−mg3 − 2h3)
max{1, |t|}

where

t = α+ β +
b(h2

2 −me−mg2h2)− 32µb(m2e−mg3 − 2h3)

(me−m(g2 − h2))2
.

Corollary 3.7. If f(z) given by (1.1) is in the class T 1,g
1,h (b, 0, Gα,β,0(z), L(1, z)) and µ ∈ C then

|a3 − µa22| ≤
2|b|

9(0.37g3 − 2h3)
max{1, |t|}

where

t = α+ β +
b(h2

2 − 0.37g2h2)− 9µb(0.37g3 − 2h3)

0.37(g2 − h2)2
.

The value of Poisson (me−m) can be deduced from the earlier stated theorems as follows
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Theorem 3.8. Let Gα,β,γ(z), g(z), h(z), L(m, z) be as earlier defined and Gα,β,γ(z) is a modified general-
ized pascal snail, If f(z) ∈ T k,g

λ,h(b, ρ,Gα,β,γ(z), L(m, z)), n ≥ 2, gn > 0, hn > 0, gn − hn > 0, then

me−m ≤ 4|b|(1− γ)

2k(λ+ 1)

[
(1 + ρ)(g2 − h2)|a2|

] ,

m2e−m ≤ 2|b|
3k(λ+ 2)(λ+ 1)(|a3|g3 − 2h3)

max{1, |t|},

where

t =
2(1− γ)(λ2!(α+ β)((1 + ρ)|a2|(g2 − h2))

2 − (1− γ)(h2
2 − |a2|g2h2))

λ2!((1 + ρ)|a2|(g2 − h2))2
.

Corollary 3.9. Let Gα,β,γ(z), g(z), h(z), L(m, z) be as earlier defined and Gα,β,γ(z) is a modified gener-
alized pascal snail, If f(z) ∈ T 1,g

1,h (b, 0, Gα,β,0(z), L(m, z)), n ≥ 2, gn > 0, hn > 0, gn − hn > 0, then

me−m ≤ |b|
|a2|(g2 − h2)

m2e−m ≤ |b|
9(|a3|g3 − 2h3)

max{1, |t|}

where

t =
2(α+ β)(|a2|(g2 − h2))

2 − (h2
2 − |a2|g2h2)

(|a2|(g2 − h2))2
.

Let f be a starlike function then |an| ≤ 2 and we have

Corollary 3.10. Let Gα,β,γ(z), g(z), h(z), L(m, z) be as earlier defined and Gα,β,γ(z) is a modified gen-
eralized pascal snail, If f(z) ∈ T 1,g

1,h (b, 0, Gα,β,0(z), L(m, z)), n ≥ 2, gn > 0, hn > 0, gn − hn > 0,
then

me−m ≤ |b|
2(g2 − h2)

m2e−m ≤ |b|
9(2g3 − 2h3)

max{1, |t|}

where

t =
2(α+ β)(g2 − h2)

2 − (h2
2 − 2g2h2)

(g2 − h2)2
.

Theorem 3.11. If f(z) given by (1.1) is in the class T k,g
λ,h(b, ρ,Gα,β,γ(z), L(m, z)) and µ ∈ C then

m2e−m(1− µe−m) ≤ 4|b|(1− γ)

3k(λ+ 2)(λ+ 1)(|a3|g3 − 2h3)
max{1, |t|}

where

t = α+ β +
2kb(λ+ 1)2(h2

2 − |a2|g2h2)− 3k × 22µb(λ+ 2)!(1− γ)(|a3|g3 − 2h3)

2k(λ+ 1)2((1 + ρ)|a2|(g2 − h2))2
.
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Corollary 3.12. If f(z) given by (1.1) is in the class T 1,g
1,h (b, 0, Gα,β,0(z), L(m, z)) and µ is a complex

number then

m2e−m(1− µe−m) ≤ 2|b|(1− γ)

9(|a3|g3 − 2h3)
max{1, |t|}

where

t = α+ β +
b(h2

2 − |a2|g2h2)− 9µb(|a3|g3 − 2h3)

(|a2|(g2 − h2))2
.

Suppose f is starlike, then |an| ≤ 2 and we have

Corollary 3.13. If f(z) given by (1.1) is in the class T 1,g
1,h (b, 0, Gα,β,0(z), L(m, z)) and µ is a complex

number then

m2e−m(1− µe−m) ≤ 2|b|(1− γ)

9(2g3 − 2h3)
max{1, |t|}

where

t = α+ β +
b(h2

2 − 2g2h2)− 9µb(2g3 − 2h3)

4(g2 − h2)2
.

4. APPLICATIONS

The involvement of the Poisson series and Pascal snail in this research makes its real-life application
interesting, particularly, in the areas of telephone calls and radioactive decay events and in the lift generated
on airplane wings which is based on Pascal principle.

5. CONCLUSION

The author can define a subclass of analytic univalent function class involving Poisson distribution series
and bounded by generalized Pascal snail polynomials using subordination. Early coefficients of the defined
function class are obtained and its analogue of Fekete-Szego classical inequality is derived. Several conse-
quences of the obtained results are pointed out using corollaries .
To the best of our knowledge the results obtained are new.
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